
HiDRA: Statistical Multi-dimensional Resource Discovery for Large-scale Systems

Technical Report

Department of Computer Science

and Engineering

University of Minnesota

4-192 EECS Building

200 Union Street SE

Minneapolis, MN 55455-0159 USA

TR 08-043

HiDRA: Statistical Multi-dimensional Resource Discovery for

Large-scale Systems

Michael Cardosa and Abhishek Chandra

December 05, 2008

HiDRA: Statistical Multi-dimensional Resource Discovery
for Large-scale Systems

Michael Cardosa and Abhishek Chandra
Department of Computer Science and Engineering
University of Minnesota, Minneapolis, MN 55455

{cardosa, chandra}@cs.umn.edu

Abstract

Resource discovery enables applications deployed in
heterogeneous large-scale distributed systems to find re-
sources that meet their execution requirements. In particu-
lar, most applicationsneed resourcerequirementsto besat-
isfied simultaneously for multiple resources (such as CPU,
memory and network bandwidth). Due to the inherent dy-
namismin many large-scalesystemscaused by factors such
as load variations, network congestion, and churn, pro-
vidingstatistical guaranteesonsuch resourcerequirements
is important to avoid application failures and overheads.
However, existingresourcediscovery techniqueseither pro-
vide statistical guaranteesonly for individual resources, or
take a static or memorylessapproach to meeting resource
requirements alongmultiple dimensions. In this paper, we
present HiDRA, a resource discovery technique providing
statistical guarantees for resource requirements spanning
multiple dimensions simultaneously. Our technique takes
advantage of the multivariate normal distribution for the
probabili stic modeling of resource capacity over multiple
dimensions. Through analysisof PlanetLabtraces, weshow
that HiDRAperformsnearly aswell asa fully-informed al-
gorithm, showing better precision and having recall within
3% of such an algorithm. We have also deployed HiDRA
on a 307-machine PlanetLab testbed, and our live experi-
mentson this testbed demonstratethat HiDRAisa feasible,
low-overhead approach to statistical resourcediscovery in
a distributed system.

1 Introduction

Recent years have seen the increasing use of large-scale
distributed systems such as open Grids [6, 1], distributed
Clouds [5], and peer-to-peer systems [4, 11] for a wide
rangeof applications such as scientific computing. fileshar-
ing and multimedia. Most of these distributed platforms

consist of large number of machines with heterogeneous
resources, and many of them are also geographically dis-
tributed. Resource discovery [8, 13, 11] is often used in
such systems to find suitable nodes for deploying applica-
tioncomponents, or to executespecific computational tasks.

Most distributedapplicationsrely onmultipleinteracting
resources, such as processing, memory, and network band-
width, for their execution. For instance, a data-intensive
bioinformatics application [9] might be running multiple
computational tasks on different machines, each analyzing
gene sequences. In this scenario, each computational task
needs sufficient CPU capacity and memory for each indi-
vidual task to runefficiently. If each nodehasenoughCPU
capacity but insufficient memory, then the tasks may slow
down considerably due to excessive swapping and disk ac-
cesses. Similarly, a node participating in a peer-to-peer
streaming application would require sufficient downstream
bandwidth to download the required video frames along
with enough buffer space andCPU capacity for storingand
decoding the frames. At the same time, it should also have
sufficient upstream bandwidth to shareitsframeswith other
peers in thesystem. In other words, most applicationsneed
to satisfy multiple resourcerequirements to avoid any sin-
gle resource from becoming a bottleneck and affecting the
performanceof the application.

Many existing resource discovery mechanisms [8, 16,
13] have incorporated the need for multiple resources.
However, many of thesemechanismseither satisfy statically
defined requirements, such asa node’sphysical CPU band-
width, or total amount of RAM, or at best, provide infor-
mation about the recent values affecting some of these at-
tributes, such as CPU load. However, such static or limited
resource capacity informationis insufficient for most large-
scale platforms. Many of these systems have been shown
to exhibit a large degreeof dynamism [14, 12] in terms of
the effectiveresource capacity they can provide at any given
time. This dynamism is caused by several factors, such as
varying loads, network congestion, churn, or varyingappli -
cation demands. To take such dynamic resource capacities

into account, a recent approach has focused on providing
statistical guaranteesonmeetingresourcerequirements[2].
However, this approach focuses on individual resource re-
quirements, andis insufficient for providingstatistical guar-
antees for multiple resourcessimultaneously.

