
ar
X

iv
:1

60
2.

06
68

6v
2

 [c
s.

N
I]

 2
3

F
eb

 2
01

6
1

Designing a Disaster-resilient Network with
Software Defined Networking

An Xie∗, Xiaoliang Wang∗, Guido Maier† and Sanglu Lu∗
∗ National Key Laboratory for Novel Software Technology

Nanjing University, Nanjing, P.R. China
Email: waxili@nju.edu.cn

†Dipartimento di Elettronica, Informazione e Bioingegneria
Politecnico di Milano, Milano, Italy

Email: guido.maier@polimi.it

Abstract—With the wide deployment of network facilities and
the increasing requirement of network reliability, the disruptive
event like natural disaster, power outage or malicious attack has
become a non-negligible threat to the current communication
network. Such disruptive event can simultaneously destroyall
devices in a specific geographical area and affect many network
based applications for a long time. Hence, it is essential to
build disaster-resilient network for future highly surviv able
communication services. In this paper, we consider the problem
of designing a highly resilient network through the technique
of SDN (Software Defined Networking). In contrast to the
conventional idea of handling all the failures on the control
plane (the controller), we focus on an integrated design to
mitigate disaster risks by adding some redundant functionson the
data plane. Our design consists of a sub-graph based proactive
protection approach on the data plane and a splicing approach at
the controller for effective restoration on the control plane. Such
a systematic design is implemented in the OpenFlow framework
through the Mininet emulator and Nox controller. Numerical
results show that our approach can achieve high robustness with
low control overhead.

I. I NTRODUCTION

Networks having very high degree of interconnection are
vulnerable to the disruptive events such as floods, earthquakes,
power outages, electronic attacks, etc. Such regional damages
are usually unpredictable and may simultaneously destroy
multiple network facilities in a specific geographical area,
which result in a long period of network outages. For example,
the east Japan earthquake on March 2011 caused 385 tele-
phone offices stopping operation immediately, cut off millions
of users from the telephone service and even the emergency
restoration took more than one month [1].

The conventional techniques to maintain network continuity
can not work well in case of disasters. Network protection,
which relies on the expensive pre-allocated backup resources,
may fail to deal with regional damage when the backup
resources corrupt simultaneously with the primary ones. The
restoration mechanism, which computes new routes based
on the actual status of network, may introduce too long
convergence time to meet the requirements of mission-critical
and real-time applications, and leads to serious consequences
like transient loops and blackholes [2].

To build disaster-resilient networks, this paper focuses on
leveraging the technique of SDN (Software Defined Network-

ing) which provides more intelligent and flexible network
management. SDN networks, such as OpenFlow - enabled [3]
networks, decouple the network control plane from the data
plane, and have been successfully deployed in the operator’s
WAN and corporation’s LAN to provide robust network ser-
vices, e.g., the global carrier NTT communications networks,
Google and Microsoft inter-datacenter WANs, etc [4], [5]. Due
to its intrinsic great flexibility and global management of the
network, SDN is potentially suitable to execute an efficient
recovery during a major disruption.

Although SDN has a good potential for handling failures,
the current architecture may be not sufficient to recover from
large-scale failures such as disaster failures.Control plane
scalabilityand therecovery time requirementare the two major
challenges. Generally, the SDN controller computes routes
whenever a failure occurs. And the controller is responsible
for updating all the forwarding elements’ status. However,
the multiple failures caused by a catastrophic event will
simultaneously disrupt a lot of end nodes. This will lead to a
huge amount of reconnection requests, making it impractical
to offload the task of all the routing computation and to
update the forwarding elements’ status to the controller. This
is because the dynamic route re-computation can lead to huge
overhead, and inserting all new routes into SDN forwarding
elements alongside is time-consuming [6] and error-prone due
to the consistent packet processing problem [7], [8]. Moreover,
the stringent recovery time requirements of mission-critical
and real-time applications [9] make the enhancement design
of the control plane (e.g., the distributed control plane design
like Onix [10]) incompetent. This is because the status syn-
chronization among physically distributed controllers requires
additional time.

In this paper, we propose a new framework to deal with
the considered problems in face of disaster failures by SDN.
Several design challenges are addressed in this paper,

(1) Low controller overhead. The controller overhead should
be low in order to reduce the likelihood of controller
being the bottleneck.

(2) Fast recovery. The recovery should be quick in order to
meet the requirement of some mission-critical and real-
time applications.

(3) Strong connectivity. The connectivity ratio should be

http://arxiv.org/abs/1602.06686v2

2

high even after a major disaster event destroying a lot
of network components.

To address above challenges, our main idea is to pre-install
redundant flow entries (backup entries) into the data plane.
Different from the previous enhancement design of the control
plane, our enhancement design of the data plane guarantees
that a large proportion of the reconnection requests can be
handled on the data plane. Since only a small fraction of the
requests are handled by the controller, the control overhead is
low. Besides, the data plane handled requests will not be sent
to the control plane, thus saving the round-trip recovery delay
between the data plane and the control plane. To address the
third challenge, we consider the disaster failure’s geographical
layout and its failure size distribution. In order to do this,
we adopt the novel metric of the vulnerable zone of a path
during generating the backup entries. So the pre-installed
backup routes are less likely to simultaneously get destroyed
by a disaster failure. By combing with the recovery on the
control plane, our design guarantees strong connectivity after
a disaster failure.

