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Abstract

Resource discovery enaldes apgications deployed in
heterogeneous large-scale distributed systems to find re-
sources that med their exeation requirements. In particu-
lar, most appi cations neal resourcerequirementsto be sat-
isfied simultaneously for multi ple resources (such as CPU,
memory and retwork bandwidth). Due to the inherent dy-
namismin many large-scale systems caused by factors such
as load variations, network congestion, and churn, pro-
viding statistical guarantees on such resourcerequirements
is important to avoid apgication failures and overheads.
Howeve, existing resourcediscovery techniques either pro-
vide statistical guarantees only for individud resources, or
take a static or memorylessapproach to meding resource
requirements along multi ple dimensions. In this paper, we
present HIDRA, a resource discovery technique providing
statistical guarantees for resource requirements ganring
multiple dimensions smultaneously. Our technique takes
advantage of the multivariate normal distribution for the
probahli stic modeling o resource @pecity over multiple
dimensions. Through andysisof PlanetLabtraces, we show
that HIDRA performs nearly as well as a full y-informed al-
gorithm, showing better predsion and haingreall within
3% of such an dgorithm. We have also deployed HIDRA
on a 307machine PlanetLab testbed, and our live eyeri-
ments on this testbed demonstrate that HIDRAis a feasible,
low-overhead appoach to statistical resource discovery in
a distributed system.

1 Introduction

Recent yeas have seen the increasing use of large-scde
distributed systems such as open Grids [6, 1], distributed
Clouds [5], and pee-to-peea systems [4, 11] for a wide
range of appli cations auch as ientific computing. file shar-
ing and multimedia. Most of these distributed platforms

consist of large number of macdines with heterogeneous
resources, and many of them are dso geographicdly dis-
tributed. Resource discovery [8, 13, 11] is often used in
such systems to find suitable nodes for deploying applica
tioncomporents, or to exeaute spedfic computational tasks.

Most distributed appli cationsrely onmulti pleinterading
resources, such as processng, memory, and retwork band-
width, for their exeaution. For instance, a data-intensive
bioinformatics applicaion [9] might be running multiple
computational tasks on dff erent madhines, ead analyzing
gene sequences. In this enario, ead computational task
needs aufficient CPU capadty and memory for ead indi-
vidual task to run efficiently. If ead noce has enoughCPU
cgpadty but insufficient memory, then the tasks may slow
down considerably due to excessve swapping and dsk ac
ceses. Similarly, a node participating in a pea-to-pee
streaming appli cation would require sufficient downstream
bandwidth to download the required video frames along
with enough biif er space ad CPU capadty for storing and
demding the frames. At the sametime, it shoud also have
sufficient upstream bandwidth to shareits frameswith other
peasin the system. In other words, most applications need
to satisfy multi ple resource requirements to avoid any sin-
gle resource from bemming a bottlened and aff eding the
performanceof the gplicaion.

Many existing resource discovery mechanisms [8, 16,
13] have incorporated the need for multiple resources.
However, many of these mechanismseither satisfy staticdly
defined requirements, such as anode’s physicd CPU band-
width, or total amourt of RAM, or at best, provide infor-
mation abou the recent values aff eding some of these &-
tributes, such as CPU load. However, such static or limited
resource cgadty informationisinsufficient for most large-
scde platforms. Many of these systems have been shown
to exhibit a large degreeof dynamism [14, 12] in terms of
the df ediveresource cgadty they can provide & any given
time. This dynamism is caused by several fadors, such as
varyingloads, network congestion, churn, or varying appli-
caion demands. To take such dynamic resource caadties



into acourt, a recant approach has focused on goviding
statisticd guarantees on meeting resourcerequirements|[2].
However, this approac focuses on individual resource re-
quirements, andisinsufficient for providingstatistica guar-
antees for multi ple resources simultaneously.

In this paper, we present a new technique for statistica
multi -dimensional resourcediscovery cdled HiDRA (High-
Dimensional Resource Allocation). This tedhnique is de-
signed to find nodks with desired resource caadties along
multi ple dimensions, and provide statisticd guarantees on
these cgadties being satisfied over atimeinterval. Anim-
portant asped of this technique is that it can provide such
guarantees on any combination of a number of resources
(e.g., only CPU and memory, or CPU, memory and network
bandwidth, etc.), and further, it provides guarantees for all
the resourcerequirements being satisfied simultaneously. A
key contribution of this work is the novel use of multivari-
ate normal distributions for the probabili stic modeling o
resource cgadty over multiple dimensions. We provide a
heuristic for converting general distributions (observed in
red node data) to this representation, to provide high aca-
ragy for common resource discovery queries. We aonduct
a data analysis of a month-long PlanetLab trace and ou
results show that HIDRA performsnealy aswell asafully-
informed algorithm, showing better predsionand havingre-
cdl within 3% of thisagorithm. We have deployed HiIDRA
on a 307-machine PlanetLab testbed, and ou live experi-
ments onthistestbed demonstrate that HIDRA isafeasible,
low-overhead approach to statisticd multi-dimensiona re-
sourcediscovery in adistributed system.