In this paper, we present a new technique for statistical
multi -dimensional resourcediscovery called HiDRA (High-
Dimensional Resource Allocation). This technique is de-
signed to find nodes with desired resource capacities along
multiple dimensions, and provide statistical guarantees on
these capacitiesbeingsatisfied over a time interval. An im-
portant aspect of this technique is that it can provide such
guarantees on any combination of a number of resources
(e.g., only CPU andmemory, or CPU, memory and network
bandwidth, etc.), and further, it provides guarantees for all
theresourcerequirementsbeingsatisfied simultaneously. A
key contribution of this work is the novel use of multivari-
ate normal distributions for the probabili stic modeling of
resource capacity over multiple dimensions. We provide a
heuristic for converting general distributions (observed in
real nodedata) to this representation, to providehigh accu-
racy for common resourcediscovery queries. We conduct
a data analysis of a month-long PlanetLab trace, and our
results show that HiDRA performsnearly aswell asafully-
informedalgorithm, showing better precisionand havingre-
call within 3% of thisalgorithm. WehavedeployedHiDRA
on a 307-machine PlanetLab testbed, and our live experi-
mentsonthis testbed demonstratethat HiDRA isafeasible,
low-overhead approach to statistical multi -dimensional re-
sourcediscovery in a distributed system.

2 Background & System Model

Resource Discovery: Previous scalable approaches to re-
sourcediscovery have taken placein a static-configuration
context; that is, searching for nodes in a wide-areasystem
such that hardware andsoftware configurationsmeet speci-
fied requirements. Sincethese componentsare quite static,
there is no need to update this information on any regu-
lar basis and therefore the use of content-addressable net-
works [8] has been used for such matchmaking of applica-
tionswith nodes in a distributed andscalable fashion.

The focus of resource discovery techniques upon dy-
namic node-level characteristics (e.g., CPU load, mem-
ory available, network bandwidth) shared many similarities
with the static-configurationapproaches. In SWORD [13],
a DHT was used to store load values for several node-level
resourcemetrics. However, due to scalabilit y concernsand
the inabilit y of DHTs to store or index distributions, only
one load value per metric per node was maintained. Due
to high variabilit y in distributed systems such as Planet-
Lab [14], such a memorylessapproach isunable to provide
node-level resource capacity guarantees to the application.

Recent work has extended SWORD to addressdata stale-
nessissues[3], but theresourcediscovery methodstill l acks
statistical properties.

Resource Bundles [2] introduced statistical guarantees
for resource discovery for single node-level resource met-
rics. Historical resource usage measurements were pre-
sented asprofiles in the form of histograms. For scalabilit y
in large-scalesystems, aggregationwasused in a hierarchi-
cal overlay topology wherein nodes with similar resource
usage profiles were grouped together to form higher-level
representatives. Thisaccurately provided statistical guaran-
teesfor resourcediscovery, but only for oneresourcemetric
at a time (e.g. effectiveCPU capacity available).
Other Related Work: Condor [10] used a centralized co-
ordinator approach to finding idle workstations in grid en-
vironmentsamongmachinesunder thesame administrative
domain. Cluster computing onthe fly [11] is a decentral-
ized cycle-sharing approach to resourcediscovery in peer-
to-peer environments. This work is single-metric, as cy-
cles were the primary resource sought after; no notion of
resource usage profiles were used. Their goal was to find
idlemachinesnear the edgeof thenetwork.

Network Weather Service [18] uses tournament predic-
tors to accurately predict trends in resource usage levels.
However, these predictions are limited to the next time in-
stant, and our focus is on providing long-range statistical
guarantees.

SDIMS [19] and Astrolabe [17] provide distributed
“control planes” as a monitoring backbones for large-scale
distributed services. Such a distributed overlay can be use-
ful for disseminating resource usage information in a dis-
tributed resourcediscovery framework.
System Model: We assumeour system isalarge-scale, pos-
sibly wide-areaor planetary-scalesystem. Participant nodes
may be geographically distributed and could span multiple
administrative domains. Nodes are able to monitor their
own resourceusages and capacities over time. We assume
the nodes are connected via some interconnection overlay.
We make no assumptions about the type of overlay or the
structure thereof; in thispaper we focusmainly on thescal-
abilit y of data in the system, but not necessarily define a
structureonwhich thedatamust bedistributed.