More concretely, our proposed design consists of two mod-
ules: the proactive local failure recovery module running on
the switches (data plane) and the reactive global restoration
module running on the controller (control plane). In the
protection module, we adopt the multi-topology routing to
do local fast rerouting, and consider the geography properties
(shape and size) of the disaster failure to generate robust
backup routes. In the restoration module, we give an ef-
fective algorithm to reconnect failed nodes by rescheduling
the pre-installed routes. We further consider the load balance
performance during recovery by formulating an ILP, after
which an heuristic algorithm is proposed. We implement the
prototype by utilizing multiple tables pipeline processing and
fast failover group tables of OpenFlow (Section III). Simu-
lations (Section IV) on both random generated and realistic
topologies show that, the protection module is able to handle
approximately 70% of the reconnection requests. The rests are
processed by the restoration module. Only by rescheduling the
pre-installed redundancies, more than 90% of the disconnected
end nodes can be reconnected even when the failure diameter
is 1/6 of the network deployment region’s length.

II. PRELIMINARY

In this section, we first introduce the network model and
failure mode adopted in this paper. Then we introduce the
vulnerable zone of a routing path.

A. Network Model

We consider a physical networkG(V,E) as a planar graph
inside the deployment areaD ∈ R

2, which is represented by
the network components:V is the set of forwarding elements
(routers or SDN switches) andE is the set of links connecting
them. In SDN context, all forwarding elements have a channel
connected to the centralcontroller C (in-band or out-of-
band)1. By eij we denote the link between adjacent nodes

1The logical controllerC can be implemented distributedly [11], [12], this
refers to the controller placement problem and is out of the scope of our
works.

Fig. 1. Vulnerable zone: the union of points that are locatedno more than
r distance from the network components. Any region failure occurs in the
vulnerable zone will break the network component.

i andj, i, j ∈ V, eij ∈ E. By xst we denote the path between
nodess and t, s, t ∈ V .

B. Failure Model

During the extreme events such as disasters or malicious
attacks, multiple network components located closely to each
other may fail together. We summarize the behaviors of such
large scale attacks to model the “the geographically correlated
failure”.

Definition 1: (Geographically Correlated Failure) is de-
fined as follows:

1) Network components intersecting the region of failures
will be removed from the network. The size of a
geographically correlated failure is determined by the
radiusr.

2) The radiusr follows the distribution functionsf(r),
ra ≤ r ≤ rb, wherera (resp.rb) is the minimum (resp.
maximum) considered region size2.

It’s notable that our model does not make any assumptions
about the failure locations and radiuses, which are usually
difficult to obtain due to the uncertainty of the disaster failures.
Our model is more general than the previous deterministic
failure model [14], [15] (which requires the knowledge of the
failure radiuses) and SRLG related model [16]–[21] (which
requires the knowledge of the failure locations).

C. Vulnerable Zone of a Path

According to the definition of regional failures, a disaster
region can be of any shape with arbitrary size and located
anywhere in the plane. Therefore, there are infinite number of
region failures to be considered. Our first problem is to find
a proper statistical metric to evaluate the impact of region
failures.

Given a regional failure with radiusr, a link eij may fail if
it intersects with the failure region. In other words, if a disaster
happens and its epicenter is less thanr distance fromeij , eij
will be broken. We call the set of those points thevulnerable
zoneof link eij , denoted byZr

eij
, defined as follows:

Definition 2: (Vulnerable zone of a link) is the region sub-
area such that any region failure with radiusr whose epicenter
falls within it will always cause the corruption of the given
link.

2The distribution functionf(r) of the destructive natural regional failures,
such as earthquakes, usually follows the power-law distribution [13].

3

As illustrated in Fig. 1 (a), the “hippodrome” in dash line
represents the vulnerable zone of linkeij , which consists of
all points whose shortest distance to linkeij is no more than
r. Similarly, we can further define the vulnerable zone of a
pathxst, denoted asZr

xst
, as shown in Fig. 1 (b), which is

the union of all circle centers that are located no more thanr
distance from the path.

Definition 3: (Vulnerable zone of a path) is the region
sub-area such that any region failure with radiusr having
epicenter falling within it will always cause the corruption
of the given path.
The vulnerable zone of a pathxst is the union of the vulnerable
zones of all the links of the path, i.e.,Zr

xst
= ∪eij∈xst

Zr
eij

.

III. SYSTEM DESIGN

In this section, we first define the problem of SDN network
reliability against regional damage. Then we introduce our
system, which consists of two modules: the proactive Backup
Topologies Generation Module for local recovery and the
reactive Splicing Module for global restoration.

A. Overview of System Design

The problem to be solved can be defined as follows:Given
a networkG(V,E) and a central controllerC, 1) how do we
pre-install some redundancies into the network so that the
controller is able to reschedule these reduncancies and 2)
how does the controller reschedule the protection resources
with low controller overhead to survive from the large-scale
multiple failures caused by regional damage.

To solve the above problem, we apply the SDN framework
for failure recovery. Our design consists of two modules,
a proactive local failure recovery module working in the
forwarding plane (Backup Topologies Generation Module) and
a reactive global restoration module running in the control
plane (Splicing Module). The failure reconnection requests
first get handled by the local failure recovery module. The
reconnection requests that the local recovery module is not
able to handle are led to the global restoration module as
illustrated in Fig. 2.

How to install the redundancies for the proactive local
failure recovery module needs to be carefully addressed. To
reduce the controller overhead, we want to handle failures
locally as much as possible. However, the limited number
of redundancies on the data plane can not handle all of the
failures. We thus have to distinguish the types of failures,
so as to decide which of them to handle on the data plane
and which on the control plane. This “distinction” function
can only be implemented on the data plane. Otherwise it
would require the interference of the controller which may
lead to some additional controller overhead (to decide the
types) and additional recovery delay (the round trip time
between the control plane and the data plane). To make the
distinction on the data plane possible, we refer to the approach
of Multi-Topology (MT) Routing (RFC 4915 and RFC 5120
[22], [23]) to add redundancies. And by the joint design
of multi-topology redundancies and the multi-table pipeline

processing of OpenFlow, this distinction function is made
possible without any interference of the controller.