2 Background & System Model

Resour ce Discovery: Previous sdable gpproaches to re-
source discovery have taken placein a static-configuration
context; that is, seaching for nodes in a wide-areasystem
such that hardware and software configurations med sped-
fied requirements. Sincethese comporents are quite static,
there is no need to update this information onany regu
lar basis and therefore the use of content-addressable net-
works [8] has been used for such matchmaking o applica
tionswith nodesin a distributed and scdable fashion.

The focus of resource discovery techniques upon dy
namic node-level charaderistics (e.g., CPU load, mem-
ory avail able, network bandwidth) shared many simil arities
with the static-configuration approaches. In SWORD [13],
aDHT was used to store load values for several node-level
resource metrics. However, due to scdability concerns and
the inability of DHTSs to store or index distributions, only
one load value per metric per node was maintained. Due
to high variability in distributed systems such as Planet-
Lab [14], such amemorylessapproad is unable to provide
nocde-level resource cgadty guarantees to the goplication.

Recant work has extended SWORD to address data stale-
nessisaues|[3], but the resourcediscovery methodstill | adks
dtatisticd properties.

Resource Bundes [2] introduced statisticd guarantees

for resource discovery for single node-level resource met-
rics. Historicd resource usage measurements were pre-
sented as profilesin the form of histograms. For scdability
in large-scde systems, aggregationwas used in a hierarchi-
cd overlay topdogy wherein nocdes with similar resource
usage profiles were grouped together to form higher-level
representatives. Thisacairately provided statistica guaran-
teesfor resourcediscovery, but only for oneresourcemetric
at atime (e.g. effedive CPU cgpadty avail able).
Other Related Work: Conda [10] used a centralized co-
ordinator approach to finding idle workstations in grid en-
vironments amongmachines under the same administrative
domain. Cluster computing onthe fly [11] is a decentral-
ized cycle-sharing approach to resource discovery in pee-
to-pea environments. This work is dngle-metric, as cy-
cles were the primary resource sougtt after; no ndion o
resource usage profiles were used. Their goal was to find
idle machines nea the edge of the network.

Network Weaher Service [18] uses tournament predic-
tors to acasrately predict trends in resource usage levels.
However, these predictions are limited to the next time in-
stant, and ou focus is on providing longrange statisticd
guarantees.

SDIMS [19] and Astrolabe [17] provide distributed

“control planes’ as a monitoring badkbores for large-scde
distributed services. Such a distributed overlay can be use-
ful for diseminating resource usage informationin a dis-
tributed resourcediscovery framework.
System Model: We assumeour systemisalarge-scde, pos-
sibly wide-areaor planetary-scdesystem. Participant nodes
may be geographicdly distributed and could span multiple
administrative domains. Nodes are ale to monitor their
own resource usages and cgpadties over time. We asuume
the nodes are conreded via some interconredion overlay.
We make no assumptions abou the type of overlay or the
structure thereof; in this paper we focus mainly onthe scd-
ability of data in the system, but not necessarily define a
structure on which the data must be distributed.

3 Statistical Multi-dimensional Resource
Discovery

3.1 Statistical Resource Requirements

Existing multi-dimensional resource discovery tedh-
niques represent resource requirements as a tuple
{[R1,---,Rm], [c1,...,cm]} for m resources, such
that ead resource type R; satisfies a cgadty value c;.
For instance, an applicaion might need a node with



{CPU > 1 GHz, RAM > 1 GB, network b/w > 1 Mbps}.
This requirement can then be spedfied as {[CPU, RAM,
network], [1GHz, 1GB, 1Mbps]}. As discussd in the
previous dion, these cgadty requirements can either
be static values [8] or recent values [13]. However, dueto
dynamic variations in resource availability, for instance,
due to load variations, failures, and competing applica
tions, a statisticd guaranteeis desirable on these resource
reguirements.

Statisticd resource requirements for a single resource
have been defined [2] as atuple {R, ¢, p,t}, where R isa
resourcetype, c refersto a cgadty level, p is a percentile
value, and ¢ is atime duration. This definition impli es that
aresource requirement can be spedfied as a resource type
(e.g., CPU) sdtisfying an effedive @apecity ¢ (e.g., 1 GHz)
for at least p% (e.g., 95%) of a time duration ¢ (e.g., 24
hrs). We extend this definition to incorporate multiple re-
source requirements, by allowing R and ¢ to be vedors
[Ri,...,R,] and [c1, ..., ¢n] for m resources, such that
ead resource type R, satisfies a cgpadty requirement c;,
and dl these requirements are satisfied simultaneously at
least p% of the time!. Thus, for instance, the example
requirement above can be spedfied as {[CPU, RAM, net-
work], [1GHz, 1GB, 1Mbps], 95%}, where eat cgpadty
requirement correspondsto the effedive cgpadty of the cor-
respondng resource, and all these requirements houd be
satisfied simultaneously?.

