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Abstract

Stochastic network calculus provides an elegant way to characterize traffic and service processes. However, little effort has
been made on applying it to multi-access communication systems such as 802.11. In this paper, we take the first step to apply
it to the backlog and delay analysis of an 802.11 wireless local network. In particular, we address the following questions: In
applying stochastic network calculus, under what situations can we derive stable backlog and delay bounds? How to derive the
backlog and delay bounds of an 802.11 wireless node? And how tight are these bounds when compared with simulations? To
answer these questions, we first derive the general stability condition of a wireless node (not restricted to 802.11). From this,
we give the specific stability condition of an 802.11 wireless node. Then we derive the backlog and delay bounds of an 802.11
node based on an existing model of 802.11. We observe that thederived bounds are loose when compared with ns-2 simulations,
indicating that improvements are needed in the current version of stochastic network calculus.

I. Introduction

Network calculus provides an elegant way to characterize traffic and service processes of network and communication
systems. Unlike traditional queueing analysis in which onehas to make strong assumptions on arrival or service processes
(e.g., Poission arrival process, exponential service distribution, etc) so as to derive closed-form solutions [1], network calculus
allows general arrival and service processes. Instead of getting exact solutions, one can derive network delay and backlog
bounds easily by network calculus. Deterministic network calculus was proposed in [2] [3] [4] [5], etc. However, most traffic
and service processes are stochastic and deterministic network calculus is often not applicable for them. Therefore, stochastic
network calculus was proposed to deal with stochastic arrival and service processes [5] [7] [8] [9] [10] [11] [12].

There have been some applications of stochastic network calculus [13] [14] [15] [16]. However, little effort has been made
on applying it to multi-access communication systems. In the paper, we take the first step to apply stochastic network calculus
to an 802.11 wireless local network (WLAN). In particular, we address the following questions:

• Under what situations can we derive stable backlog and delaybounds?
• How to derive the backlog and delay bounds of an 802.11 wireless node?
• How tight are these bounds when compared with simulations?

In this paper, we answer these questions and make the following contributions:

• We derive the general stability condition of a wireless nodebased on the theorems of stochastic network calculus. From
this, we give the specific stability condition of an 802.11 wireless node.

• We derive the service curve of an 802.11 node based on an existing model of 802.11 [18]. From the service curve, we
then derive the backlog and delay bounds of the node.

• The derived bounds are loose in many cases when compared withns-2 simulations. We discuss the reasons and point out
future work.

This paper is organized as follows. In Section II, we give a brief overview of stochastic network calculus. In Section III,
we present the stochastic network calculus model of a wireless node. In Section IV, we derive the general stability condition
of a wireless node. In Section V, we derive the backlog and delay bounds and the stability condition for an 802.11 node.
In Section VI, we compare the derived bounds with simulationresults. Related work is given in Section VII and finally,
Section VIII concludes the paper and points out future directions.

II. Stochastic Network Calculus

In this section, we first review basic terms of network calculus and then cite the results of stochastic network calculus which
we will use in this paper. There are various versions of arrival and service curves. We adoptvirtual backlog centric (v.b.c)
stochastic arrival curveandweak stochastic service curvein our analysis.

http://arxiv.org/abs/1004.3109v1


A. Basic Terms of Network Calculus

We consider a discrete time system where time is slotted (t = 0, 1, 2, ...). A process is a function of timet. By default,
we useA(t) to denote thearrival processto a network element withA(0) = 0. A(t) is the total amount of traffic arrived to
this network element up to timet. We useA∗(t) to denote thedeparture processof the network element withA∗(0) = 0.
A∗(t) is the total amount of traffic departed from the network element up to timet. Let F (F̄) represents the set of non-
negative wide-sense increasing (decreasing) functions. Clearly,A(t) ∈ F andA∗(t) ∈ F . For any process, sayA(t), we define
A(s, t) ≡ A(t) −A(s), for s ≤ t. We define the backlog of the network element at timet by

B(t) = A(t)−A∗(t), (1)

and the delay of the network element att by

D(t) = inf{τ : A(t) ≤ A∗(t+ τ)}. (2)

Fig. 1 illustrates an example ofA(t) andA∗(t) with B(t) andD(t) at t = 10.
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Fig. 1. Illustration ofA(t), A∗(t), B(t) andD(t)

In deterministic network calculus,A(t) can be upper-bounded by an arrival curve. That is, for all0 ≤ s ≤ t, we have

A(s, t) ≤ α(t− s),

whereα(t) is called thearrival curve of A(t).
A busy periodis a time period during which the backlog in the network element is always nonzero. For any busy period

(t0, t], suppose we have
A∗(t)−A∗(t0) ≥ β(t− t0),

which means that the network element provides a guaranteed service lower-bounded byβ(t− t0) during the busy period. We
can lett0 be the beginning of the busy period, that is, the backlog att0 is zero orA∗(t0) = A(t0). Therefore,

A∗(t)−A(t0) ≥ β(t− t0).

The above equation infersA∗(t) ≥ inf0≤s≤t [A(s) + β(t− s)], which can be written as

A∗(t) ≥ A⊗ β(t), (3)

where⊗ is called the operator ofmin-plus convolutionandβ(t) is called theservice curveof the network element.