The basic idea of MT routing is to take the original graph
G as input, and generatek backup topologies{G1 . . . Gk}.
Routing tables{T1 . . . Tk} are computed and installed based
on {G1 . . .Gk}. Moreover, we notice that the recent research
on MT Routing, Multiple Routing Configurations (MRC) [24],
[25], is a good technique. The design goal of MRC is to
prepare different configurations for different single nodeor
link failures to achieve fast rerouting. With the adoption of
MRC, the goal of the distinction function is clear, i.e., to
distinguish the single link or node failure and the multiple
failure. Furthermore, during the route planning in each backup
topology, we consider the geographical distribution of network
components to reduce the likelihood of route corruptions by
regional failures.

For the reactive global recovery module running on the
control plane to handle the remaining failures, a straight-
forward idea is to compute new routes on the controller
for each failed flow and install all the new rules into the
corresponding switches ([12], [26], [27]). However, such
an operation is time consuming and error-prone due to the
consistent packet processing problem [7], [8]. Instead, we
exploit the usage of pre-computed backup topologies to rebuild
the failed connections, and a splicing algorithm is proposed in
the Splicing Module at the controller to find new paths.

Fig. 2. System overview

B. Review of MRC (Multiple Routing Configurations)

For the completeness of our work, we first give a brief re-
view of the MRC algorithm. The key idea of MRC routing al-
gorithm is to prepare multiple backup topologies{G1 . . . Gk},
and select a proper backup topology in accordance with the
current network failure state [25]. In each backup topologyGi,
some linkseuivi are defined asisolated linksand restricted
links while some nodesui are defined asisolated nodes. The
isolated links are set infinite weight and can be excluded from
Gi. The restricted links are set very high weight so that they
will not be chosen by some routing algorithms (i.e., shortest
path routing mechanisms) unless have to. A nodeui in Gi is
isolated if and only if its adjacent links are all either restricted
or isolated. Whenever the isolated nodes fail, it will not affect
the connection of other paths.

4

If nodeu detects a failure of adjacent linkeuv, u will select
a backup topologyGi in which the failed next hop linkeuv
is isolated. Then it will tag packets with the selected backup
topology idi to notify the subsequent node to forward packets
based on this backup topology. Since inGi, euivi is assigned
a very high weight and it does not undertake any transit traffic,
the packets are guaranteed to reach their destination.

Generally, to restore an arbitrary single link or node failure,
the following constraints must be satisfied:

(1) Each nodeu in the original graph must be isolated in
at least one backup topologyGi. Each link euv in the
original graph must be isolated in at least one backup
topologyGi.

(2) Each link must be isolated with one of its adjacent
isolated nodes in one backup topology.

(3) All node pairs must be mutually reachable inGi.

Fig. 3. (a):Original networkG.(b)-(c):backup topologiesG1-G3. Dark node
refers to the isolated node and dashed line refers to the restricted link. For
clarity, we did not draw the isolated links inGi.

Fig. 3 shows the generated backup topologies. Every node
is isolated in exactly one backup topology. Consider a flow
with (src=1,dst=3): normally its path is1→ 2→ 3 based on
shortest path inG. Assume node 2 failed and node 1 detected
the failure. Since node 2 is isolated inG1, node 1 would tag
the packet with tag 1 which refers to backup topologyG1.
The alongside nodes will also forward the packet belonging
to the failed flow based onG1. Thus, the routing path from 1
to 3 becomes1→ 4→ 7→ 8→ 3.

The MRC is originally designed for locally handling single
link or node failure. It is not adequate to handle multiple
failures caused by large-scale regional failure. To leverage
its redundancy, we first modify it based on the geographical
distribution of failures to better accommodate the Splicing
Module as described in the next subsection.

C. Backup Topologies Generation Module

This section first introduce how to generate routes on these
backup graphs{G1 . . .Gk} obtained by the MRC algorithm.
Even with a sophisticated path finding algorithm, it’s impossi-
ble for the limited number of redundancies on the data plane to
handle all of the failures. So this module is also responsible for
distinguishing the failure types so as to deliver some failures
to the control plane to get handled.

1) Geography based Backup Route Generation:After run-
ning the MRC backup topology generation algorithm, we
obtain multiple backup topologies{G1 . . . Gk}. If we run the
same path finding algorithm (i.e., Dijkstra algorithm) on all
these backup topologies, for specific nodess and t, the path
between them,xi

st (on Gi) andyjst (on Gj) , will be possibly
coincided. This should be avoided because paths on these
backup graphs are too close to each other and are vulnerable
to a common risk. To improve the reliability of these paths, we
adopt the vulnerable area of a path during the route generation
in eachGi.

For eachs, t ∈ G, we may have different paths on eachGi.
Compared to the original path inG, these paths are redundant.
They can be used to rebuild the failed connection between
s and t. However, if the vulnerable areas of backup paths
intersect, they can be possibly destroyed by a regional failure
simultaneously. Consider a flow with (src=6, dst=3): normally
its primary path inG is 6→ 7→ 5→ 3 based on the shortest
path. The backup path from6 to 3 in G1 is 6→ 7→ 8→ 3.
The backup path inG2 is 6→ 4→ 5→ 3. The backup path
in G3 is 6 → 7 → 5 → 3. Assume that a regional failure
destroys node 5 and node 8 simultaneously. All the primary
and backup paths are destroyed. This is because in this case,
the primary path and the three backup paths are not region-
disjoint. If, however, inG3, we select the region-disjoint path
6→ 1→ 2→ 3 from 6→ 7→ 5→ 3 in G1, backup path in
G3 would not get destroyed by the regional failure.