3.2 Resource Usage Representation

Based onthe above definition o statisticd resourcere-
quirements, the resource discovery process then involves
finding nodes based onthe foll owing criterion: Given are-
quirement { R, ¢, p}, which nodes sttisfy Vi(R; > ¢;) (vec
tor comparison)® at least p% of time. A key issue here is
how to represent the resourceusage information o multiple
resources to enable such a query to be resolved easily. Let
us begin by considering a few possble gproaces, based
onexisting techniques and their extensions.

One posshle gproach would be to use akey-based rep-
resentation as used by several existing DHT-based resource
discovery algorithms [8, 13]. These dgorithms represent
resource cgadty/usage information o individual nodes as
DHT keys, where, eat key incorporatesinformation about
ead resource type & well as its capadty value. How-
ever, while such a representation is eff edive for represent-
ing pants in a multi-dimensional space(e.g., static values

1\We omit the time duration ¢ for clarity of discusson.

2T0 capture the notion o meeing resource requirements for multiple
metrics dmultaneously, we will use the terms multi-dimensiond, multi-
metric, and multi-resource interchangeably in the rest of our paper.

SWe dlow both > and < comparisons, but mention orly one for clarity
of discusson.
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Figure 1. Two time series showing the same
resource usage profiles for individual re-
sources, but with substantially different cor-
relations between the resources.

or recent values), it is not suitable for representing dstribu-
tions or for range queries (as required for statisticd infer-
ence).

Ancther possble gproach could be to apply a statis-
ticd resource discovery technique such as Resource Bun-
dles[2] toindividual metricsandthen to combineindividual
resource-level guaranteesto derive multi-dimensional guar-
antees. For example, if a multi-dimensional requirement is
{[CPU, network], [1 GHz, 10 Mbps], 90%}, then a node
that can sustain 1 GHz efedive CPU capadty for 90% of
thetime aswell as10Mbpseff edive network bandwidth ca
padty for 90% of the time would be expeded to satisfy the
given requirement. However, thisapproach doesnot cgpture
the simultaneous occurrenceof the two requirements, which
dependsonthe aorrelation between the two resourceusages.
Figure 1ill ustrates this time-dependenceof the resourceus-
age behavior of multiple resources. Therefore in order to
derive multi-dimensional resource requirement guarantees
direaly from single-metric guarantees, al i nvolved dimen-
sionswould either need to be completely correlated or com-
pletely independent of ead cther; in pradice neither of
these condti ons occur®.

3.3 Modeling Multiple Dimensions

Based on ou discusson abowe, the questionis how can
we model individual resource profiles acairately while dso
cgpturingtheinter-resource crrelations. In order to achieve
these goals, we have the following key requirements for

4In our study o PlanetLab traces, correlations between CPU and ret-
work b/w metrics have been observed between » = 0.13 andr = 0.96.



Figure 2. MVN combines multiple normal dis-
tributions together with varying p,o param-
eters and correlations between dimensions
in the ¥ matrix. Shown is an example 2-
dimensional requirement plane.

modeling resource cgadty information:

e A compad representation o the resource usage data over
multi ple resourcetypes for ea noce.

e An efficient means for charaderizing the inter-resource
correlations at ead nock.

e A simple way to map the representation to the statistica
requirement for resourcediscovery.

Histogramsor probabilit y distributions can provide com-
pad representations of individual dimensions, and are dso
easy to map to individual statisticd requirements (by find-
ing the correspondng percentile values). However, as
discussed abowve, they lose the time-dependent correlation
among dfferent dimensions. One posshility could be to
maintain histograms for individual dimensions along with
inter-dimension crosscorrelation values. However, as dis-
cussd abowe, there is no straightforward way of combin-
ingindividual histograms with the correlation valuesto de-
termine the correspondng percentil e values aaossmultiple
dimensions (SeeFigure 1).

A statisticd distribution that satisfies the requirements
mentioned abowe is the Multivariate Normal (MVN) Distri-
bution. This distribution is a generalizaion o the normal
distributionto n dimensions. It can be represented as a set
of n normal distributions N (p;,0;), ¢ = 1,...n, ead dis
tribution correspondngto ore dimension, andan n x n co-
variance matrix 3 capturing the correlation amongthe dif-
ferent dimensions. The MVN distribution has the advan-
tage of being a tatisticaly “smooth” approach to finding
the “volume” of an n-dimensional requirement plane. An
exampleof amulti-dimensional plane generated by MVN is
shown in Figure 2. Given desired ranges of values for eat
of then normally distributed variables, and the covariances
between ead of the n variables, we can cdculate the prob-
ability of these ranges co-occurringtogether. An MVN dis-
tribution meds ead of the eove-mentioned requirements
asfollows:

e |t provides a compad representation o individual re-

€— CRITICALREGION \"****
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Figure 3. Constructionof an approximation of

a resource capacity profile (Actual) by a nor-

mal distribution (Normal), by defining the crit-

ical regionbetween points A and B.

sourceusage distributions: ead distribution can essentialy
be represented by two numbers. (u, o), the mean and stan-
dard deviation o the normal distribution.

e The covariancematrix captures the time-dependent corre-
lation between diff erent dimensions.