B. Results of Stochastic Network Calculus

We cite the following definitions and theorems from [5] [11] except that we define Definition 6 by ourselves.
Definition 1 (virtual-backlog-centric (v.b.c) Stochastic Arrival Curve): A flow is said to have a virtual-backlog-centric (v.b.c)

stochastic arrival curveα ∈ F with bounding functionf ∈ F̄ , denoted byA ∼vb< f, α >, if for all t ≥ 0 and allx ≥ 0,
there holds

P{ sup
0≤s≤t

[A(s, t)− α(t− s)] > x} ≤ f(x). (4)



Originally, in deterministic network calculus, we haveA(s, t) ≤ α(t− s) for all 0 ≤ s ≤ t. However, there is usually some
randomness in stochastic arrival processes andA(s, t) may not be upper-bounded by any arrival curve deterministically (e.g.,
traffic arrivals in (s, t] can be arbitrarily large in Poisson process). Thus, v.b.c stochastic arrival curve is proposed to tackle
this problem. Roughly speaking,A(s, t) can exceedα(s, t) by x, but its probability is upper-bounded byf(x) which is a
decreasing function ofx.

Definition 2 (Weak Stochastic Service Curve):A serverS is said to provide a weak stochastic service curveβ ∈ F with
bounding functiong ∈ F̄ , denoted byS ∼ws< g, β >, if for all t ≥ 0 and allx ≥ 0, there holds

P{A⊗ β(t)−A∗(t) > x} ≤ g(x). (5)

In deterministic network calculus, we haveA∗(t) ≥ A⊗ β(t), which means that there is a service guarantee denoted by the
service curveβ(t). However, there is usually some randomness in stochastic service process and thus a server may not always
provide a guaranteed service curve deterministically. Thus, weak stochastic service curve is proposed to tackle this problem.
Roughly speaking,A∗(t)−A⊗ β(t) can be less than−x, but its probability is upper-bounded byg(x) which is a decreasing
function ofx.

The utility of the above definitions is that if we can characterize the traffic by a v.b.c stochastic arrival curve and the server’s
service process by a weak stochastic service curve, then we can calculate backlog and delay bounds of the network element
by Theorem 1.

Theorem 1 (Backlog and Delay Bounds):Consider a server fed with a flowA. If the server provides a weak stochastic
service curveS ∼ws< g, β > to the flow and the flow has a v.b.c stochastic arrival curveA ∼vb< f, α >, then

(i) The backlogB(t) of the flow in the server at timet satisfies: for allt ≥ 0 and allx ≥ 0,

P{B(t) > x} ≤ f ⊗ g(x+ inf
s≥0

[β(s) − α(s)]). (6)

(ii) The delayD(t) of the flow in the server at timet satisfies: for allt ≥ 0 and allx ≥ 0,

P{D(t) > x} ≤ f ⊗ g(inf
s≥0

[β(s) − α(s− x)]). (7)

By definition α(x) = 0 whenx < 0 in this theorem. Note that as noticed recently by researchers of network calculus, the
formula of delay bound in this theorem often returns trivialresults, which we will see in Section V.

By now, we have reviewed the key results of stochastic network calculus. Next, we will show how to calculate v.b.c stochastic
arrival curve and weak stochastic service curve.

In [11], the author presented a theorem to facilitate calculation of stochastic arrival curves. Before showing the theorem, we
first introduce(σ(θ), ρ(θ))-upper constrained[5].

Definition 3 ((σ(θ), ρ(θ))-upper constrained):A processA is said to be(σ(θ), ρ(θ))-upper constrained (for someθ > 0),
if for all 0 ≤ s ≤ t, we have

1

θ
logEeθA(s,t) ≤ ρ(θ)(t− s) + σ(θ). (8)

This definition is equivalent to EeθA(s,t) ≤ eθρ(θ)(t−s)+θσ(θ), which means thatA(s, t)’s moment generating function is
upper-bounded. Two related concepts are defined as follows.

Definition 4 (θ-MER / θ-ER): A processA’s minimum envelope rate (MER) with respect toθ (θ-MER), denoted byρ∗(θ),
is defined as follows:

ρ∗(θ) = lim sup
t→∞

1

θt
sup
s≥0

logEeθA(s,s+t). (9)

We say thatA has anenvelope rate (ER) with respect toθ (θ-ER), denoted byρ(θ), if ρ(θ) ≥ ρ∗(θ).
The following theorem expresses the relationship betweenθ-ER and(σ(θ), ρ(θ))-upper constrained.
Theorem 2 (Relationship ofθ-ER and(σ(θ), ρ(θ))-upper constrained):

(i) If A is (σ(θ), ρ(θ))-upper constrained, thenρ(θ) is θ-ER of A.
(ii) If A hasθ-ER ρ(θ) < ∞, then for everyǫ > 0 there existsσǫ(θ) < ∞ so thatA is (σǫ(θ), ρ(θ) + ǫ)-upper constrained.

Now we have two kinds of traffic characterization: v.b.c stochastic arrival curve and(σ(θ), ρ(θ))-upper constrained. The
following theorem establishes the connection between them.

Theorem 3 (v.b.c Stochastic Arrival Curve of(σ(θ), ρ(θ))-upper constrained Process):SupposeA(t) is (σ(θ), ρ(θ))-upper



constrained, then it has a v.b.c stochastic arrival curve1 A ∼vb< f, α >, where

α(t) = r · t

f(x) =
eθσ(θ)

1− eθ(ρ(θ)−r)
· e−θx (10)

for any r > ρ(θ) andx ≥ 0.
This theorem indicates that if we can show that the traffic is(σ(θ), ρ(θ))-upper constrained, then we can get its v.b.c

stochastic arrival curve by Eq. (10).
We now introduce the concept ofstochastic strict server. This concept was inspired by the observation that a wireless

channel can be described by an ideal service process and an impairment process. As we will see in Section III, a wireless
node can be modeled as a stochastic strict server.

