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Abstract

Stochastic network calculus provides an elegant way toacherize traffic and service processes. However, littlerefias
been made on applying it to multi-access communicationesystsuch as 802.11. In this paper, we take the first step ty appl
it to the backlog and delay analysis of an 802.11 wirelesalloetwork. In particular, we address the following questioln
applying stochastic network calculus, under what situestioan we derive stable backlog and delay bounds? How toedérées
backlog and delay bounds of an 802.11 wireless node? And lyhw dre these bounds when compared with simulations? To
answer these questions, we first derive the general syabditdition of a wireless node (not restricted to 802.11)pnfthis,
we give the specific stability condition of an 802.11 wirslemde. Then we derive the backlog and delay bounds of an B02.1
node based on an existing model of 802.11. We observe thatetfieed bounds are loose when compared with ns-2 simutation
indicating that improvements are needed in the currentomisft stochastic network calculus.

I. Introduction

Network calculus provides an elegant way to characteriafficrand service processes of network and communication
systems. Unlike traditional queueing analysis in which bas to make strong assumptions on arrival or service presess
(e.g., Poission arrival process, exponential serviceildigton, etc) so as to derive closed-form solutions [1}wwek calculus
allows general arrival and service processes. Instead ttihgesxact solutions, one can derive network delay and lbgck
bounds easily by network calculus. Deterministic netwaaslcalus was proposed inl[2][3][4][5], etc. However, mosifiic
and service processes are stochastic and deterministioriketalculus is often not applicable for them. Therefoteckastic
network calculus was proposed to deal with stochastic arend service processes [5] [7] [8] [9] [10] [11] [12].

There have been some applications of stochastic netwocklcal [13] [14] [15] [16]. However, little effort has been d&
on applying it to multi-access communication systems. tnghper, we take the first step to apply stochastic netwoduked
to an 802.11 wireless local network (WLAN). In particulare wddress the following questions:

« Under what situations can we derive stable backlog and dedapnds?
« How to derive the backlog and delay bounds of an 802.11 vesetede?
« How tight are these bounds when compared with simulations?

In this paper, we answer these questions and make the faljpeantributions:

« We derive the general stability condition of a wireless nbdsed on the theorems of stochastic network calculus. From
this, we give the specific stability condition of an 802.1eléss node.

« We derive the service curve of an 802.11 node based on arnngxisbdel of 802.11[[18]. From the service curve, we
then derive the backlog and delay bounds of the node.

« The derived bounds are loose in many cases when compareasvlsimulations. We discuss the reasons and point out
future work.

This paper is organized as follows. In Sectioh Il, we give @fboverview of stochastic network calculus. In Sectior 11
we present the stochastic network calculus model of a vesetede. In Section 1V, we derive the general stability ctoowli
of a wireless node. In Sectidn] V, we derive the backlog andydebunds and the stability condition for an 802.11 node.
In Section(Vl, we compare the derived bounds with simulatiesults. Related work is given in Sectibn M1l and finally,
Sectior[ VIl concludes the paper and points out future dioes.

Il. Stochastic Network Calculus

In this section, we first review basic terms of network calesuind then cite the results of stochastic network calcuhistw
we will use in this paper. There are various versions of alrand service curves. We adogttual backlog centric (v.b.c)
stochastic arrival curveandweak stochastic service curi our analysis.
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A. Basic Terms of Network Calculus
We consider a discrete time system where time is slotted (0, 1,2,...). A process is a function of timé. By default,
we useA(t) to denote thearrival processto a network element wittd(0) = 0. A(¢) is the total amount of traffic arrived to
this network element up to time We useA*(t) to denote thedeparture processf the network element with*(0) = 0.
A*(t) is the total amount of traffic departed from the network elemep to timet. Let F (F) represents the set of non-
negative wide-sense increasing (decreasing) functiolesrig, A(t) € 7 and A*(t) € F. For any process, saf(t), we define
A(s,t) = A(t) — A(s), for s < t. We define the backlog of the network element at tinsy
B(t) = A(t) — A*(#), @)
and the delay of the network elementtaby
D(t) =inf{r: A®t) < A*(t+7)}. (2)
Fig.[ illustrates an example of(¢) and A*(¢) with B(t) and D(t) att = 10.
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Fig. 1. lllustration of A(t), A*(t), B(t) and D(t)

In deterministic network calculusi(t) can be upper-bounded by an arrival curve. That is, foball s < ¢, we have
A(Sa t) < a(t - S)a

wherea(t) is called thearrival curve of A(t).

A busy periodis a time period during which the backlog in the network eletris always nonzero. For any busy period
(to, t], suppose we have
A*(t) — A*(to) > B(t — to),

which means that the network element provides a guarantreits lower-bounded by (t — ¢y) during the busy period. We
can letty be the beginning of the busy period, that is, the backlog a zero orA*(ty) = A(to). Therefore,

A*(t) — Alto) = B(t — to).
The above equation infetd* (t) > info<s<; [A(s) + B(t — s)], which can be written as
A*(t) > A® B(1), @3)
where® is called the operator ahin-plus convolutiorand 5(t) is called theservice curveof the network element.