To avoid the situation in which all the primary path and
backup paths are destroyed, it is required that these paths
are region-disjoint [28]. However, finding region-disjoint paths
is NP-hard even with a fixed failure radiusr [28] and is
difficult to solve in general. Therefore, we refer to heuristic
algorithms. Our algorithm is shown in Algorithm 1. It first
finds the shortest pathx0

st from s to t on G (G0) as the
primary path betweens and t. Then it iterates on all the
backup topologies.[ra, rb] is evenly divided intok intervals.
Each backup topologyGi is resilient to failures with radius
up to ri = ra + (i− 1) · rb−ra

k−1
. This is achieved by reducing

the likelihood of the vulnerable zone of backup path,Zri
euv

intersecting with the vulnerable zone of the primary path,Zri
x0

st

.
If the two vulnerable zones intersect, it means that they can
be both destroyed by a failure with radiusri. We assign very
high weight to those links whose vulnerable zones intersect
with Zri

x0

st

to reduce the likelihood of choosing those links in

yist.

2) Implementation:If the packet can not be handled on the
data plane, they are sent to the controller to get handled on
the control plane. The data plane should be able to deliver the
failures to the control plane immediately after finding itself
unable to handle them. Unlike the traditional router, the data
plane and the control plane in SDN are usually physically
separated. Also, the controller should not interfere with this
logic. Otherwise, it would prolong the recovery time (due to
the round trip time between switches and the controller) and
increase the controller overhead. We achieve this by carefully
arranging the routes in the pipeline and leveraging the fast
failover group table provided in the OpenFlow.

5

Algorithm 1: Backup Routes Generation

Input : network topologyG = (V,E), backup topologies
{G1 . . . Gk}, source addresss, destination address
t

Output : k backup routes in{G1 . . .Gk}
1 begin
2 Find x0

st in the original topologyG
3 for i←1 to k do
4 ri := ra + (i− 1) · rb−ra

k−1

5 forall the edgeeuv ∈ Ei do
6 if Zri

euv
∩ Zri

x0

st

6= ∅ then
wi

euv
:= very high weight

7 Find yist in backup topologyGi using the new
weight

8 return {y1st . . . y
k
st}

Generally, the OpenFlow pipeline processing consists of
multiple routing tables{T0 . . . Tmax} and a group tableTg.
Flow entries both inTi (0 ≤ i ≤ max) andTg consist of a
lot of terms. InTi, entries consist of match fields, instructions
and priority. The failover group entries inTg, consist of group
id and action buckets. Each action bucket is associated witha
specific port (watch port) that controls the bucket’s liveness.
The action buckets within an entry are evaluated sequentially.
The first bucket which is associated with a live port is selected.

The conventional routing procedure is to directly forward
a packetp to a specific port. In contrast, to leverage the fast
failover group, we first forwardp to a specific group in the
group table. Then it’s up to the group to decide which port
to forward to based on the port’s liveness. The packets are
basically divided into two types, i.e., clean packets and dirty
packets. The clean packets are those packets that have not
encounter any failure yet via routing. The dirty packets have
encountered failures before. The clean packets and the dirty
packets are processed by different processing flows in the
multiple table pipeline. The two types of packets are explicitly
distinguished by the MPLS tag in the packet header.

The detailed procedure is shown in Fig. 5. Concretely,T0

is the starting table for all packets, which works as a diverting
table to divert packets to different processing flows.

(1) A clean packetp is diverted byT0 to one of the groups
in Tg. The group whichT0 forwardsp to, is responsible
for checking the liveness of the output port which is
based on routing tableT0. If the output port is alive,p
will be sent out via that output port. Otherwise, it will
be tagged a MPLS labelø (ø is a backup topology’s
number) to indicate that it is a dirty packet. Then it will
be sent out via another port which is decided by the
routing in Tø.

(2) A dirty packetp with a MPLS labeli is diverted byT0

to Ti. ThenTi will forward p to one of the groups in
Tg. The group will check the liveness of the output port
based on routing tableTi. If the port is alive,p will be
sent out, otherwise it will be sent to the controller to get
further processed.

Fig. 4. A regional failure destroys bothp1 andp2. We rebuild the path by
installing one route on nodee to divert traffic fromp1 to p2.

D. Splicing Module

The splicing module refers to thereactive recovery at the
controller. It’s responsible for rebuilding the failed connections
that can’t not get handled by the pre-installed redundancies.
As described in Section III-A, unlike conventional approaches
that install all routes into forwarding elements, we rebuild the
failed connections by utilizing the pre-installed redundancies.
By doing so, the number of installed routes is reduced, thus
reducing the likelihood of the consistent packet processing
problem. A motivation example is shown in Fig. 4. The are
two paths froms to t, p1 and p2. A regional failure destroy
eae and eeb simultaneously. As a result, bothp1 and p2 are
destroyed. To rebuild the connection, the traditional approach
is to install new routes alongs → c → e → d → t, which
requires installing five new rules. In contrast, we only install
two rules, one on nodes to divert traffic top2, the other one
on nodee to divert traffic fromp2 to p1.

Another issue we consider is the load balancing during
recovery. Unlike the single link or node failure, the regional
failures usually destroy a huge amount of network components
simultaneously and lead to a huge amount of disconnected
end nodes. Such a huge number of disconnected end nodes
requires lots of reconnections. The splicing module should
handle the reconnections in a proper way to avoid that some
nodes bear exceedingly more rerouting paths than others. The
requests that sent to the controller give us the opportunityto
redistribute some of the reconnecting traffic. Aside from the
connectivity, we also consider the problem of how to reconnect
the failed paths. We first define a metric, then we give an ILP
to formulate the problem, after which we propose an efficient
heuristic algorithm to reduce the complexity.