Definition 5 (Stochastic Strict Server):A serverS is said to be a stochastic strict server providing stochastic strict service
curveβ̂ ∈ F with impairment processI to a flow iff during any backlogged period(s, t], the outputA∗(s, t) of the flow from
the server satisfies

A∗(s, t) ≥ β̂(t− s)− I(s, t). (11)

We can easily find the weak stochastic service curve of a stochastic strict server by the following theorem.
Theorem 4 (Weak Stochastic Service Curve of Stochastic Strict Server): Consider a stochastic strict serverS providing a

stochastic strict service curvêβ with an impairment processI. If the impairment process has a v.b.c stochastic arrival curve,
or I ∼vb< g, γ >, andβ ∈ F , then the server provides a weak stochastic service curve2 S ∼ws< g, β > with

β(t) = β̂(t)− γ(t). (12)

So far, we have cited all results of stochastic network calculus which we will use in this paper. Finally, we define stable
backlog and stable delay. A natural definition is to check whether the expectation of backlog (or delay) is finite.

Definition 6 (Stable Backlog/Delay):The backlogB(t) is stable, if

EB(t) < ∞, ∀t. (13)

Similarly, the delayD(t) is stable, if

ED(t) < ∞, ∀t. (14)

We say that the backlog (or delay) bound of stochastic network calculus is stable if they can derive stable backlog (or delay).

III. Stochastic Network Calculus Model of a Wireless Node

In this section we model a wireless node (not restricted to 802.11) by stochastic network calculus. In general, we can define
one slot (t = 1) to be any duration of time and measure traffic amount in any unit (e.g. bits, bytes or packets).

We consider a wireless node. LetA(t) denote the traffic arrived at the node from the application layer. SupposeA is
(σA(θ1), ρA(θ1))-upper constrained. From Theorem 3, we haveA ∼vb< f, α >, where

α(t) = rA · t

f(x) =
eθ1σA(θ1)

1− eθ1(ρA(θ1)−rA)
· e−θ1x (15)

for any rA > ρA(θ1).
We can model a wireless node by a stochastic strict server. Let the channel capacity bec traffic unit per slot. The departure

processA∗(s, t) = β̂(s, t) − I(s, t) during any backlogged period(s, t], whereβ̂(t) = c · t is the ideal service curve andI
is the impairment process due to backoff, channel sharing and transmission errors. SinceI(s, t) ≤ c · (t − s), I has a finite
θ-MER. From Theorem 2, there existσI(θ2) andρI(θ2) so thatI is (σI(θ2), ρI(θ2))-upper constrained. Based on Theorem 3,
we haveI ∼vb< g, γ >, where

γ(t) = rI · t

g(x) =
eθ2σI (θ2)

1− eθ2(ρI (θ2)−rI)
· e−θ2x, (16)

1The original theorem (Theorem 5.1 [11]) established a similar connection between maximum-backlog-centric (m.b.c) stochastic arrival curve and
(σ(θ), ρ(θ))-upper constrained, which is wrong as noticed recently by researchers of network calculus. However, one can easily see the theorem holds
for v.b.c stochastic arrival curve.

2In the original theorem (Lemma 4.2 [11]), the impairment process has a m.b.c stochastic arrival curve. However, one can easily see that the theorem also
holds for the impairment process which has a v.b.c stochastic arrival curve.



for any rI > ρI(θ2).
From Theorem 4, the node provides a weak stochastic service curveS ∼ws< g, β >, where

β(t) = (c− rI) · t, (17)

for any c > rI .
Furthermore, from Theorem 1, we must haveα(t) ≤ β(t), or equivalently,

rA ≤ c− rI . (18)

Thus,P{B(t) > x} ≤ f⊗g(x). Otherwise, ifα(t) > β(t), we get a trivial backlog bound,P{B(t) > x} ≤ f⊗g(−∞) = ∞.

IV. Stability Condition of a Wireless Node

One fundamental question we need to address is under what condition we can getstableB(t) andD(t) from stochastic
network calculus, i.e., EB(t) < ∞ and ED(t) < ∞. Before presenting our result, we first define the concept ofenvelop
average rate.

Definition 7 (Envelop Average Rate):The envelop average rate of a processA, denoted byaA, is defined as

aA = lim
t→∞

sup
s≥0

EA(s, s+ t)

t
. (19)

Let aA andaI be the envelop average rate ofA andI, respectively. The following proposition shows the stability condition.
Proposition 1 (Stability Condition):A wireless node has stable backlog and stable delay if

aA < c− aI . (20)

Proof: We have shown thatP{B(t) > x} ≤ f ⊗ g(x) if Eq. (18) holds. Thus, for anyt,

EB(t) =

∞
∑

i=0

P{B(t) = i+ 1} · (i + 1)

<

∞
∑

i=0

P{B(t) > i} · (i + 1)

≤
∞
∑

i=0

f ⊗ g(i) · (i+ 1) < ∞. (21)

Sincef(x) andg(x) are exponentially decreasing functions according to Eq. (15) and Eq. (16),f ⊗g(x) is an exponentially
decreasing function. Thus we have, for anyt, EB(t) < ∞. It is easy to see that for anyt, ED(t) < ∞. Otherwise, the service
time is∞ and thuslimt→∞ EB(t) = ∞ which contradicts Eq. (21).

Now we examine Eq. (18). From Eq. (15) and Eq. (16),rA = ρA(θ1)+ ǫ andrI = ρI(θ2)+ ǫ for any ǫ > 0. Thus, Eq. (18)
is equivalent to

ρA(θ1) ≤ c− ρI(θ2)− 2ǫ.