B. Results of Stochastic Network Calculus

We cite the following definitions and theorems from [5]][1Xcept that we define Definitidn 6 by ourselves.

Definition 1 (virtual-backlog-centric (v.b.c) Stochastic Arrival te): A flow is said to have a virtual-backlog-centric (v.b.c)
stochastic arrival curvee € F with bounding functionf € F, denoted byA ~,,< f,a >, if for all t > 0 and allz > 0,
there holds

P{ sup [A(s,t) — a(t — s)] >z} < f(z). (4)

0<s<t



Originally, in deterministic network calculus, we ha¥és,t) < a(t — s) for all 0 < s < t. However, there is usually some
randomness in stochastic arrival processes 4fd¢) may not be upper-bounded by any arrival curve determimiiyi¢e.g.,
traffic arrivals in (s, t] can be arbitrarily large in Poisson process). Thus, v.lachststic arrival curve is proposed to tackle
this problem. Roughly speakingi(s,¢) can exceedx(s,t) by z, but its probability is upper-bounded bf(x) which is a
decreasing function af.

Definition 2 (Weak Stochastic Service Curveéd:serverS is said to provide a weak stochastic service cusve F with
bounding functiory € F, denoted byS ~.,,< g, 3 >, if for all t > 0 and allz > 0, there holds

P{A® B(t) - A*(t) > 2} < g(x). 5)

In deterministic network calculus, we have (t) > A ® S(t), which means that there is a service guarantee denoted by the
service curvesd(t). However, there is usually some randomness in stochastiweerocess and thus a server may not always
provide a guaranteed service curve deterministically.sTheak stochastic service curve is proposed to tackle tioislgm.
Roughly speakingd*(t) — A ® 3(t) can be less tharz, but its probability is upper-bounded layx) which is a decreasing
function of z.

The utility of the above definitions is that if we can charaiz&the traffic by a v.b.c stochastic arrival curve and theesés
service process by a weak stochastic service curve, therawealculate backlog and delay bounds of the network element
by Theoren11.

Theorem 1 (Backlog and Delay Bounds)Consider a server fed with a flow. If the server provides a weak stochastic
service curveS ~,s< g, 8 > to the flow and the flow has a v.b.c stochastic arrival cutve ,,< f,« >, then

(i) The backlogB(t) of the flow in the server at time satisfies: for allt > 0 and allz > 0,

P{B(t) > v} < f @ g(x + nf [B(s) — a(s)). G
(i) The delayD(t) of the flow in the server at time satisfies: for allt > 0 and allz > 0,
P{D(t) >z} < ] @ g(inf [3(s) — a(s — 2))). )

By definition a(x) = 0 whenz < 0 in this theorem. Note that as noticed recently by reseascbbBnetwork calculus, the
formula of delay bound in this theorem often returns triviedults, which we will see in Sectidnl V.

By now, we have reviewed the key results of stochastic nétwalculus. Next, we will show how to calculate v.b.c stocltas
arrival curve and weak stochastic service curve.

In [11], the author presented a theorem to facilitate cakboh of stochastic arrival curves. Before showing the theg we
first introduce(c(6), p(#))-upper constraineds].

Definition 3 ((c(0), p(6))-upper constrained)A processA is said to be(a(6), p(9))-upper constrained (for some> 0),
if for all 0 < s <t, we have

% log Ec?A1 < p(0)(t — ) + 0/(0). ®)

This definition is equivalent to &4(s:1) < fr(0)(t=5)+02(9) "which means thati(s,t)’s moment generating function is
upper-bounded. Two related concepts are defined as follows.

Definition 4 (f-MER /6-ER): A processA’s minimum envelope rate (MER) with respectt¢d-MER), denoted by*(0),
is defined as follows:

p*(0) = lim sup i sup log EefAls:st+t), 9)
t—o00 s>0
We say thatd has anenvelope rate (ER) with respect #o(9-ER), denoted by (9), if p(6) > p*(9).
The following theorem expresses the relationship betweER and(o(8), p(6))-upper constrained.
Theorem 2 (Relationship of-ER and(o(0), p(#))-upper constrained):
() If Ais (c(0),p(9))-upper constrained, them(d) is 0-ER of A.
(i) If A hasf-ER p(f) < oo, then for everye > 0 there existsr.(6) < oo so thatA is (o.(6), p(f) + €)-upper constrained.
Now we have two kinds of traffic characterization: v.b.c k@stic arrival curve ando(9), p(6))-upper constrained. The
following theorem establishes the connection between them
Theorem 3 (v.b.c Stochastic Arrival Curve @& (6), p(6))-upper constrained ProcessBupposeA(t) is (o (), p(0))-upper



constrained, then it has a v.b.c stochastic arrival Elm/euvm f,a >, where

alt) = r-t
690(9)
flz) = T 0G@ 7 ¢ b (10)
for anyr > p(6) andz > 0.

This theorem indicates that if we can show that the traffi¢d&), p(6))-upper constrained, then we can get its v.b.c
stochastic arrival curve by Ed. {10).