¢ \We can computethe probabilit y of amulti-dimensional re-
quirement being met by evaluating the parameterized MVN
over the desired ranges along ead of the resource dimen-
sions.

MVN would be asuitable representationto useif the ac
tually observed resource usage distributions could be acai-
rately modeled as MVN distributions. However, we cannd
asaume resource capadti esto be normally distributed®. The
guestion is whether we can somehow exploit the nice prop-
erties of MVN for solving ou problem, while acourting
for the red resourceusage behavior.

3.4 The Critical Region: Normal Approx-
imation of Usage Profiles

To solve the éowve problem, we observe that given a
resource caadty distribution, there is likely to be only a
small region o interest for resourcediscovery purpases. For
example, an application is unlikely to request an effedive
CPU rate of 2 GHz for only 50% of the time. Instead, any
dtatisticd guarantees are likely to lie in a high percentile
range (such as 90-99 percentile). Therefore, sincethe criti-
cal values of the resource cgaadty distribution lie nea the
tail of the distribution, then a fair approximation would be
to fit a normal distribution to more acarately cgpture that
critical region of interest.

Therefore, under the asssumption o such a aiticd region
of interest, we gpproximate aresource usage profile to the
normal distribution. As e in Figure 3, only two pants
in the resource usage profile ae necessary in order to pro-
vide anormal approximation. We define these paintsto be

SFor instance, for PlanetLab data, we foundthat most resource usage
distributions were not normally distributed.



the left and right boundhries of the critical region of there-
sourceusage profile (e.g. 99th and 9Gh percentil es, respec
tively). Note that this normal curve nead na be acarate
for the shape of the distribution ouside the critical region,
but shoud capturethe aiticd regionwith highacarragy. In
additi on, to capture the correlations amongthe diff erent di-
mensions, wesimply usethe covariancematrix for theorigi-
nal distributions. This st of normal distributionsalongead
dimension couped with the covariance matrix provides us
with an MVN representation o the resource usage profiles.

Thequestioniswhether these normal approximationsare
adequate representations of their respedive resource usage
profiles? Furthermore, are the combination o these go-
proximations into the MVN distribution sufficient for ac
curate gproximations of multi-dimensional resource re-
guirements? We show empiricdly in Sedion 4.2 that these
approximations of single-metric resource usage profiles to
normal distributions are, in fad, highly acarate goproxi-
mations for their respedive critical regions. Next, we show
how the MVN model can be used for resourcediscovery.

3.5 Applying MVN to resource discovery

An MVN-based multi-dimensional resource discovery
techniquefor n resourcemetrics, takes asitsinpu an MVN
model of n resource usage profiles in the form of normal
diStribUtiOﬂS/L = (/Ll,,ug, ...,/J,n), o= (0'17 09, ...,Un), and
ann X n covariancematrix X capturingthe correlations be-
tween resources. Also, it accepts arange of desired values
for ead metric. For example: for effedive CPU avail able,
[1.5GHz, c0], andfor observed (node-level) network trans-
misson rates, [—oo, 1 Mbps]. Notice we must use —oo
instead of zero (even for nonregative metrics) due to the
use of normal approximations.

As its output, this resource discovery technique uses the
MVN distribution CDF to compute the probalility that all
of the resource usage variables will f all within their respec
tive given ranges smultaneously. Thus, if the resulting
probability is greaer than or equal to the desired guaran-
teed level of service for the given requirement, then that
noce will be deemed suitable for the gpplication.

At a high level, eat nock in the system would analyze
its own traces to determine the correlation values between
all resourcemetrics, and perform approximationsto the nor-
mal distributionfor all such metrics. In order to represent its
aggregate multi-dimensional resource requirement cgpad-
ties, only the normal distribution parameters (u;, 0;) and
covariance matrix (X) need to be maintained, and propa-
gated to other nodesin the system asrequired (e.g., a central
manager, or neighbasin an owverlay).

4 Evaluation

We next present an evaluation o HiDRA our MVN
distribution-based resource discovery technique. We cary
out thisevaluation usinga data analysis of PlanetL ab traces,
aswell asthroughallive deployment on PlanetLab. As part
of the evaluation, we first validate the acaracy of approxi-
matingindividual resourceusage distributionsusing namal
distributions. Then we evaluate the acairacy of HiDRA for
multi -dimensional resourcediscovery. Finally, we evaluate
the performanceof thistechniquethroughalive deployment
on PlanetLab. We begin by describing ou data analysis
methoddogyfor evaluating resourcediscovery techniques.