From Theorem 2, we haveρA(θ1) = ρ∗A(θ1) + ǫ1 andρI(θ2) = ρ∗I(θ2) + ǫ1 for any ǫ1 > 0, whereρ∗A(θ1) andρ∗I(θ2) are
θ-MERs ofA andI, respectively. Equivalently, we have

ρ∗A(θ1) ≤ c− ρ∗I(θ2)− 2(ǫ+ ǫ1). (22)

Using Taylor expansion onρ∗A(θ1), we have

ρ∗A(θ1) = lim sup
t→∞

1

θ1t
sup
s≥0

logEeθ1A(s,s+t)

= lim sup
t→∞

1

θ1t
sup
s≥0

logE(1 + θ1A(s, s+ t) +O(θ21))

= lim sup
t→∞

1

θ1t
sup
s≥0

log (1 + θ1EA(s, s+ t) +O(θ21))

= lim sup
t→∞

1

θ1t
sup
s≥0

[θ1EA(s, s+ t) +O(θ21)].



Therefore,

lim
θ1→0

ρ∗A(θ1) = lim
t→∞

sup
s≥0

EA(s, s+ t)

t
= aA.

Similarly,

lim
θ2→0

ρ∗I(θ2) = aI .

Therefore, there existθ1 andθ2 so thatρ∗A(θ1) ≤ aA + ǫ2 andρ∗I(θ2) ≤ aI + ǫ2 for any enough smallǫ2 > 0. So Eq. (22)
is satisfied if

aA ≤ c− aI − 2(ǫ+ ǫ1 + ǫ2).

Sinceǫ, ǫ1 andǫ2 can be arbitrarily small, the above equation is satisfied when

aA < c− aI .

Remarks: Since the proof is based on theorems of stochastic network calculus, it indicates that we can get stable backlog and
delay bounds by stochastic network calculus as long as the condition of Eq. (20) holds. Since this condition is very general,
we conclude that theoretically stochastic network calculus is effective.

V. 802.11 Backlog and Delay Bounds

In this section, we apply the results in the previous sectionto calculate backlog and delay bounds for an 802.11 WLAN
node. For simplicity, we assume there aren identicalstations (or nodes) sending packets to an access point. All nodes operate
in Distributed Coordination Function (DCF) mode with RTS/CTS turned off [17]. We consider an ideal channel, that is,
transmission errors are only caused by collisions. Two packets are collided if their transmissions overlap in time. Besides, we
assume that all DATA packets are of the same size.

A. 802.11 DCF

A node with a DATA packet (or simply packet) to transmit first monitors the channel activity. If the channel is idle for a
period of time equal to a distributed interframe space (DIFS), the node transmits. Otherwise, if the channel is sensed busy
(either immediately or during the DIFS), the node backs off,in which the node defers channel access by a random number of
idle slotswithin a contention window (CW ), ranging from 0 toCW − 1. When the backoff counter reaches zero and expires,
the node can access the channel. During the backoff period, if the node detects a busy channel, it freezes the backoff counter
and the backoff process is resumed once the channel is idle for a duration of DIFS. To avoid channel capture, a node must wait
a random backoff time between two consecutive new packet transmissions, even if the channel is sensed idle for a durationof
DIFS. Once the packet is received successfully, the receiver will return an ACK after a short interframe space (SIFS). Note
that SIFS is shorter than an idle slot so that there is no collision caused by a DATA packet and an ACK.

802.11 uses the truncated exponential backoff technique toset itsCW . For example, in 802.11b, the initialCW is CWmin =
32. Each time a collision occurs,CW doubles its size, up to a maximum ofCWmax = 1024. When the packet is successfully
transmitted,CW is reset toCWmin. The packet is dropped when it is retransmitted forsix times and still not transmitted
successfully. Fig. 2 shows some parameters of 802.11b used in our paper.

Basic rate 1 Mbps
Data rate 11 Mbps
PHY header 24 bytes
ACK header 14 bytes
MAC header 28 bytes
SIFS 10 µs
DIFS 50 µs
Idle slot 20 µs
CWmin 32
CWmax 1024
Retransmission limit 6

Fig. 2. 802.11b parameters



The duration of an ACK is the duration of a PHY header and an ACKheader transmitted atbasic rate, i.e., (24+14)·8
106 = 304µs.

The duration of a DATA packet is the duration of an PHY header transmitted atbasic rateplus the duration of an MAC header
and its upper-layer payload transmitted atdata rate. For example, suppose the upper-layer payload is256 bytes, then the
duration of the DATA packet is24·8106 + (28+256)·8

11·106 = 398.5µs.

B. Service Curve

Since we only consider packets of equal size, we can measure traffic amount in packets. For simplicity, we measure time
duration (e.g. SIFS, DIFS, DATA and ACK) in idle slots and we define that one slot in network calculus (t = 1) is equal to
L idle slots, where

L = DIFS +DATA+ SIFS +ACK. (23)

Note that sometimes ”idle slot” only refers to a time period and it may not be idle. To avoid confusion in the following context,
we will use ”idle slot” (italic) to denote that the ”idle slot” is indeed idle.

In practice, it is difficult to calculate the impairment processI accurately sinceI depends on the complex interactions of
traffic arrival and DCF. In this section, we perform the worstcase analysis based on an existing model of 802.11 [18].