We now introduce the concept atochastic strict serverThis concept was inspired by the observation that a wiseles
channel can be described by an ideal service process andpairinent process. As we will see in Sectlod Ill, a wireless
node can be modeled as a stochastic strict server.

Definition 5 (Stochastic Strict Server)A serverS is said to be a stochastic strict server providing stocbasdtict service
curve 3 € F with impairment process to a flow iff during any backlogged peria@d, t], the outputd*(s,t) of the flow from
the server satisfies

A*(s,t) > B(t — s) — I(s,1). (11)

We can easily find the weak stochastic service curve of a asaichstrict server by the following theorem.

Theorem 4 (Weak Stochastic Service Curve of Stochastic Strict §er@onsider a stochastic strict servgrproviding a
stochastic strict service curvé with an impairment procesa. If the impairment process has a v.b.c stochastic arrivate;u
or I ~3< g,v>, andg € F, then the server provides a weak stochastic service Euﬁ‘vews< g, 3 > with

B(t) = Bt) — (1) (12)

So far, we have cited all results of stochastic network datcwhich we will use in this paper. Finally, we define stable
backlog and stable delay. A natural definition is to check tiwbethe expectation of backlog (or delay) is finite.
Definition 6 (Stable Backlog/Delay)The backlogB(t) is stable, if

EB(t) < o0, V. (13)

Similarly, the delayD(t) is stable, if
ED(t) < oo, Vi (14)
We say that the backlog (or delay) bound of stochastic nétwalculus is stable if they can derive stable backlog (oayel

I11. Stochastic Network Calculus Model of a Wireless Node

In this section we model a wireless node (not restricted @ BD) by stochastic network calculus. In general, we camdefi
one slot ( = 1) to be any duration of time and measure traffic amount in ariy(erg. bits, bytes or packets).

We consider a wireless node. Léi(t) denote the traffic arrived at the node from the applicatiorelaSupposed is
(c4(01),pa(01))-upper constrained. From Theoréin 3, we have ., < f,a >, where

alt) = ra-t
efroa(01)

flz) = e (15)

1 — e1(pa0)—ra)

foranyra > pa(61).

We can model a wireless node by a stochastic strict servetheechannel capacity hetraffic unit per slot. The departure
processA*(s,t) = ((s,t) — I(s,t) during any backlogged periog, t], where3(t) = ¢ - ¢ is the ideal service curve andl
is the impairment process due to backoff, channel sharimgte@msmission errors. Sindgs,t) < c¢- (t — s), I has a finite
6-MER. From Theorerhl2, there exist(62) andp;(62) so that! is (o7(02), pr(f2))-upper constrained. Based on Theofdm 3,
we havel ~,,< g,v >, where

ef201(02) p
_ L,
g(l‘) - 1— 692(91(92)7”) e ’ (16)

1The original theorem (Theorem 5.1 |11]) established a simidonnection between maximum-backlog-centric (m.b.ogtsistic arrival curve and
(a(0), p(9))-upper constrained, which is wrong as noticed recently Iseaechers of network calculus. However, one can easily lseeheorem holds
for v.b.c stochastic arrival curve.

2|n the original theorem (Lemma 4.2 [111]), the impairmentqass has a m.b.c stochastic arrival curve. However, one asily see that the theorem also
holds for the impairment process which has a v.b.c stochastival curve.



for anyr; > pr(62).
From Theoreni 4, the node provides a weak stochastic servise § ~,;< g, 3 >, where

Bt) = (c—rr)-t, (17)

foranyc > ry.
Furthermore, from Theorefd 1, we must havg) < 3(t), or equivalently,

ra<c—ry. (18)
Thus,P{B(t) > z} < f®g(x). Otherwise, ifa(t) > B(t), we get a trivial backlog bound?{B(t) > z} < f®g(—o0) = 0.

IV. Stability Condition of a Wireless Node

One fundamental question we need to address is under whditioonwe can getstable B(¢) and D(¢) from stochastic
network calculus, i.e., B(t) < oo and ED(t) < oc. Before presenting our result, we first define the conceptrafelop
average rate

Definition 7 (Envelop Average Rate)fhe envelop average rate of a procelssdenoted by 4, is defined as

) EA(s,s+1t)
ap = lim sup ———=.
t—o00 s>0 t

(19)

Letay anda; be the envelop average rate 4fand I, respectively. The following proposition shows the stig&bitondition.
Proposition 1 (Stability Condition): A wireless node has stable backlog and stable delay if

ap <c—ay. (20)
Proof: We have shown thaP{B(t) > z} < f ® g(«) if Eq. (18) holds. Thus, for any,

EB(t) = iP{B(t):z’—i-l}-(i—i-l)
=0
< iP{B(t)>z’}-(z’+1)
=0

< if@g(i)-(i+l)<oo. (21)
=0

Since f(x) andg(x) are exponentially decreasing functions according to [E5) éhd Eq.[(dB)f ® g(x) is an exponentially
decreasing function. Thus we have, for anEB(t) < co. It is easy to see that for anty ED(t) < co. Otherwise, the service
time is co and thuslim;_, ., EB(¢) = co which contradicts Eq[(21).