4.1 Data Analysis Methodology

We used a month-long PlanetLab trace of 427 nods

ohtained by CoMon [15] from February 2007 for our ex-
periments. This traceprovided resource usage values at 5
minute intervals for various resources for eat noce: CPU,
memory, network bandwidth, etc. In particular, we consid-
ered resource usage metrics auch as effedive CPU (cdcu-
lated from the CPU Burp statistic included in CoMon ckta),
observed network transmisdon rate (NetTx), observed re-
caverate (NetRx)® and 5-minuteload average (5L oadAvg).
We did na consider memory usage, as PlanetLab has a
stringent memory usage poali cy, which renders memory us-
age data uselessfor our purposes.
Emulating Resource Discovery: In order to evaluate re-
sourcediscovery techniquesthrough dita analysis, we emu-
late the resourcediscovery processas foll ows. This process
from the dient-side perspedive begins as a query (spedfy-
ing a requirement), recaves an answer from the resource
discovery algorithm (consisting o a seledion o nodes on
which to deploy), and then ends by evaluating the goodress
of the node seledions, determining which nodes were ac-
ceptable, i.e.,, which nodes sttisfied the requirement over
the lifetime of the deployment.

We exeaute eat resourcediscovery algorithm over a 24
hour traceof data for making its dedsions (for node-level
statisticad guarantees over the next 24 hous), and then eval-
uate the goodressof the seledion by otservingthe resource
usage datafor the seleded nodesfor thefollowing 24 hous.
We perform this evaluation for eat successve day in the
month-longtrace Each baseline dgorithm (described next)
may use dl or part of the 24 hous of data to make its de-
cisons. The MVN distribution-based algorithm (HiDRA)
uses the 24 hous of data to construct single-metric nor-
mal approximationsand crossmetric correlationswhich are
then used for multi-metric gpproximations.

SNote that NetTx and NetRx shoud na be mnfused with network
transmit or receve cagadty.



Evaluation Metrics. The goodressof choice between dif-
ferent resource discovery algorithms can be evaluated in
several ways. Resource discovery algorithms return a set
of nodes to the dient application, indicaing their best ef-
forts at finding the most acairate set of accetable nodes.
We define the following evaluation metrics that take into
acourt the propartion o acceptable nodes—nodesthat ac
tually med the requirements—with resped to the seleced
nodes aswell asthetotal number of nodesin the system.

e Predsion is the propation d nodes sleded that were
adually acceptable. A predsion value of 1 indicates that
every noce seleded bytheresourcediscovery agorithmful-
filled its given requirements. However, predsion byitself is
not enough sinceit could still mean that the dgorithm may
have missed many acceptable nodesin the system.

e Realll is the propation o acceptable nodes that were
chosen by the resource discovery algorithm of those that
existed in the whole system. A low recdl value means that
the dgorithm fails to find many acceptable nodes. How-
ever, one caana consider recdl alone, since atrivia algo-
rithm that seleds every noce in the system will always have
arecdl of 1.

Resour ce Discovery Algorithms: Wewill comparethefol-
lowing resourcediscovery algorithms:

e Memoryless: This algorithm uses the last data point for
ead metric on eat nock to estimate its expeded cgpadty
over the next day. Thisalgorithm emulates resourcediscov-
ery algorithms that use recent resource usage information
to determine the suitability of a node to med a minimum
requirement, and daes not incorporate statistica resource
usage patternsinto its dedasions.

e History: Thisis a centralized algorithm with global his-
toricd knowledge of the entire system. It maintains com-
plete 24-hou traces for ead noce. This provides a base-
line to determine the dfea of data lossdue to approxima-
tion/aggregation onthe acwracy of resourcediscovery.

e Resource Bundles: This algorithm is used for single-
metric resource discovery results only. This uses Resource
Bundes [2] to aggregate the resource usage histograms of
groups of nodes into resource bundes. Note this technique
is able to maintain the overall shape of the single-resource
distributions, whereas the NormA pprox method below sac
rificesall but the aiticd region o the distributions. It must
be noted, however, that the Resource Bundes algorithm
performs aggregation at a more complex group-level gran-
ularity (instead of node-level granularity), suppating more
functionality than merely resourcediscovery. In our experi-
ments, nodesare bunded based on histogram simil arity. For
ead bunde, if itsrepresentativemedsthe desired statistica
requirement, al it s members are considered acceptable.

e HiDRA: This algorithm uses the MVN-based resource
discovery described in the previous dion. Our single-
dimensional version o HiDRA iscaled NormApprox.