We assume that the system is in saturated condition, that is,the backlog at each node is always nonzero. Letτ denote the
transmission attempt probability peridle slot by a node and letγ denote the conditional collision probability given that there
is a transmission. We assumeγ is constant and independent for each transmission. Intuitively, this assumption becomes more
accurate when the number of nodesn increases. In [18], the authors derived a general formula relating τ to γ, which is

τ =
1 + γ + γ2 + ...+ γ6

b0 + γb1 + γ2b2 + ...+ γ6b6
. (24)

This equation can be explained as follows. The numerator is the expected number of transmission attempts of a packet. The
denominator is the expected total backoff duration (inidle slots) of a packet, wherebi is the mean backoff duration plus 1
(the 1 refers to the first idle slot of packet transmission) after theith collision. In 802.11,bi = 2i·CWmin

2 where0 ≤ i ≤ 6. A
packet suffering six collisions will be dropped from its buffer. In our model, we do not consider packet drops, which yields
upper bounds of backlog and delay.

The independence assumption ofγ implies that each transmission ”sees” the system at steady state. Therefore, each node
transmits with the same probabilityτ . This yields

γ = 1− (1 − τ)n−1. (25)

Combining Eq. (24) and Eq. (25), we can solveτ andγ.
We introduce the following notations for an 802.11 node. Theprobability of no transmissions at anidle slot, denoted by

Pnt, is (1− τ)n. The probability of having at least one transmission at anidle slot, denoted byPt, is 1−Pnt. The probability
of a givennode starting a successful transmission at anidle slot, denoted byPs, is τ(1−γ). For the given node, the probability
of the other nodes starting transmissions at anidle slot, denoted byPo, is Pt − Ps = γ.

Fig. 3 plots Eq. (24) in dashed line and Eq. (25) in solid line whenn = 10, 20 and100. The points of intersection are the
solution ofγ andτ for differentn. Whenn increases,γ increases andτ decreases. Consequently,Pnt andPo increases, but
Ps decreases. Therefore, the assumption of saturated condition gives theworst-caseanalysis.

An 802.11 node can be seen as a stochastic strict server. Clearly, the stochastic strict service curvêβ(t) = t, which means
that one packet is transmitted during one slot in the ideal case. In order to characterize the impairment processI, it is crucial
to know EeθI(s,s+t) which we calculate as follows.

We consider the transmissions of a given 802.11 node duringt slots. From Eq. (23), there aretL idle slots int slots, indexed
1, 2, ..., tL. At the first or the last idle slot, the transmission (if any) can beincomplete, that is, the transmission can start before
the first idle slot or it can end after the last idle slot. We assume that at the first slot there is always acompletetransmission
by any of the other nodes except the given node, which actually overestimates EeθI(s,s+t). Suppose there arei complete
transmissions and zero or oneincompletetransmission within the remaining(t− 1)L idle slots. The incomplete transmission
occupies the lastk idle slots where0 ≤ k ≤ L− 1 (k = 0 means that the last transmission is actually complete). Thus, there
are (t − i − 1)L − k idle slots of no transmissions within thet slots. The probability ofi complete transmissions and the
last k idle slots occupied by an incomplete transmission, denotedby pk,i, is Ci

(t−i−1)L−k+i
P

(t−i−1)L−k
nt P i

t . Furthermore, the
probability of the given node havingj successful complete transmissions on condition that therearei complete transmissions,
denoted bypi,j , is Cj

i (Ps/Pt)
j(Po/Pt)

i−j . Finally, we have EeθI(s,s+t) is upper-bounded by

Pt ·

L−1
∑

k=1

t−2
∑

i=0

i
∑

j=0

pk,ipi,je
θ(t−j) +

t−1
∑

i=0

i
∑

j=0

p0,ipi,je
θ(t−j). (26)
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Fig. 3. The Plots of Eq. (24) and Eq. (25)

The first term is for the case that the last transmission is incomplete and the second term is for the case that the last transmission
is complete.

In general, we do not have an analytical form of Eq. (26), so weresort to numerical methods and use Algorithm 1 to obtain
σI(θ) andρI(θ) (see Appendix A-1). This algorithm is immediately inspiredfrom Definition 3. Then we can use Eq. (16) and
(17) to obtain the node’s weak stochastic service curve.

Scenario 1:
10 identical nodes sending packets to one access point
The payload of a DATA packet is256 bytes

Fig. 4. Parameters of Scenario 1

We illustrate the above calculations in Scenario 1 (see Fig.4). From Eq. (24) and (25),τ = 0.037 andγ = 0.293. Thus,
Pnt = 0.680, Pt = 0.320, Ps = 0.027 and Po = 0.293. Let M(t) be the value of Eq. (26). Fig. 5 showsM(t) and its
σ(θ), (ρ(θ))-upper constrained curve whenθ = 1. We haveρ(1) = 0.948 andσ(1) = 0.096, as calculated by Algorithm 1.

Furthermore, from Eq. (16) and (17) we haveS ∼ws< g, β > where

β(t) = (1− rI) · t

g(x) =
e0.096

1− e0.948−rI
· e−x,

for any 1 > rI > 0.948. Fig. 6 plotsβ(t) andg(t) whenrI = 0.968.