Now we examine Eq[{18). From Eq._{15) and HQ.(26),= pa(61)+ ¢ andr; = pr(62) + € for anye > 0. Thus, Eq.[(IB)
is equivalent to

pa(th) < c—pr(fa) — 2.

From Theoreni 2, we havea(61) = p%(61) + €1 andp;(62) = p5(62) + €1 for any e; > 0, wherep? (01) and pj () are
0-MERs of A and I, respectively. Equivalently, we have

Pa01) < c— pj(02) — 2(e + e). (22)
Using Taylor expansion op* (61), we have

1
p3(01) = lim sup — suplog Ecf1A(s,s+1)

t—oo 011 5>0

= lim sup 1 suplog E(1 + 61 A(s, s +t) + O(67))

t—oo U1l s>0

1
= lim sup — suplog (1 + 61EA(s, s +t) + O(63))

t—oo V1l s>0

1
= lim sup — sup [)1EA(s, s + t) + O(67)].
t—oc0 elt s>0



Therefore,

L . EA(s,s+t)
i) = lig sup === =aa,

Similarly,
9121§0p1(92) —ar

Therefore, there exigt; and 6, so thatp’ (61) < aa + €2 andpj(62) < a; + €5 for any enough smakl, > 0. So Eq. [(ZR)
is satisfied if

ag <c—ajg —2(6+€1+€2).
Sincee, €; andey can be arbitrarily small, the above equation is satisfiednwhe
ap <c—ay.

|
Remarks: Since the proof is based on theorems of stochastic netwdcklos, it indicates that we can get stable backlog and
delay bounds by stochastic network calculus as long as thditien of Eq. [20) holds. Since this condition is very geaer
we conclude that theoretically stochastic network calsusueffective.

V. 802.11 Backlog and Delay Bounds

In this section, we apply the results in the previous sectiboalculate backlog and delay bounds for an 802.11 WLAN
node. For simplicity, we assume there ar&entical stations (or nodes) sending packets to an access pointodésoperate
in Distributed Coordination Function (DCF) mode with RT3& turned off [1¥]. We consider an ideal channel, that is,
transmission errors are only caused by collisions. Two etsclre collided if their transmissions overlap in time. iBes, we
assume that all DATA packets are of the same size.

A. 802.11 DCF

A node with a DATA packet (or simply packet) to transmit firsbmitors the channel activity. If the channel is idle for a
period of time equal to a distributed interframe space (DIFSe node transmits. Otherwise, if the channel is sensag bu
(either immediately or during the DIFS), the node backs ioffwhich the node defers channel access by a random number of
idle slotswithin a contention window@W), ranging from 0 toCWW — 1. When the backoff counter reaches zero and expires,
the node can access the channel. During the backoff pefitiie node detects a busy channel, it freezes the backoffteoun
and the backoff process is resumed once the channel is idedaration of DIFS. To avoid channel capture, a node musdt wai
a random backoff time between two consecutive new packesmméssions, even if the channel is sensed idle for a duration
DIFS. Once the packet is received successfully, the receiilereturn an ACK after a short interframe space (SIFS)té&No
that SIFS is shorter than an idle slot so that there is nosiofiicaused by a DATA packet and an ACK.

802.11 uses the truncated exponential backoff technigeettiisC1W. For example, in 802.11b, the initi@lW is CW,,;,, =
32. Each time a collision occur§;W doubles its size, up to a maximum 6V,,,,. = 1024. When the packet is successfully
transmitted,CW is reset toCW,,..,. The packet is dropped when it is retransmitted $or times and still not transmitted
successfully. Fig. ]2 shows some parameters of 802.11b nsedripaper.

Basic rate 1 Mbps
Data rate 11 Mbps
PHY header 24 bytes
ACK header 14 bytes
MAC header 28 bytes
SIFS 10 us
DIFS 50 us
Idle slot 20 us
CWinin 32
CWinax 1024
Retransmission limit 6

Fig. 2. 802.11b parameters



The duration of an ACK is the duration of a PHY header and an A€Kder transmitted disic ratei.e., (241“0164)'8 = 304us.
The duration of a DATA packet is the duration of an PHY headangmitted abasic rateplus the duration of an MAC header
and its upper-layer payload transmitteddatta rate For example, suppose the upper-layer payloadsi bytes, then the

duration of the DATA packet ig48 4 23825008 _ 395 55,
B. Service Curve

Since we only consider packets of equal size, we can measifie amount in packets. For simplicity, we measure time
duration (e.g. SIFS, DIFS, DATA and ACK) in idle slots and wefide that one slot in network calculus=£ 1) is equal to
L idle slots, where

L =DIFS + DATA + SIFS + ACK. (23)

Note that sometimes "idle slot” only refers to a time period & may not be idle. To avoid confusion in the following cext,
we will use "idle slot’ (italic) to denote that the "idle slot” is indeed idle.

In practice, it is difficult to calculate the impairment pess/ accurately sincd depends on the complex interactions of
traffic arrival and DCF. In this section, we perform the warase analysis based on an existing model of 802.11 [18].