3 Statistical Multi-dimensional Resource
Discovery

3.1 Statistical Resource Requirements

Existing multi -dimensional resource discovery tech-
niques represent resource requirements as a tuple
{[R1, . . . , Rm], [c1, . . . , cm]} for m resources, such
that each resource type Ri satisfies a capacity value ci.
For instance, an application might need a node with

{CPU ≥ 1 GHz, RAM ≥ 1 GB, network b/w ≥ 1 Mbps}.
This requirement can then be specified as {[CPU, RAM,
network], [1GHz, 1GB, 1Mbps]}. As discussed in the
previous section, these capacity requirements can either
be static values [8] or recent values [13]. However, due to
dynamic variations in resource availabilit y, for instance,
due to load variations, failures, and competing applica-
tions, a statistical guaranteeis desirable on these resource
requirements.

Statistical resource requirements for a single resource
have been defined [2] as a tuple {R, c, p, t}, where R is a
resourcetype, c refers to a capacity level, p is a percentile
value, and t is a time duration. This definition implies that
a resourcerequirement can be specified as a resourcetype
(e.g., CPU) satisfying an effective capacity c (e.g., 1 GHz)
for at least p% (e.g., 95%) of a time duration t (e.g., 24
hrs). We extend this definition to incorporate multiple re-
source requirements, by allowing R and c to be vectors
[R1, . . . , Rm] and [c1, . . . , cm] for m resources, such that
each resource type Ri satisfies a capacity requirement ci,
and all these requirements are satisfied simultaneously at
least p% of the time1. Thus, for instance, the example
requirement above can be specified as {[CPU, RAM, net-
work], [1GHz, 1GB, 1Mbps], 95%}, where each capacity
requirement correspondsto theeffectivecapacity of the cor-
responding resource, and all these requirements should be
satisfied simultaneously2.

3.2 Resource Usage Representation

Based on the above definition of statistical resourcere-
quirements, the resource discovery process then involves
finding nodesbased onthe following criterion: Given a re-
quirement {R, c, p}, which nodes satisfy ∀i(Ri ≥ ci) (vec-
tor comparison)3 at least p% of time. A key issue here is
how to represent theresourceusageinformation of multiple
resources to enable such a query to be resolved easily. Let
us begin by considering a few possible approaches, based
onexisting techniquesandtheir extensions.

One possible approach would be to use akey-based rep-
resentationasused byseveral existingDHT-based resource
discovery algorithms [8, 13]. These algorithms represent
resource capacity/usage information of individual nodes as
DHT keys, where, each key incorporatesinformationabout
each resource type as well as its capacity value. How-
ever, while such a representation is effective for represent-
ing points in a multi -dimensional space(e.g., static values

1Weomit the time duration t for clarity of discussion.
2To capture the notion of meeting resource requirements for multiple

metrics simultaneously, we will use the terms multi -dimensional, multi -
metric, and multi -resource interchangeably in the rest of our paper.

3We allow both≥ and≤ comparisons, but mention only onefor clarity
of discussion.

(a) Negative correlation between CPU andNetwork usages

(b) Positive correlation between CPU andNetwork usages

Figure 1. Two time series showing the same
resource usage profi les for ind ividual re-
sources, but with substantially different cor-
relations between the resources.

or recent values), it isnot suitable for representing distribu-
tions or for range queries (as required for statistical infer-
ence).

Another possible approach could be to apply a statis-
tical resource discovery technique such as Resource Bun-
dles[2] to individual metricsandthen to combineindividual
resource-level guaranteesto derivemulti -dimensional guar-
antees. For example, if a multi -dimensional requirement is
{[CPU, network], [1 GHz, 10 Mbps], 90%}, then a node
that can sustain 1 GHz effective CPU capacity for 90% of
thetime aswell as10Mbpseffectivenetwork bandwidthca-
pacity for 90% of the time would be expected to satisfy the
givenrequirement. However, thisapproach doesnot capture
thesimultaneousoccurrenceof thetworequirements, which
dependsonthe correlation betweenthetworesourceusages.
Figure1 ill ustratesthis time-dependenceof theresourceus-
age behavior of multiple resources. Therefore in order to
derive multi -dimensional resource requirement guarantees
directly from single-metric guarantees, all i nvolved dimen-
sionswould either need to be completely correlated or com-
pletely independent of each other; in practice, neither of
these conditionsoccur4.