C. Stability Condition

Before calculating the bounds, we first derive the stabilitycondition. Sinceβ̂(t) = t, the channel capacityc = 1 packet
per slot. Because1− aI is actually the percentage of the node’s successful transmission time, by Proposition 1, thestability
condition of 802.11is

aA < 1− aI =
Ps · L

Pnt + Pt · L
. (27)

D. Backlog and Delay Bounds

We can immediately calculate backlog bounds by applying Eq.(15)-(17) into Theorem 1. The only technical issue is to
select properθ1 andθ2 a obtain tight bounds. Clearly,f(x) depends onθ1 andrA, andg(x) depends onθ2 andrI . According
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Fig. 6. Scenario 1: a node’s Weak stochastic service curve

to Eq. (18), we haverA ≤ 1−rI andP{B(t) > x} ≤ f ⊗g(x). In addition,rA (rI ) should be set as large as possible because
f(x) (g(x)) decreases withrA (rI ). Considering the above conditions, we have

P{B(t) > x} ≤ min[f ⊗ g(x)]

subject to

rA > ρA(θ1), rI > ρI(θ2) andrA + rI = 1. (28)

In general, we do not have an analytical solution ofmin[f ⊗ g(x)] and we resort to numerical methods and use Algorithm 2
to get a near-optimal solution (see Appendix A-2).



As noticed recently by researchers of network calculus, thedelay bound in Theorem 1 often returns trivial results. In our
model in Section III, it is easy to see thatP{D(t) > x} ≤ f ⊗ g(0) = 1. We propose the following way to estimate delay
bound. Little’s law states that the average number of customers in a queueing system is equal to the average arrival rate of
customers to that system, times the average time spent in that system [1]. Let the average arrival rate isλ. Assume the system
can reachsteady statewhent → ∞. Then we have the average backlog islimt→∞ EB(t) and the average delay of each packet
is greater than or equal tolimt→∞ ED(t) (by its definition in Eq. (2),D(t) can be less than the delay of the bottom-of-line
packet att). Therefore, by Little’s law, we have

lim
t→∞

ED(t) ≤
limt→∞ EB(t)

λ
. (29)

Finally, we apply Markov’s inequality to the above equationand we have

P{ lim
t→∞

D(t) ≥ x} ≤
limt→∞ EB(t)

λx
. (30)

Besides, according to Eq. (21), EB(t) ≤
∑∞

i=0 P{B(t) > i} · (i+ 1). And we can use Eq. (28) to boundP{B(t) > i}. Note
that Eq. (30) is derived whent → ∞. In practice, we can use this result to estimate delay bound whent is sufficiently large.

VI. Performance Evaluation

In this section, we use ns-2 simulations to verify our derived backlog and delay bounds for Poisson and constant bit rate
(CBR) traffic arrivals. We carry out all experiments for Scenario 1 (Fig. 4). Each simulation duration is 100 seconds (s)
which is long enough to let a node transmit thousands of packets. Each data point (e.g.P{B(t) > x}) is calculated over 100
independent simulations.

A. Poisson Traffic

Let λ be the average traffic rate (packets/slot). In this case, we haveaA = λ (see Definition 7). For Poisson traffic, we have

EeθA(s,s+t) =
∞
∑

i=0

(λt)i

i!
e−λteθi = eλt(e

θ−1), (31)

where (λt)i

i! e−λt is the probability ofi packets arriving within(s, s+t]. From the above equation, Poisson traffic is(0, λ(eθ−1)
θ

)-
upper constrained and we can obtain its arrival curve by Eq. (15).

From Eq. (27), backlogs are stable whenλ < 0.079 (packet per slot). In Fig. 7, we plot the average backlog E[B(t)] at
t = 50s andλ = 0.077, 0.079 and0.081 in ns-2 simulations. We observe that there is sudden jump when λ = 0.081, indicating
the critical point of stability is indeed around0.079. This figure also indicates the accuracy of the 802.11 model in Eq. (24)
and Eq. (25).
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Fig. 7. EB(t) (t = 50s) whenλ = 0.077, 0.079, 0.081



Experiment 1(Scenario 1 with low Poisson traffic load) We setλ = 0.04 to simulate low traffic load.
Fig. 8(a) showsP{B(t) > x} in ns-2 simulations and Fig. 8(b) shows the upper bound ofP{B(t) > x} calculated by

Eq. (28). Note that stochastic network calculus gives very loose upper bounds. There may be two reasons. One is that we use
the worst-case analysis in deriving the weak stochastic service curve of 802.11. The other is that there are many relaxations
in proving the theorems of stochastic network calculus [11]. For example, relaxations are used in derivingf(x) in Theorem 3
[12], and this theorem is popularly used in deriving arrivalcurves and service curves (see Section III). The first reasonmay
not be the key reason because we will see in Experiment 2 the bound is even looser when we increase arrival rate and
make the channel near saturated. The second reason seems to be the key reason. We will see in Experiment 3 that backlog
bounds improve substantially for CBR traffic where we are able to derive the arrival curve by hand without using Theorem 3.
This indicates that refinements are needed in stochastic network calculus so as to tighten the bounds. Moreover, we found
that backlog bounds are sensitive to adjusting parameters (i.e., θ1, θ2, rA and rI ). So it is necessary to use Algorithm 2 to
minimize the bounds.