We define the metric, maximal load to quantify the routing
load balance degree after a regional failure.

Definition 4: (Maximal Load): given a network graph
G

′

(V
′

, E
′

) after a regional failure (with failure radiusr), and
a reconnection request matrixRM on G

′

, the maximal load
gap is the load of the most loaded node in the network, where
the load of a node is the number of primary and rerouted paths
passing it, i.e.,

ML = |(Pu +R
′

u)|max, ∀u ∈ V
′

By Pu we denote the number of primary paths that passu. By
R

′

u we denote the number of the rerouted paths that passu
based onRM after a regional failure. Here, we consider the
primary resource and the rerouted resource separately, andwe
assume that if a primary path for a particular node pair is not

6

failed, the primary path can not be altered to avoid network
wide reconfiguration. Our goal is to minimize the maximal
load.

We formulate the problem by the following ILP,

minmax
i∈V

′

(

∑

∀s,t∈V

∑

eij∈E

xst
ij +

∑

∀s,t∈RM1

∑

eij∈E
′

ystij

+
∑

∀s,t∈RM2

∑

eij∈E
′

zstij

)

(ILP1)

s.t. zst is a routing path (1a)

ystij ∈ {0, 1}, ∀eij ∈ E, ∀s, t ∈ V
′

(1b)

The first part in the object function corresponds toPi, in
which xst

ij equals to 1 if pathxst passeseij and 0 otherwise.
xst
ij is computed based on the routing inG0. The second part

in the object function corresponds to the additional rerouting
paths thati have to undertake due to the reconnection requests
RM1. RM1 is the reconnection requests that can be handled
on the data plane. The second part can also be computed.
The third part in the object function computes the number of
rerouting paths thati have to undertake due to the reconnection
requestsRM2.RM2 is the reconnection requests that can not
be handled on the data plane. It is notable thatRM equals to
the sum ofRM1 andRM2.

ILP1 distribute the rerouting traffic in a min-max fashion.
However, the above optimization may not scale well to large
networks. In addition to the optimization, we also give a
heuristic algorithm. To evenly distribute the reconnections
request using the installed redundancies, for all nodeu ∈ E,
we recordR

′

u on the control plane. We first construct a
temporary graph in which, we fill all the available segments
(not broken by the regional failure) from{G1 . . . Gk} into
the temporary graph. Then weight assignment is performed
based onR

′

u for all nodeu ∈ E. The detailed algorithm is in
Algorithm 2.

In Algorithm 2, we first test ifs and t are physically
disconnected. If they are, it’s impossible to find a path between
them. Then we construct a multigraphGtemp by adding edges
from k paths froms to t in {G1 . . . Gk} excluding the failed
edges. To evenly distribute the rerouting paths, we set link
weight of euv to the mean ofR

′

u andR
′

v. After the weight is
set, we try to find a path on this temporary graph. If a path is
found, we updateR

′

u, u ∈ V and return the splicing actions.
Otherwise, it means that the failed path can not be rebuild by
splicing the existing redundancies. In this case, one may have
to install a whole new path.

IV. PERFORMANCE EVALUATION

A. Simulation Setting

We use both random and realistic topologies for our sim-
ulation. The random50 topology contains 50 nodes and 120
edges, the random100 topology contains 100 nodes and 211
edges. The realistic Germany backbone consists of 50 nodes
and 88 edges. The deployment area is 1200 x 1200 (arbitrary
units) for all the cases. One connection is requested by each
node pair of the network. We implement our prototype using

Algorithm 2: Splicing Action Generation

Input : network topologyG = (V,E), backup topologies
{G1 . . . Gk}, source addresss, destination address
t

Output : a set of splicing actions.
1 begin
2 if s and t are physically disconnectedthen
3 return failed and abort
4 else
5 build a temporal topologyGtemp(Vtemp, Etemp)
6 Vtemp := V,Etemp := ∅
7 for i←1 to k do
8 forall the edgeeuv ∈ Ei do
9 if euv is alive and on the path froms to t

in Gi then
10 Etemp := Etemp ∪ euv
11 ℓeuv

:= i
12 else
13 continue

14 forall the edgeeuv ∈ Etemp do
15 weuv

:= (R
′

u +R
′

v)/2

16 find shortest pathptemp on Gtemp from s to t
17 if found then
18 forall the edgeeuv ∈ Etemp do
19 if euv ∈ ptemp then
20 R

′

u := R
′

u + 1

21 R
′

v := R
′

v + 1

22 else
23 return failed and abort

24 return splicing actions based onptemp

OpenFlow 1.3.3 [29] and NOX controller [30] and examine
the prototype’s performance on Mininet testbed [31]. For the
throughput test, we use two PCs, one running mininet and the
other running NOX controller. Iperf [32] is adopted as our test
tool.

Comparsion Metrics. We use the following metrics to
quantify the results [33], [34].

• Recovery Ratio. Recovery ratio is introduced to evaluate
the capacity of network recovery to reset the connection
between pairs of disconnected nodes, which can be de-
fined as follows,
Definition 5: (Recovery Ratio)

Recovery Ratio=
number of recovered paths

number of recoverable paths

As a result of multiple failures, the underlying topology
may be divided into disconnected components, or the
source (and/or destination) of a certain flow becomes
failed. Hence, we call a disconnected routing path as
“recoverable” if both the end nodes are alive and they
are not physically separated.

• Path stretch. The detail definition can be found in [35].

7

Fig. 5. Prototype architecture

Generally, a path with longer stretch requires more net-
work resources. We adopt the notation ofstretchto mea-
sure the ratio of alternate path length over the expected
shortest path length.