We assume that the system is in saturated condition, thttashacklog at each node is always nonzero.ieenote the
transmission attempt probability peHle slotby a node and let denote the conditional collision probability given thaete
is a transmission. We assumeis constant and independent for each transmission. Welyjtithis assumption becomes more
accurate when the number of nodesncreases. In [18], the authors derived a general formugding = to -, which is

__ 1+7+92+...+7°
b+ b1+ 7202 + ... + 7006

This equation can be explained as follows. The numeratdrdsekpected number of transmission attempts of a packet. The
denominator is the expected total backoff durationifile sloty of a packet, where; is the mean backoff duration plus 1
(the 1 refers to the first idle slot of packet transmissiom@ratheith collision. In 802.11p; = % where0 <7 <6. A
packet suffering six collisions will be dropped from its farf In our model, we do not consider packet drops, whichdgel
upper bounds of backlog and delay.

The independence assumption~ofmplies that each transmission "sees” the system at stetady. Sherefore, each node
transmits with the same probability This yields

y=1-(1- 7')”71. (25)

Combining Eq.[(24) and Eq_(R5), we can solvandy.

We introduce the following notations for an 802.11 node. Pphabability of no transmissions at adle slot, denoted by
P,:, is (1 — 7)™ The probability of having at least one transmission aidia slot denoted byP;, is 1 — P,;. The probability
of a givennode starting a successful transmission aidénslot denoted byPs, is 7(1 —~). For the given node, the probability
of the other nodes starting transmissions aidie slot, denoted byP,, is P, — P; = ~.

Fig.[3 plots Eq.[(2K) in dashed line and EQ.1(25) in solid linkewn = 10, 20 and 100. The points of intersection are the
solution ofy andr for differentn. Whenn increases; increases ana decreases. Consequenty,; and P, increases, but
P, decreases. Therefore, the assumption of saturated comditres theworst-caseanalysis.

An 802.11 node can be seen as a stochastic strict serverlyCle stochastic strict service curg@t) = ¢, which means
that one packet is transmitted during one slot in the idesé.cln order to characterize the impairment prodessis crucial
to know E?7(s:5+1) which we calculate as follows.

We consider the transmissions of a given 802.11 node durshafs. From Eq.[(23), there até idle slots int slots, indexed
1,2, ...,tL. At the first or the last idle slot, the transmission (if anghdeincompletethat is, the transmission can start before
the first idle slot or it can end after the last idle slot. Weuass that at the first slot there is always@mpletetransmission
by any of the other nodes except the given node, which agtwatrestimates &7(*5+*)  Suppose there are complete
transmissions and zero or omeEompletetransmission within the remaining — 1)L idle slots. The incomplete transmission
occupies the last idle slots where) < k£ < L — 1 (k = 0 means that the last transmission is actually complete)sTthere
are (t —i — 1)L — k idle slotsof no transmissions within the slots. The probability of complete transmissions and the
last & idle slots occupied by an incomplete transmission, denbyeg ;, is CZ'HA)L7k+l.P$’“1)L’kP§. Furthermore, the
probability of the given node havingsuccessful complete transmissions on condition that thexé complete transmissions,
denoted byp; ;, is C7(Ps/P;)? (P,/P;)"~7. Finally, we have E’/(+5+%) is upper-bounded by

(24)

L—-1t-2 1 A

t—1
B Z Z Zpkvipiwjee(tij) + Z Zp(),ipi,jee(tij). (26)

k=1 i=0 j=0 i=0 j=0



Fig. 3. The Plots of Eq[{24) and E{._{25)

The first term is for the case that the last transmission igmmdete and the second term is for the case that the lastrission
is complete.

In general, we do not have an analytical form of EEqJ (26), saes®rt to numerical methods and use Algorithm 1 to obtain
or(0) andpr () (see Appendix A-1). This algorithm is immediately inspifedm Definition[3. Then we can use E§.{16) and
(@I7) to obtain the node’s weak stochastic service curve.

Scenario 1:
10 identical nodes sending packets to one access point
The payload of a DATA packet i856 bytes

Fig. 4. Parameters of Scenario 1

We illustrate the above calculations in Scenario 1 (see®igFrom Eq. [24) and (25); = 0.037 and~ = 0.293. Thus,
P,;, = 0.680, P, = 0.320, P, = 0.027 and P, = 0.293. Let M(t) be the value of Eq.[{26). Fidl 5 showd (¢) and its
a(0), (p(9))-upper constrained curve whén= 1. We havep(1) = 0.948 ando (1) = 0.096, as calculated by Algorithm 1.

Furthermore, from Eq[(16) anf{17) we haSev, < g, 3 > where

Bty = (A—rp)-t
£0.096
9(2) = T—mem=, ¢

for any 1 > r; > 0.948. Fig.[8 plotss(t) and g(¢) whenr; = 0.968.