4.2 Validating Normal Approximations

In order to justify our modeling o resource usage pro-
filesas normal distributions, we have to show that these gp-
proximations are acairate models. Note that an important
assumption we have is that the main areaof interest for re-
source usage profiles is the critical region. If we asume
that applicaions will i nfrequently ask for percentiles less
than the 90th percentile, then it i s reasonable to choose the
criticd regionendpdntsto be the 90th and 9%h percentil es.

But is this dill acairate for resource discovery require-
ments between the 90th and 9%h percentiles? In Figure 4
we show the acaracgy in terms of predsion and recdl for
95th percentile CPU requirements. NormApprox shows
more predsionthan History itself, simil ar to Resource Bur+
dies. We explain this behavior as the dgorithms being con-
servative aou their choice of nodes; it finds fewer nodes
than History, but is dightly more predse in its choice of
nodes. This most likely is a result of the goproximation
and“smoathing” of the distributions 0 that fewer nodesare
chosen. However, NormApprox hasrecdl nealy ashighas
that of History; ResourceBundeslags behindin thisregard
sincethe acaracy of its aggregation technique depends on
other “similar” node resource usage profiles, whereas our
approximation technique is independent of other noce dis-
tributions.

Thus, NormApprox is a highly acarate means for ap-
proximating nock resource usage profiles using namal ap-
proximations, even thoughthe distributionsthemsel ves may
not entirely be normal. Thisis aufficient since we wish to
model only the most important criticd regions of the distri-
bution. Aswe discussed in Sedion 34, thisnormal approx-
imation is crucia for the MVN approad to work, and we
next show the benefit of thisapproacd for multi-dimensional
resourcediscovery.

4.3 Multi-dimensional resource discovery

We now evaluate HIDRA over multi-dimensional re-
source requirements. In our evaluation d HiDRA, we ask
the following questions:
¢ IsHiDRAaccurate acrossa wide variety of resource met-
rics? We would like to evaluate its performanceon a set of
resourcerequirements, varying o the number and combina-
tion of metrics sleded.
¢ IsHiDRA accurate acrossa wide variety of requirement
percentiles inside the aitical region? Given the require-
ment metric values and criticd region, if we vary the re-
guirement percentil e, we want to seehow acairate HIDRA
isinside the aiticd region, and investigate its acauracy for
percentil es outside of the aitica region.

e How does the «ritical region size impact the accuracy of
HiDRA? As we hold constant the requirement metric val-
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Figure 4. Normal Approximations (NormApprox) compared against baseline resource discovery al-
gorithms along with Resource Bundles. (p = 95" percentile for NormApprox, Cluster and History.)
420 PlanetLab nod e traces from Feb 2007 were used.

ues and the requirement percentil e, we want to investigate
the changes on acaragy as we vary the boundiries of the
criticd region.

4.3.1 Performance Across Different Requirements

In our analysis we used five multi-dimensional re-
source requirements for our evaluations, defined below.

Req | EffCPU NetTx NetRx | 5Load | 15Load
(=MHz) | (SKbpg) | (SKbpy) | (<) (<)
1 500 1000 1000 5.00
2 500 1000 5.00
3 1000 8.00
4 1000 5000
5 300 2000 2000

These requirements were chosen to represent awide va-
riety of appli cationshavingadiff erent multi-metric require-
ments. Also natice that there may be varying amourts of
correlations between various metrics chosen abowe, eg.,
whil e some of these metrics may be highly correlated, (e.g.,
eff edive CPU and the 5-minute Load Average), others may
be largely independent of ead other (e.g., Load Average
and NetTx).

The results of applying these requirements (with p = 95
percentile) can be seen in Figure 5. For ead of the five re-
quirements, HiDRA consistently performsvery closeto the
fully-informed History technique (that uses complete node
traces). The number of accetable nodes chosen between
the History and HiDRA algorithmsis extremely close. As
inthe previousresults, HIDRA seleds dightly fewer noces,
shawingadlightly better predsion bt dlightly worserecadl.

These results show that under awide variety of resource
requirements, also among veried configurations and metrics
chosen under these requirements, HiDRA is a highly ac
curate dgorithm for resource discovery, performing on @r
with afully-informed algorithm.

History-Unacceptable mmmmm
140 - History-Acceptable Exzza
HIDRA-Unacceptable =——=

HIDRA-Acceptable zzz2
120 | Total Actual Acceptable ——1 |

Nodes Chosen

Figure 5. Number of nod es chosen as acce pt-
able nod es for five different requirements un-
der the 95th percentile and critical region of
90-99.