• Controller overhead. As the aforementioned idea of
backup topology generation, we try to reduce the load of
the controller by locally restoring the failed connection.
The effectiveness of this approach is measured through
the metric below.
Definition 6: (Controller Overhead) Controller over-
head is defined as the proportion of reconnection requests
that need to be processed by the controller.

• Maximal Load. As defined in Section III-D, it quantifies
the maximal load among nodes after a regional failure.

We compare our SDN-based Fast and Resilient Routing
against Disaster (SDN-FRRD) approach with the following
approaches proposed in the literature,

• MRC [25]. The MRC is designed for local fast recovery.
We evaluate it to see if it’s sufficient for regional failures.

• SDN-MRC. We apply the MRC to our novel framework,
by directly using the MRC in the Backup Topologies
Generation module.

• Path Splicing [33]. The advanced multipath routing algo-
rithm, path splicing, is to random splicing routes in the
data plane. The setting of Path Splicing is: using the same
number ofk backup topologies as MRC and SDN-MRC,
the link weight perturbation function is:weight(i, j) =
(degree(i) + degree(j))/degreemax wheredegreemax

is the maximal node degree andweight(i, j) ranges from
0 to 2.

B. Evaluation Results

1) Recovery Ratio:Fig. 6 shows the recovery ratio in term
of the number of backup topologiesk in the three topologies
when the radius of the regional damage is50. From the graph,
we can see that both SDN-FRRD and SDN-MRC, that apply
the SDN framework can steadily achieve more than90%
recovery ratio. Comparing to the MRC and the Path Splicing
curves, clearly shows the effectiveness of our SDN framework.

Fig. 7 shows the recovery ratio when the radius of the
regional failure is100. The trend of the curves is similar to
the ones inFig. 6. When the failure radius is100, the failure
breaks more links than when the failure radius is 50. Thus
the recovery ratio of the MRC, SDN-MRC, Path Splicing
gets decreased. For example, the recovery ratio decrease by
about5% in Fig. 7(a) compared to Fig. 6(a), and decreases
by about10% in Fig. 7(c) compared to Fig. 6(c). However,
we observe no significant decrease of the curve SDN-FRRD.
This is because in the Backup Topologies Generation module
(see Algorithm 1), we adopt the vulnerable area of a path
and consider the distribution of the failure radius to generate
backup routes, such that the recovery ratio is not significantly
influence by the size of the regional failure. This can also be
validated in Fig. 9, where the recovery ratio remains above
95% even when the failure radius is150 in all the three
topologies.

Since the recovery ratio of the SDN-FRRD is almost
about 100% and is steady when the number of the backup
topologiesk is from 6 to 15. Since smallk already has
satisfying performance of the recovery ratio, small valuesof k
is sufficient. Because largerk means the backup tables would
consume more switch resources, network operators who have
a strict limitation of switch resources can consider choosing
the smallestk.

2) Stretch:Fig. 8 shows the stretch in term ofk = 6, 7, 8, 9
in the three topologies. As we can see, in all the three
topologies, about90% of the stretch is below 1.5. Normally,
largerk means more redundancies, which can lead to smaller
stretches. The four values ofk achieve approximately equal
recovery ratio, largerk tends to have smaller stretch. This can
be seen, for example, in Fig. 8(c), the curve ofk = 9 is on
the left side of the curve ofk = 6, which means a smaller
stretch. This leads to a trade off between cost and performance
at the initialization of network, i.e., operators who want to
get a lower stretch can choose largerk, at the cost of more
switch/router routing tables consumptions.

3) Controller Overhead:Fig. 10 shows that whenk = 6,
the controller overhead in terms of the failure radius. In all
the radiuses, the controller only needs to handle about40% of
failures, which means the data plane has already handle more
than60% of the failures. As the failure radius grows bigger,
the controller overhead has the trend to get heavier too. This
is because when more links are destroyed, it is more difficult
for the data plane to recover from the failure. Even when the
failure radius is 150, about60% are handled locally.

4) Maximal Load: Fig. 11 shows the maximal load of the
splicing actions generation algorithm (Algorithm 2), compared
to the shortest path splicing actions generation. The shortest
path splicing actions generation choose the path with the

8

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 6 7 8 9 10 11 12 13 14 15

R
ec

ov
er

y
R

at
io

Number of Topologies

SDN-FRRD
MRC

SDN-MRC
Path Splicing

(a) Germany backbone

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 6 7 8 9 10 11 12 13 14 15

R
ec

ov
er

y
R

at
io

Number of Topologies

SDN-FRRD
MRC

SDN-MRC
Path Splicing

(b) Rand50

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 6 7 8 9 10 11 12 13 14 15

R
ec

ov
er

y
R

at
io

Number of Topologies

SDN-FRRD
MRC

SDN-MRC
Path Splicing

(c) Rand100

Fig. 6. Recovery Ratio vs. Number of backup topologiesk when the failure radius=50

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 6 7 8 9 10 11 12 13 14 15

R
ec

ov
er

y
R

at
io

Number of Topologies

SDN-FRRD
MRC

SDN-MRC
Path Splicing

(a) Germany backbone

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 6 7 8 9 10 11 12 13 14 15

R
ec

ov
er

y
R

at
io

Number of Topologies

SDN-FRRD
MRC

SDN-MRC
Path Splicing

(b) Rand50

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 6 7 8 9 10 11 12 13 14 15

R
ec

ov
er

y
R

at
io

Number of Topologies

SDN-FRRD
MRC

SDN-MRC
Path Splicing

(c) Rand100

Fig. 7. Recovery Ratio vs. Number of backup topologiesk when the failure radius=100

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 1.2 1.4 1.6 1.8 2 2.2

C
D

F

Stretch

k=6
k=7
k=8
k=9

(a) Germany backbone

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

C
D

F

Stretch

k=6
k=7
k=8
k=9

(b) Rand50

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 1.2 1.4 1.6 1.8 2 2.2 2.4

C
D

F

Stretch

k=6
k=7
k=8
k=9

(c) Rand100

Fig. 8. Path Stretch vs. Number of backup topologiesk when the failure radius=50

minimal path length between a reconnection request(s, t)
when multiple rerouting paths between them are available
[36]. It however does not consider the load distribution among
nodes. The results of the ML reduction are normalized based
on the result of ILP1. From the graph, we can see that our
algorithm can reduce the ML. As the failure radius becomes
bigger, the ML also gets bigger, which indicates that without
consider the load distribution, the load imbalance among node
gets more severer.