C. Stability Condition

Before calculating the bounds, we first derive the stabiitydition. SinceB(t) = t, the channel capacity = 1 packet
per slot. Becausé — a; is actually the percentage of the node’s successful traassomi time, by Propositionl 1, thetability
condition of 802.11%s

P, - L

Ga<l-ar=pmrpTT
nt t°

(27)

D. Backlog and Delay Bounds

We can immediately calculate backlog bounds by applying @8)-(17) into Theorenill. The only technical issue is to
select propef; andé, a obtain tight bounds. Clearly,(x) depends o, andr4, andg(z) depends o, andr;. According
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to Eq. [18), we have, < 1—r; and P{B(t) > z} < f®g(z). In addition,r4 (r;) should be set as large as possible because
f(z) (g9(x)) decreases with, (r;). Considering the above conditions, we have

P{B(t) >z} < min[f ® g()]

subject to

ra>pa(b1),rr > pr(02) andry +ry = 1. (28)

In general, we do not have an analytical solutioméh|[f ® g(x)] and we resort to numerical methods and use Algorithm 2
to get a near-optimal solution (see Appendix A-2).



As noticed recently by researchers of network calculus,délay bound in Theorefm 1 often returns trivial results. Im ou
model in Sectiori_1ll, it is easy to see th&®{D(t) > z} < f ® ¢g(0) = 1. We propose the following way to estimate delay
bound. Little’s law states that the average number of custerm a queueing system is equal to the average arrival fate o
customers to that system, times the average time spenttisybgem[[1]. Let the average arrival rateNisAssume the system
can reaclsteady statevhent — oo. Then we have the average backlodiis; ., EB(t) and the average delay of each packet
is greater than or equal fom; ., ED(t) (by its definition in Eq.[(R),D(¢) can be less than the delay of the bottom-of-line
packet att). Therefore, by Little’s law, we have

lim ED(1) < 5 (29)
Finally, we apply Markov's inequality to the above equatenmd we have
. lim;_, o EB(t)
P{Jim D() > x} < ==, (30)

Besides, according to EQ_(21)BEt) < > .o, P{B(t) > i} - (i + 1). And we can use Eq[(28) to bourd®{ B(t) > i}. Note
that Eq. [[30) is derived wheh— oo. In practice, we can use this result to estimate delay boumehwis sufficiently large.

VI. Performance Evaluation

In this section, we use ns-2 simulations to verify our detibacklog and delay bounds for Poisson and constant bit rate
(CBR) traffic arrivals. We carry out all experiments for Saga 1 (Fig.[4). Each simulation duration is 100 secongs (
which is long enough to let a node transmit thousands of gackach data point (e.d?{B(¢) > «}) is calculated over 100
independent simulations.

A. Poisson Traffic
Let A be the average traffic rate (packets/slot). In this case,aved, = \ (see Definitiori]7). For Poisson traffic, we have

FefAss+) _ Z ()\‘t')lefxteei _ eAt(etl)’ (31)
i
=0

where(ki—t,)ie—kt is the probability ofi packets arriving withir(s, s+t]. From the above equation, Poisson traﬁicﬁs@)—

upper constrained and we can obtain its arrival curve by [Eg). (

From Eq. [2¥), backlogs are stable when< 0.079 (packet per slot). In Fid7, we plot the average backlog(&)] at
t = 50s andA = 0.077, 0.079 and0.081 in ns-2 simulations. We observe that there is sudden jummwkhe 0.081, indicating
the critical point of stability is indeed arourtd079. This figure also indicates the accuracy of the 802.11 madé&q. [24)

and Eq.[(2b).
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Experiment 1(Scenario 1 with low Poisson traffic load) We set= 0.04 to simulate low traffic load.

Fig.[8(a) showsP{B(t) > x} in ns-2 simulations and Fif] 8(b) shows the upper bound6B(t) > z} calculated by
Eqg. (28). Note that stochastic network calculus gives veosé upper bounds. There may be two reasons. One is that we use
the worst-case analysis in deriving the weak stochastidcecurve of 802.11. The other is that there are many reilaxat
in proving the theorems of stochastic network calculus.[Ebr example, relaxations are used in derivjfig’) in Theoren 8
[12], and this theorem is popularly used in deriving arrigatves and service curves (see Seclioh Ill). The first reasayn
not be the key reason because we will see in Experiment 2 thadbs even looser when we increase arrival rate and
make the channel near saturated. The second reason seemghe key reason. We will see in Experiment 3 that backlog
bounds improve substantially for CBR traffic where we areedblderive the arrival curve by hand without using Theokém 3.
This indicates that refinements are needed in stochastieorietcalculus so as to tighten the bounds. Moreover, we found
that backlog bounds are sensitive to adjusting parameitersé;, 62, r4 andry). So it is necessary to use Algorithm 2 to
minimize the bounds.

We also conduct simulations to verify delay boundg at 50s. Since the backlog bounds are too loose, in order to avoid
trivial validation, we use B(t) in ns-2 simulations to validate Eq.{29) and Hq.](30) (asstimet = 50s is sufficiently large
so that we can apply these equations). Actually, we det#E < 0.0205s by Eq. [29), which tightly bounds B(t) = 0.0186s
in ns-2 simulations. Fid]8(c) showd{D(t) > z} in ns-2 simulations and Figl 8(d) shows the upper boun&£b(t) > =}
calculated by Eq[(30). Clearly?{D(t¢) > z} is upper-bounded by Ed._(B0).
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Fig. 8. Experiment 1: When = 50s (a) P{B(t) > z} (b) upper bound of?{B(t) > =} (c) P{D(t) > =} (d) upper bound ofP{D(t) > =}

Experiment 2(Scenario 1 with high Poisson traffic load) We et 0.07 to simulate high traffic load.