4.3.2 Performance Across Requirement Percentiles

Next, we show HiDRA's performance & we vary the re-
quirement percentil eitself (for Requirement 2 abowe) with a
criticd region of 90-99. Theresults can be seenin Figure 6.
First noticehow both the predsionandrecdl of History de-
cline as the percentil e value increases; this indicaes that it
is more difficult to acairately predict a seledion o nodes
for higher requirement percentiles. The predsionandrecadl
of HIDRA approadhes the goodressof History as the per-
centile gproaches the left boundry of the aiticd region,
the 90th percentile. Thisis happening becaise the modeled
normal distribution more acarrately approximates the ac
tual resourceprofile within the aiticd region, with an exad
overlap at the endpdnts of the aiticd region. Thus, we ex-
ped HiDRA's performanceto foll ow History more dosely
within the aiticd region. In particular, it can be seen by
how the predsion and recdl of History and HiDRA bath
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Figure 6. Varying requirement percentiles
from 75 to 99, for Req 2 and critical region
of 90-99.
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Figure 7. 95th percentile for Req 2, Varying
critical region left bound ary from 75 to 90;
right bound ary is 99.

match exadly at the 90th and 9%h percentile points, the
criticd region boundries. Insidethe aiticd region, the pre-
cision o HiDRA is dightly better than that of History, while
recdl 1 ags dightly behind. Thisindicates that, in the aiti-
cd region, HiDRA tendsto seled dlightly fewer nodes than
History, but its €ledionis dightly more acarate than that
of History. These results show that HIDRA is highly aca-
rate when the requirement percentil efall sinside the aitica
region.

4.3.3 Impact of Critical Region Boundaries

Next, we investigate the sensitivity of HiDRA's perfor-
mancewhen we vary the aitica regionleft boundary under
two different percentile chaices (for Requirement 2 abowe).
Note that the acaracy measuresfor History will not change
asit does not depend onthe «iticd region o HIDRA.

We set the percentil e of the requirement to 95and vary
the left boundry of the aiticd region, keeping its right
boundxry fixed at 99 percentile. The results can be seenin
Figure 7. In this example, the requirement is aways inside
the aiticd region, and the measures of acarracy, both pre-
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Figure 8. 75th percentile for Req 2, Varying
critical region left-bound ary from 75 to 90;
right bound ary is 99.

cisonandrecdl, show signs of improvement as the aiticd
regionis boundtighter to the percentil e, as expeded.

Next we set the percentile to 75and again vary the left
boundxry of the aiticd regionin Figure 8. This time, the
requirement startsontheleft boundary of the aiticd region,
and moves outside of the region as we move the boundiry
of the aiticd region to the right. Not surprisingly, both
predsion and recdl dedine & the aiticd region moves
away from the percentile of interest. However, the devia-
tions from the History algorithm are not too severe (pred-
sion within 11%), showing that even with a misconfigured
criticd region, the results are still fairly acairate.

4.3.4 Selecting TheCritical Region

Our results provide some guiding principles for the choice
of criticd region boundries. First, we observe that tighter
criticd regions surroundng the requirement percentile re-
sult in higher acaragy. Seand, when the requirement per-
centile fall s outside the aiticd region, thereis adropdf in
acaragy.

These two observations highlight a tradeoff concerning
criticd region seledion. If the aiticd regionis too wide,
severa percentiles would likely fal inside the region, but
acaracy would suffer from approximating such a wide re-
gion. On the other hand, if the aiticd regionistoo small,
the acarracy would be highinside the region, but many per-
centiles are likely to fall outside of the aitica region. This
tradeoff suggeststhat the width of the aitica regioncan be
fine-tuned and dyramicadly adapted based onthe frequently
desired percentile values. For instance even if the initia
criticd regionwas chosen as[90-99], if most queriesarefor
95 percentil e requirements, then the aitica region can be
tightened to [95-99]. Similarly, if many percentil es appea
to fall outside the aiticd region, then, it can be expanded
or the range moved to include the desired values.



4.4 Implementation

We deployed our HIDRA algorithm on 307 nods in
PlanetLab. Our primary goal was to validate the results
we saw in ou analysis, throughan online deployment of
HiDRA inared system andalso to measure the overhea of
HiDRA. We chose threesimple multi-dimensional require-
mentsto injed into our implementation:;

Req | ERCPU (> MHZ) | NetTx (< Mbps) | NetRx (< Kbps)
1 500 10 10
2 1000 10 10
3 1500 8 8

Nodes monitored their own resource usage time series
viatheir own accessto their locd CoMon daemon process
We limited our monitoring to the threeresource metrics of
interest: effedive CPU, network transmit bandwidth ob-
served and retwork receve bandwidth observed. From this
time series, the nodes computed their own narmal approxi-
mations to individual metrics and also the mvariance (i.e.,
correlation) matrix. Thisfunctionality wasimplemented us-
ing a Perl script. Then these normal distribution and corre-
lation data were sent to a centralized query manager noce,
which exeauted the HiDRA algorithm using a Fortran im-
plementation of the MVN distribution function [7]. The
critical region was defined between the 90th and 9%h per-
centile values for ead of the resource metrics. Also, the
History and Memorylessalgorithms were enployed in this
system by ead noce sending a historicd traceof its re-
sourceusage. For clarity, werefer to thenode-level resource
profile MVN distribution parameters maintained by HiDRA
as resource descriptors.