5) Recovery Time:Fig. 12 shows the receive rate on the
Iperf client. A region failure occurred between the Iperf server
and client at 0.3s. Packets can not be handled locally by
backup tables, thus are sent to the controller. The receive rate
on the client did have a sharp reduction at 0.3s, but it recovered
very fast after about 10ms. The recovery time in real scenarios
differs, which depends largely on the round trip time between
a switch and a controller.

V. RELATED WORK

There are limited number of recent papers focusing on
leveraging SDN for large-scale regional failures. Nguyenet

al. [12] studied latency between a switch and a controller
and confirmed the applicability of SDN on disaster-resilient
WANs. Works in [26], [27] studied using SDN to meet carrier-
grade requirements and pointed out that the reactive approach
may not be able to achieve sub-50ms recovery. However, the
above works did not consider the heavy controller overhead
and the consistent packet processing problem [7], [8]. To
reduce the recovery time, Sgambelluriet al. [37] proposed
the proactive segment protection. Kamamuraet al. [38] gave
a prototype to achieve IP fast rerouting using backup tables
via autonomous OpenFlow controllers. The proposed proactive
recovery can significantly reduce the recovery time. But, in
face of region failure scenarios, the performance may be
significantly decreased since the flexibility of SDN’s global
view is not used.

VI. CONCLUSION

In this paper, we propose a SDN based architecture to
enhance the reliability of network against disaster failures. We
propose our algorithms for geographic-based backup topolo-
gies generation and splicing considering the laod distribution

9

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 50 75 100 125 150

R
ec

ov
er

y
R

at
io

Failure Radius

Germany backbone
Rand50

Rand100

Fig. 9. Recovery Ratio vs. Failure
Radius

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 50 75 100 125 150

C
on

tr
ol

le
r

O
ve

rh
ea

d

Failure Radius

Germany backbone
Rand50

Rand100

Fig. 10. Controller Overhead

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 50 75 100 125 150

M
L

Failure Radius

Shortest path
Algorithm 2

Fig. 11. ML on the Germany back-
bone

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

R
ec

ei
ve

 R
at

e(
M

bp
s)

time(s)

Splicing once

Fig. 12. Receive Rate on the Iperf
client

among nodes, and implement our approach by utilizing mul-
tiple tables pipeline processing and fast failover group tables
of OpenFlow. Experiments show that, by well pre-designed
backup topologies protection, our fast restoration approach can
efficiently use the redundancy to achieve high reachabilityand
low stretch with low controller overhead. The load distribution
after a regional is more even, compared to the previous splicing
algorithm in [36].

REFERENCES

[1] T. Sakano, Z. M. Fadlullah, T. Ngo, H. Nishiyama, M. Nakazawa,
F. Adachi, N. Kato, A. Takahara, T. Kumagai, H. Kasaharaet al.,
“Disaster-resilient networking: a new vision based on movable and
deployable resource units,”Network, IEEE, vol. 27, no. 4, 2013.

[2] R. R. Kompella, J. Yates, A. Greenberg, and A. C. Snoeren,“Detection
and localization of network black holes,” inProceedings of INFOCOM,
2007.

[3] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,”ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[4] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhuet al., “B4: Experience with
a globally-deployed software defined wan,” inProceedings of the ACM
SIGCOMM, 2013.

[5] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,
and R. Wattenhofer, “Achieving high utilization with software-driven
wan,” in Proceedings of ACM SIGCOMM, 2013.

[6] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, andR. Sherwood,
“On controller performance in software-defined networks,”in Proceed-
ings of Hot-ICE, 2012.

[7] N. P. Katta, J. Rexford, and D. Walker, “Incremental consistent updates,”
in Proceedings of ACM SIGCOMM Hotnets, 2013.

[8] P. Peresini, M. Kuzniar, N. Vasic, M. Canini, and D. Kostic, “Of. cpp:
Consistent packet processing for openflow,” Technical report, EPFL,
Tech. Rep., 2013.

[9] M. Liotine, Mission-critical network planning. Artech House, 2003.
[10] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,

R. Ramanathan, Y. Iwata, H. Inoue, T. Hamaet al., “Onix: A distributed
control platform for large-scale production networks.” inOSDI, 2010.

[11] B. Heller, R. Sherwood, and N. McKeown, “The controllerplacement
problem,” in Proceedings of HotSDN, 2012.

[12] K. Nguyen, Q. T. Minh, and S. Yamada, “A software-definednetworking
approach for disaster-resilient wans,” inProceedings of ICCCN, 2013.

[13] Y. Y. Kagan, “Earthquake size distribution: Power-lawwith exponent 1
2 ?” Tectonophysics, vol. 490, pp. 103–114, 2010.

[14] A. Sen, S. Murthy, and S. Banerjee, “Region-based connectivity - a new
paradigm for design of fault-tolerant networks,” inHPSR, Paris, France,
June 2009.