We also conduct simulations to verify delay bounds att = 50s. Since the backlog bounds are too loose, in order to avoid
trivial validation, we use EB(t) in ns-2 simulations to validate Eq. (29) and Eq. (30) (assumethat t = 50s is sufficiently large
so that we can apply these equations). Actually, we get ED(t) ≤ 0.0205s by Eq. (29), which tightly bounds ED(t) = 0.0186s
in ns-2 simulations. Fig. 8(c) showsP{D(t) ≥ x} in ns-2 simulations and Fig. 8(d) shows the upper bound ofP{D(t) ≥ x}
calculated by Eq. (30). Clearly,P{D(t) ≥ x} is upper-bounded by Eq. (30).
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Fig. 8. Experiment 1: Whent = 50s (a) P{B(t) > x} (b) upper bound ofP{B(t) > x} (c) P{D(t) ≥ x} (d) upper bound ofP{D(t) ≥ x}

Experiment 2(Scenario 1 with high Poisson traffic load) We setλ = 0.07 to simulate high traffic load.
Fig. 9(a) showsP{B(t) > x} in ns-2 simulations and Fig. 9(b) shows the upper bound ofP{B(t) > x} calculated by

Eq. (28). In this case,θ1 (θ2) is much smaller than that of Experiment 1 so as to satisfy theconstraint in Eq. (28), resulting
in looserf(x) andg(x). Therefore, stochastic network calculus gives further loose backlog bounds.

We also conduct simulations to verify delay bounds att = 50s. Since the backlog bounds are too loose, in order to avoid
trivial validation, we use EB(t) in ns-2 simulations to validate Eq. (29) and Eq. (30) (assumethat t = 50s is sufficiently large
so that we can apply these equations). Actually, we get ED(t) ≤ 0.0299s by Eq. (29), which tightly bounds ED(t) = 0.0296s
in ns-2 simulations. Fig. 9(c) showsP{D(t) ≥ x} in ns-2 simulations and Fig. 9(d) shows the upper bound ofP{D(t) ≥ x}
calculated by Eq. (30). Clearly,P{D(t) ≥ x} is upper-bounded by Eq. (30).
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Fig. 9. Experiment 2: Whent = 50s (a) P{B(t) > x} (b) upper bound ofP{B(t) > x} (c) P{D(t) ≥ x} (d) upper bound ofP{D(t) ≥ x}

B. CBR Traffic

Let λ be the average traffic rate (packets/slot). In this case, we haveaA = λ. It is easy to see thatsup0≤s≤t[A(s, t) − λ ·
(t− s)] < 1 for all t because packets arrive one by one in a constant time interval. Thus, we haveA ∼vb< f, α > where

α(t) = λt

f(x) =

{

0, x ≥ 1
1, x < 1

(32)

Again, from Eq. (27), the stability condition isλ < 0.079 (packet per slot). In Fig. 10, we plot the average backlog E[B(t)]
at t = 50s for λ = 0.077, 0.079 and 0.081 in ns-2 simulations. We observe that there is sudden jump when λ = 0.081,
indicating the critical point of stability is indeed around0.079. This figure also indicates the accuracy of the 802.11 model in
Eq. (24)and(25).

Experiment 3(Scenario 1 with low CBR traffic load) We setλ = 0.04 to simulate low traffic load.
Fig. 11(a) showsP{B(t) > x} in ns-2 simulations and Fig. 11(b) shows upper bound ofP{B(t) > x} calculated by

Eq. (28). The backlog bounds are much tighter in CBR traffic than those in Poisson traffic (see Experiment 1). The main
reason is that we can derive a tightf(x) by hand instead of by Theorem 3.

We also conduct simulations to verify delay bounds att = 50s. Since the backlog bounds are still loose, in order to avoid
trivial validation, we use EB(t) in ns-2 simulations to validate Eq. (29) and Eq. (30) (assumethat t = 50s is sufficiently large
so that we can apply these equations). Actually, we get ED(t) ≤ 0.0090s by Eq. (29), which tightly bounds ED(t) = 0.0089s
in ns-2 simulations. Fig. 11(c) showsP{D(t) ≥ x} in ns-2 simulations and Fig. 11(d) shows the upper bound ofP{D(t) ≥ x}
calculated by Eq. (30). Clearly,P{D(t) ≥ x} is upper-bounded by Eq. (30).

Experiment 4(Scenario 1 with high CBR traffic load) We setλ = 0.07 to simulate high traffic load.
Fig. 12(a) showsP{B(t) > x} in ns-2 simulations and Fig. 12(b) shows the upper bound ofP{B(t) > x} calculated by

Eq. (28). The backlog bounds are much tighter in CBR traffic than those in Poisson traffic (see Experiment 2) becausef(x)
is tight here.

We also conduct simulations to verify delay bounds att = 50s. Since the backlog bounds are still loose, in order to avoid
trivial validation, we use EB(t) in ns-2 simulations to validate Eq. (29) and Eq. (30) (assumethat t = 50s is sufficiently large
so that we can apply these equations). Actually, we get ED(t) ≤ 0.0274s by Eq. (29), which is close to (although does not
bound) ED(t) = 0.0296s in ns-2 simulations. Fig. 12(c) showsP{D(t) ≥ x} in ns-2 simulations and Fig. 12(d) shows the
upper bound ofP{D(t) ≥ x} calculated by Eq. (30). Clearly,P{D(t) ≥ x} is upper-bounded by Eq. (30).

To sum up, the current version of stochastic network calculus often derives loose bounds when compared with simulations,
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Fig. 10. EB(t) (t = 50s) whenλ = 0.077, 0.079, 0.081
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Fig. 11. Experiment 3: Whent = 50s (a) P{B(t) > x} (b) upper bound ofP{B(t) > x} (c) P{D(t) ≥ x} (d) upper bound ofP{D(t) ≥ x}

especially in the case of high traffic load. Therefore, stochastic network calculus may not be effective in practice.