Fig.[d(a) showsP{B(t) > z} in ns-2 simulations and Fif] 9(b) shows the upper bound’¢B(¢t) > z} calculated by
Eq. (28). In this case); (02) is much smaller than that of Experiment 1 so as to satisfyctivestraint in Eq.[(28), resulting
in looser f(z) andg(x). Therefore, stochastic network calculus gives furtheséobacklog bounds.

We also conduct simulations to verify delay boundg at 50s. Since the backlog bounds are too loose, in order to avoid
trivial validation, we use B(t) in ns-2 simulations to validate Eq.{29) and Hq.](30) (asstimet = 50s is sufficiently large
so that we can apply these equations). Actually, we det#E < 0.0299s by Eq. [29), which tightly bounds B(t) = 0.0296s
in ns-2 simulations. Fid.]9(c) showd{D(t) > z} in ns-2 simulations and Fi@l] 9(d) shows the upper boun&£b(t) > =}
calculated by Eq[(30). Clearly?{D(t) > z} is upper-bounded by Ed._(B0).
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B. CBR Traffic

Let A be the average traffic rate (packets/slot). In this case, aveds = . It is easy to see thatuipg<,,[A(s, 1) — A -
(t —s)] < 1 for all ¢ because packets arrive one by one in a constant time intdfvab, we haved ~,,< f,a > where

alt) = M
f@) = {O’ z21 (32)

1, z<1

Again, from Eq.[(2¥), the stability condition is < 0.079 (packet per slot). In Fig.10, we plot the average backlog(E)]
att = 50s for A = 0.077, 0.079 and 0.081 in ns-2 simulations. We observe that there is sudden jummwhe- 0.081,
indicating the critical point of stability is indeed aroufid)79. This figure also indicates the accuracy of the 802.11 madel i
Eq. (24)and(25).

Experiment 3(Scenario 1 with low CBR traffic load) We sat= 0.04 to simulate low traffic load.

Fig. [I1(a) showsP{B(t) > x} in ns-2 simulations and Fig. 11(b) shows upper boundP¢B(¢) > =z} calculated by
Eq. (28). The backlog bounds are much tighter in CBR traffantlthose in Poisson traffic (see Experiment 1). The main
reason is that we can derive a tightz) by hand instead of by Theorem 3.

We also conduct simulations to verify delay bounds at 50s. Since the backlog bounds are still loose, in order to avoid
trivial validation, we use B(t) in ns-2 simulations to validate Eq._(29) and Hq.](30) (asstimet = 50s is sufficiently large
so that we can apply these equations). Actually, we det#E < 0.0090s by Eq. [29), which tightly bounds B(t) = 0.0089s
in ns-2 simulations. Fig. 11(c) show¥{ D(¢) > «} in ns-2 simulations and Fi§. 1.1(d) shows the upper bound{dd(t) > «}
calculated by Eq[(30). Clearly?{D(t) > =z} is upper-bounded by Ed.(B0).

Experiment 4(Scenario 1 with high CBR traffic load) We s&t= 0.07 to simulate high traffic load.

Fig.[12(a) showsP{B(t) > z} in ns-2 simulations and Fi§. 112(b) shows the upper boun@®{B(¢) > z} calculated by
Eqg. (28). The backlog bounds are much tighter in CBR traffantthose in Poisson traffic (see Experiment 2) becdiis¢
is tight here.

We also conduct simulations to verify delay bounds at 50s. Since the backlog bounds are still loose, in order to avoid
trivial validation, we use B(t) in ns-2 simulations to validate Eq.{29) and Hq.](30) (asstimet = 50s is sufficiently large
so that we can apply these equations). Actually, we get# < 0.0274s by Eq. [29), which is close to (although does not
bound) BD(t) = 0.0296s in ns-2 simulations. Fid. 12(c) show?{D(¢) > x} in ns-2 simulations and Fid. 12(d) shows the
upper bound ofP{D(t) > =} calculated by Eq[(30). Clearly?{D(¢) > =z} is upper-bounded by Ed._(30).

To sum up, the current version of stochastic network cafolten derives loose bounds when compared with simulgtions
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especially in the case of high traffic load. Therefore, statie network calculus may not be effective in practice.