[15] S. Neumayer, G. Zussman, R. Cohen, and E. Modiano, “Assessing the
impact of geographically correlated network failures,” inIEEE Military
Communications Conference (MILCOM), Nov 2008.

[16] I. I. W. Group, “Inference of shared risk link
groups,” Internet Draft, Nov. 2001. [Online]. Available:
http://tools.ietf.org/html/draft-many-inference-srlg-02

[17] J. Q. Hu, “Diverse routing in optical mesh networks,”IEEE Transactions
on Communications, vol. 51, no. 3, pp. 489–494, March 2003.

[18] P. Datta and A. K. Somani, “Diverse routing for shared risk resource
groups (srrg) failures in wdm optical networks,” inBroadNet. IEEE,
2004, pp. 120–129.

[19] L. Shen, S. Member, X. Yang, S. Member, and B. Ramamurthy,
“Shared risk link group (SRLG)-diverse path provisioning under hybrid
service level agreements in wavelength-routed optical mesh networks,”
in IEEE/ACM Trans. Netw, vol. 13, no. 4, 2005, pp. 918–931.

[20] B. Wu, P.-H. Ho, J. Tapolcai, and P. Babarczi, “Optimal allocation
of monitoring trails for fast SRLG failure localization in all-optical
networks,” in IEEE GLOBECOM 2010, Dec. 2010.

[21] H. Lee, E. Modiano, and K. Lee, “Diverse routing in networks with
probabilistic failures,”IEEE/ACM Transactions on Networking, vol. 18,
no. 6, pp. 1895–1907, Dec. 2010.

[22] P. Psenak, S. Mirtorabi, A. Roy, L. Nguyen, and P. Pillay-Esnault,
“Multi-topology (MT) routing in ospf,” RFC 4915, 2007.

[23] T. Przygienda, “M-ISIS: multi topology (MT) routing inintermediate
system to intermediate systems (IS-ISs),” RFC 5120, 2008.

[24] A. Kvalbein, A. F. Hansen, T.̌Cičic, S. Gjessing, and O. Lysne, “Mul-
tiple routing configurations for fast IP network recovery,”IEEE/ACM
Transactions on Networking (TON), vol. 17, no. 2, pp. 473–486, 2009.

[25] A. Kvalbein, A. F. Hansen, T. Cicic, S. Gjessing, and O. Lysne, “Fast IP
network recovery using multiple routing configurations,” in Proceedings
of INFOCOM, 2006.

[26] D. Staessens, S. Sharma, D. Colle, M. Pickavet, and P. Demeester,
“Software defined networking: Meeting carrier grade requirements,” in
Proceedings of LANMAN, 2011.

[27] S. Sharma, D. Staessens, D. Colle, M. Pickavet, and P. Demeester,
“Openflow: meeting carrier-grade recovery requirements,”Computer
Communications, 2012.

[28] S. Trajanovski, F. A. Kuipers, P. V. Mieghem, A. Ilic, and J. Crowcroft,
“Critical regions and region-disjoint paths in a network,”in IFIP
Networking, May, 22-24 2013.

[29] O. S. Specification, “Version 1.3.3,”Open Networking Foundation, 2012.
[30] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and

S. Shenker, “Nox: towards an operating system for networks,” ACM
SIGCOMM Computer Communication Review, vol. 38, no. 3, pp. 105–
110, 2008.

[31] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid
prototyping for software-defined networks,” inHotnets, 2010.

[32] A. Tirumala, F. Qin, J. Dugan, J. Ferguson, and K. Gibbs,“Iperf: The
TCP/UDP bandwidth measurement tool,”http://dast. nlanr. net/Projects,
2005.

[33] M. Motiwala, M. Elmore, N. Feamster, and S. Vempala, “Path splicing,”
ACM SIGCOMM Computer Communication Review, vol. 38, no. 4, pp.
27–38, 2008.

[34] X. Wang, X. Jiang, C.-T. Nguyen, X. Zhang, and S. Lu, “Fast connection
recovery against region failures with landmark-based source routing,” in
Proceedings of DRCN, 2013.

[35] X. Wang, X. Jiang, and et.al., “Fast connection recovery from multiple
failures with landmark-based source routing,” inDRCN, 2013.

[36] A. Xie, X. Wang, W. Wang, and S. Lu, “Designing a disaster-resilient
network with software defined networking,” inQuality of Service
(IWQoS). IEEE, 2014.

[37] A. Sgambelluri, A. Giorgetti, F. Cugini, F. Paolucci, and P. Castoldi,
“Openflow-based segment protection in ethernet networks,”Optical
Communications and Networking, IEEE/OSA Journal of, vol. 5, no. 9,
pp. 1066–1075, 2013.

[38] S. Kamamura, D. Shimazaki, A. Hiramatsu, and H. Nakazato, “Au-
tonomous ip fast rerouting with compressed backup flow entries using
openflow,”IEICE TRANSACTIONS on Information and Systems, vol. 96,
no. 2, pp. 184–192, 2013.

http://tools.ietf.org/html/draft-many-inference-srlg-02

	I Introduction
	II preliminary
	II-A Network Model
	II-B Failure Model
	II-C Vulnerable Zone of a Path

	III system design
	III-A Overview of System Design
	III-B Review of MRC (Multiple Routing Configurations)
	III-C Backup Topologies Generation Module
	III-C1 Geography based Backup Route Generation
	III-C2 Implementation

	III-D Splicing Module

	IV performance evaluation
	IV-A Simulation Setting
	IV-B Evaluation Results
	IV-B1 Recovery Ratio
	IV-B2 Stretch
	IV-B3 Controller Overhead
	IV-B4 Maximal Load
	IV-B5 Recovery Time

	V Related Work
	VI Conclusion
	References