VII. Related Work

In this section, we first present relate work on stochastic network calculus and then on the performance analysis of 802.11.
The increasing demand on transmitting multimedia and otherreal time applications over the Internet has motivated the study

of quality of service guarantees. Towards it, stochastic network calculus, the probabilistic version of the deterministic network
calculus [2] [3] [4] [5], has been recognized by researchersas a promising step. During its development, traffic-amount-centric
(t.a.c) stochastic arrival curve is proposed in [6], virtual-backlog-centric (v.b.c) stochastic arrival curve is proposed in [9] and
maximum-backlog-centric (m.b.c) stochastic arrival curve is proposed in [11]. Weak stochastic service curve is proposed in [7]
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Fig. 12. Experiment 4: Whent = 50s (a) P{B(t) > x} (b) upper bound ofP{B(t) > x} (c) P{D(t) ≥ x} (d) upper bound ofP{D(t) ≥ x}

[8] and stochastic service curve is proposed in [10]. In [11], Jiang showed that only the combination of m.b.c stochasticarrival
curve and stochastic service curve has all five basic properties required by a network calculus (i.e., superposition, concatenation,
output characterization, per-flow service, service guarantees) and the other combinations only have parts of these properties.
Jiang also proposed the concept of stochastic strict serverto facilitate calculation of stochastic service curve. Moreover, he
presented independent case analysis to obtain tighter performance bounds for the case that flows and servers are independent.
However, there are a few bugs in his results recently found byresearchers of network calculus, such as the trivial delay bound
in Theorem 3.5 [11] and Theorem 5.1. Therefore, we adopt v.b.c stochastic arrival curve and weak stochastic service curve in
our study since we only consider backlog and delay bounds (i.e., service guarantee), ignoring the other properties.

There have been some applications of stochastic network calculus. In [13], Jiang et al. analyzed a dynamic priority
measurement-based admission control (MBAC) scheme based on stochastic network calculus. In [14], Liu et al. applied
stochastic network calculus to studying the conformance deterioration problem in networks with service level agreements. In
[15], based on stochastic network calculus, X. Yu et al. developed several upper bounds on the queue length distributionof
Generalized Processor Sharing (GPS) scheduling discipline with long range dependent (LRD) traffic. They also extendedthe
GPS results to a packet-based GPS (PGPS) system. Finally, Agharebparast et al. modeled the behavior of a single wireless
link using stochastic network calculus [16]. However, little effort has been made on applying stochastic network calculus to
multi-access communication systems such as 802.11.

Existing work on the performance of 802.11 has focused primarily on its throughput and capacity. In [19], Bianchi proposed
a Markov chain throughput model of 802.11. In [18], Kumar et al. proposed a probability throughput model which is simpler
than Bianchi’s model. In our paper, we adopt Kumar’s model toderive the service curve of 802.11. There are also some work
on queueing analysis of 802.11. In [20], Zhai et al. assumed Poisson traffic arrival and proposed an M/G/1 queueing model
of 802.11. More generally, Tickoo proposed a G/G/1 queueingmodel of 802.11 [21] [22]. To our best knowledge, we are the
first to model the queueing process of 802.11 based on stochastic network calculus.

VIII. Conclusion and Future Work

In this paper, we presented a stochastic network calculus model of 802.11. From stochastic network calculus, we first derived
the general stability condition of a wireless node. Then we derived the stochastic service curve and the specific stability condition
of an 802.11 node based on an existing model of 802.11. Thus, we obtained the backlog and delay bounds of the node by using
the corresponding theorem of stochastic network calculus.Finally, we carried out ns-2 simulations to verify these bounds.

There are some open problems for future work. First, we derived the service curve based on an existing 802.11 model. Thus,
the accuracy of the service curve depends on the accuracy of the model. An open question may be whether we can derive
the service curve of 802.11 without using any existing models. Second, we assumed the worst-case condition (i.e., saturate



condition) in our analysis. Can we remove this conservativeassumption? Besides, under the worst-case assumption, we can
assume flows and servers are independent and perform independent case analysis obtaining tighter backlog and delay bounds.
This is also one of our future work. Third, we observe that thederived bounds are loose when compared with ns-2 simulations,
calling for further improvements in the current version of stochastic network calculus.
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Appendix A-1: Algorithm 1 (Numerical Calculation of σI(θ) and ρI(θ))

1) Let M(t) = sups≥0{
1
θ
logEeθI(s,s+t)}. Obviously,M(t) is an increasing function oft with M(0) = 0. We define axes

t and axest⊥ (vertical to t) on a plane, and plotM(t) on it. We define the slope ofM(t), s(t) = M(t)−M(t− 1).
2) We calculates(t) for t = 1, 2, 3, ... until it converges at somet∗, i.e., (1 − ǫ) · s(t∗ − 1) ≤ s(t∗) ≤ (1 + ǫ) · s(t∗ − 1)

whereǫ is a small number, e.g.10−5.
3) We draw a straight linel(t) with the slopes(t∗) crossing the point

(

t∗,M(t∗)
)

. Obviously, the line crosses the point
(

0,M(t∗)−s(t∗)t∗
)

. The maximum displacement betweenM(t) andl(t) (in the direction oft⊥), vm = max0≤t≤t∗{M(t)−

l(t)}. We shift l(t) by vm in the direction oft⊥ and get̃l(t). Clearly, l̃(t) upperboundsM(t). In other words, we have
ρI(θ) = s(t∗) andσI(θ) = M(t∗)− s(t∗)t∗ + vm.

Appendix A-2: Algorithm 2 (Numerical Calculation of Eq. (28))

In each iteration, we generate a sample ofθ1, θ2, rA and rI . If they satisfy the condition of Eq. (28), we calculate
min[f ⊗ g(x)] for the current and past iterations until it converges. Sample generations can use the interpolation or Monte
Carlo method over valid ranges of the variables.
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