VIl. Related Work

In this section, we first present relate work on stochasttwokk calculus and then on the performance analysis of 802.1

The increasing demand on transmitting multimedia and atertime applications over the Internet has motivated thdys
of quality of service guarantees. Towards it, stochastteokk calculus, the probabilistic version of the deterrsiiti network
calculus 2] [3] [4] [E], has been recognized by researclasra promising step. During its development, traffic-amanamiric
(t.a.c) stochastic arrival curve is proposedlih [6], vitbacklog-centric (v.b.c) stochastic arrival curve is posed in[[9] and
maximum-backlog-centric (m.b.c) stochastic arrival @i proposed in[11]. Weak stochastic service curve is megan [7]
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[8] and stochastic service curve is proposed in [10]LIn [Ji§ng showed that only the combination of m.b.c stochastical
curve and stochastic service curve has all five basic priegegquired by a network calculus (i.e., superpositioncatenation,
output characterization, per-flow service, service guaes) and the other combinations only have parts of thegeepies.
Jiang also proposed the concept of stochastic strict séovEacilitate calculation of stochastic service curve. Blorer, he
presented independent case analysis to obtain tightesrpgahce bounds for the case that flows and servers are indiepten
However, there are a few bugs in his results recently fountebgarchers of network calculus, such as the trivial detaynt
in Theorem 3.5[[11] and Theorem 5.1. Therefore, we adopt gtechastic arrival curve and weak stochastic serviceecimrv
our study since we only consider backlog and delay bounds Eervice guarantee), ignoring the other properties.

There have been some applications of stochastic networdulosl In [13], Jiang et al. analyzed a dynamic priority
measurement-based admission control (MBAC) scheme basestoghastic network calculus. In_[14], Liu et al. applied
stochastic network calculus to studying the conformanderitgation problem in networks with service level agreatseln
[15], based on stochastic network calculus, X. Yu et al. tiged several upper bounds on the queue length distribation
Generalized Processor Sharing (GPS) scheduling diseiplith long range dependent (LRD) traffic. They also extenithed
GPS results to a packet-based GPS (PGPS) system. Finalhgrégparast et al. modeled the behavior of a single wireless
link using stochastic network calculus [16]. However lditeffort has been made on applying stochastic network kedcio
multi-access communication systems such as 802.11.

Existing work on the performance of 802.11 has focused pilynan its throughput and capacity. In [19], Bianchi propds
a Markov chain throughput model of 802.11. In|[18], Kumar ketpaoposed a probability throughput model which is simpler
than Bianchi’s model. In our paper, we adopt Kumar’'s modealddve the service curve of 802.11. There are also some work
on queueing analysis of 802.11. In [20], Zhai et al. assumadsBn traffic arrival and proposed an M/G/1 queueing model
of 802.11. More generally, Tickoo proposed a G/G/1 queueinglel of 802.11[[21]([22]. To our best knowledge, we are the
first to model the queueing process of 802.11 based on stixim&twork calculus.

VIIl. Conclusion and Future Work

In this paper, we presented a stochastic network calculukehod 802.11. From stochastic network calculus, we firsiveelr
the general stability condition of a wireless node. Then esved the stochastic service curve and the specific diabdndition
of an 802.11 node based on an existing model of 802.11. Thaishtained the backlog and delay bounds of the node by using
the corresponding theorem of stochastic network calciHirglly, we carried out ns-2 simulations to verify these st

There are some open problems for future work. First, we ddrthe service curve based on an existing 802.11 model. Thus,
the accuracy of the service curve depends on the accuradyeafbdel. An open question may be whether we can derive
the service curve of 802.11 without using any existing med8kecond, we assumed the worst-case condition (i.e.asatur



condition) in our analysis. Can we remove this conservasgumption? Besides, under the worst-case assumptionamve c
assume flows and servers are independent and perform indisierase analysis obtaining tighter backlog and delay d&un
This is also one of our future work. Third, we observe thatdbdaved bounds are loose when compared with ns-2 simukgtion
calling for further improvements in the current version tdchastic network calculus.
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1) Let M(t) = sup,>,{ log Ee?/(**1)}. Obviously, M t) is an increasing function af with 1/(0

2) We calculates(t) for ¢ = 1,2,3,... until it converges at somé&', i.e., (1 —¢) - s(t* — 1) < s(¢
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Appendix A-1: Algorithm 1 (Numerical Calculation of o;(6) and p;(6))

) = 0. We define axes
t and axeg, (vertical tot) on a plane, and pla} (t) on it. We define the slope a¥/(t), s(t) = M (¢t) — M(t — 1).

)< (+e) st —1)
wheree is a small number, e.g.0=5.

3) We draw a straight liné(t) with the slopes(t*) crossing the poin{t*, M (t*)). Obviously, the line crosses the point

(0, M (t*)—s(t*)t*). The maximum displacement betwekf(t) andi(t) (in the direction of | ), v, = maxo<¢<¢= {M(t)—
1(t)}. We shifti(t) by v, in the direction oft;, and geti(¢). Clearly,i(¢) upperboundsV/(¢). In other words, we have
pr(0) = s(t*) andor(0) = M(t*) — s(t*)t* + vpm.

Appendix A-2: Algorithm 2 (Numerical Calculation of Eq. (28))

In each iteration, we generate a samplefef 02, r4 and r;. If they satisfy the condition of Eq[(28), we calculate
min[f ® g(z)] for the current and past iterations until it converges. Sangenerations can use the interpolation or Monte
Carlo method over valid ranges of the variables.
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