In ou resourcediscovery framework, we choseto utili ze
a catralized query manager becaise PlanetLab is a rela
tively small system. Here we placelessfocus on the adual
means of data propagation in the system’, and rather pay
attention to the amourt of data, and provide results on the
datatransfer overhead “ per updete” as a result.

We propagated updates every 10 minutes of the resource
descriptors at ead nock to the centralized query manager.
Note that if the centralized query manager goes offline, its
complete data store of resource descriptors will be com-
pletely replenished within 10 minutes of coming bad on-
line by recaving the usual amount of data from eat noce
every 10 minutes. Also nate that the size of the resourcede-
scriptorsis independent of the size of the tracefrom which
it originated; it i s of fixed size dependent only on hav many
resource dimensions are being measured.

We chose atime window of 24 housfor applicaion de-
ployment which is also used for resource descriptor cor-
struction.  We submitted our query for the three muilti-
resource requirements to the central query manager and

“Forms of propagation (in structured or unstructured systems) include
gosspping and floodng, as well ascommunication in systems that asaime
some super-noce or hierarchicd based overlay such as[19].
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Figure 9. Node selection for three different re-
quirements under the 95th percentile in our
PlanetLab implementation
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Figure 10. Node selection for three different
requirements under the 75th percentileinour

PlanetLab implementation

recaeved resporses from ead of the dgorithms. Then to
evaluate this response of the resourcediscovery algorithms,
we analyzed the future traces of the nodes chaosen for de-
ployment to measure the goodressof choice of nodes for
apseudo-application®. A node dhasen by an algorithm that
satisfied its requirementsis hereby cdl ed “acceptable”, and
anocdethat doesnot satisfy its requirementsis labeled “ un-
accetable” in the evaluationthat foll ows.

Resour ce discovery accuracy: We evaluated our results
over threediff erent percentiles for ead of the three multi-
resource requirements. The results are shown in Figures 9
and 10 As e abowein sedion 43, HIDRA’s Eledion o
nodes shows predsion onpar with (or better than) History
alongead of the threerequirements. Also, HIDRA has a
recdl dightly lower than that of History, which we dso saw
in the previous analysis. Even in the 75th percentile exper-
iment that does nat lie in the aiticd region, the predsion
andrecdl of HiDRA is remarkably close to History, show-
ingagain that HIDRA isrobust to an improperly configured

8PlanetLab has dringent rulesfor network bandwidth and memory con-
sumption that are prohibitive to extensive multi-metric experimentation,
which led usto use apseudo-applicaion, insteal of ared application.



criticd region. Our evaluation d this live implementation
confirms our results in the data analysis ssdion abowe that
HiDRA is a highly acairate means for multi-dimensional
resourcediscovery.

Data overhead: The total size of al 307 resource de-
scriptors at the central node was 70 KB. A fully-informed
history-based algorithm would need abou 99 MB of full
traces from al nodes, which is 1,458times more overhead
than using ou resource descriptors. The memoryless ap-
proach would have adata transfer size of 6 KB per update,
but we have shown it is highly inacairate. Again, note that
our resourcedescriptorsdescribe thewholetrace so wefed
thisisafair comparison, espedally in systems that may use
floodng a gossping o the resource descriptors. An im-
pressve property of HiDRA is its data size independence
from the tracelength. Additionally, we can also be flexible
in haw often we send datain HiDRA because resource us-
age distributions are unlikely to change over the short run,
and hence HiIDRA can send updites lessfrequently than a
history-based or memorylessalgorithm, reducing the net-
work transmisson overhead further.

5 Conclusion

Statisticd resource discovery is criticd for applications
to find suitable resources in dyramic and heterogeneous
large-scdedistributed systems. A key problemisachieving
such dtatisticd resource discovery for multiple resources
simultaneously. In this paper, we presented HiDRA, a
multi-dimensional resource discovery algorithm that em-
ploys multivariate normal distribution for the probabili stic
modeling o resource cgadty over multiple dimensions.
Our PlanetLab tracebased analysis showed that HiDRA
performs nealy as well as the fully-informed History tech-
nique (with better predsion than History and recdl within
3% of History). SinceHiDRA has such a ciompad represen-
tation df node behavior on multi ple metrics Smultaneoudly,
it beaomes avery attradive solutionfor large-scde systems
that need a scdable resource discovery medchanism. Also,
HiDRA provides datistica guarantees to applications that
allow deployments to be more stable and reliable, not sub-
jea to frequent failures or migration scenarios. Our live
implementation in the PlanetL ab testbed shows our system
to be afeasible, low-overhead methodin finding acceptable
nodesfor applicaions.
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