3.3 Modeling Multiple Dimensions

Based on our discussion above, the question is how can
wemodel individual resourceprofilesaccurately while also
capturingtheinter-resource correlations. In order to achieve
these goals, we have the following key requirements for

4In our study of PlanetLab traces, correlations between CPU and net-
work b/w metrics havebeen observed between r = 0.13 andr = 0.96.

−1

0

1

2

3

−3

−2

−1

0

1
0

0.2

0.4

0.6

0.8

1

Figure 2. MVN combines multiple normal dis-
tributions together with varying µ, σ param-
eters and correlations between dimensions
in the Σ matrix. Shown is an example 2-
dimensional requirement plane.

modelingresource capacity information:
• A compact representation of the resourceusage dataover
multiple resourcetypes for each node.
• An efficient means for characterizing the inter-resource
correlationsat each node.
• A simple way to map the representation to the statistical
requirement for resourcediscovery.

Histogramsor probabilit y distributionscan provide com-
pact representations of individual dimensions, and are also
easy to map to individual statistical requirements (by find-
ing the corresponding percentile values). However, as
discussed above, they lose the time-dependent correlation
among different dimensions. One possibilit y could be to
maintain histograms for individual dimensions along with
inter-dimension cross-correlation values. However, as dis-
cussed above, there is no straightforward way of combin-
ing individual histogramswith the correlation values to de-
terminethe corresponding percentilevaluesacrossmultiple
dimensions(SeeFigure1).

A statistical distribution that satisfies the requirements
mentioned aboveis theMultivariateNormal (MVN) Distri-
bution. This distribution is a generalization of the normal
distribution to n dimensions. It can be represented as a set
of n normal distributionsN(µi, σi), i = 1, . . . n, each dis-
tributioncorrespondingto onedimension, andan n× n co-
variancematrix Σ capturing the correlation amongthe dif-
ferent dimensions. The MVN distribution has the advan-
tage of being a statistically “smooth” approach to finding
the “volume” of an n-dimensional requirement plane. An
exampleof amulti -dimensional planegenerated byMVN is
shown in Figure2. Given desired rangesof values for each
of then normally distributed variables, and the covariances
between each of then variables, we can calculate the prob-
abilit y of these rangesco-occurringtogether. An MVN dis-
tribution meets each of the above-mentioned requirements
as follows:
• It provides a compact representation of individual re-

Figure 3. Construction o f an approximation o f
a resource capacity profi le (Actual) by a nor-
mal distribution (Normal), by defin ing the crit-
ical region between po ints A and B.

sourceusagedistributions: each distributioncan essentially
be represented by two numbers: (µ, σ), the mean and stan-
dard deviation of thenormal distribution.
• The covariancematrix capturesthetime-dependent corre-
lation between different dimensions.
•We cancomputetheprobabilit y of amulti -dimensional re-
quirement beingmet by evaluatingtheparameterized MVN
over the desired ranges along each of the resourcedimen-
sions.

MVN would be asuitablerepresentationto use if the ac-
tually observed resourceusage distributionscould be accu-
rately modeled as MVN distributions. However, we cannot
assumeresource capacitiesto benormally distributed5. The
question iswhether we can somehow exploit the niceprop-
erties of MVN for solving our problem, while accounting
for the real resourceusagebehavior.

3.4 The Critical Region: Normal Approx-
imation of Usage Profiles

To solve the above problem, we observe that given a
resource capacity distribution, there is likely to be only a
small region of interest for resourcediscovery purposes. For
example, an application is unlikely to request an effective
CPU rate of 2 GHz for only 50% of the time. Instead, any
statistical guarantees are likely to lie in a high percentile
range(such as 90-99 percentile). Therefore, sincethe criti -
cal values of the resource capacity distribution lie near the
tail of the distribution, then a fair approximation would be
to fit a normal distribution to more accurately capture that
critical regionof interest.

Therefore, under the assumption of such a critical region
of interest, we approximate aresourceusage profile to the
normal distribution. As seen in Figure 3, only two points
in the resourceusage profile are necessary in order to pro-
vide anormal approximation. We define these points to be

5For instance, for PlanetLab data, we foundthat most resource usage
distributions were not normally distributed.

the left and right boundariesof the critical regionof the re-
sourceusageprofile(e.g. 99th and 90th percentiles, respec-
tively). Note that this normal curve need not be accurate
for the shape of the distribution outside the critical region,
but should capturethe critical regionwith highaccuracy. In
addition, to capture the correlationsamongthe different di-
mensions, wesimply usethe covariancematrix for theorigi-
nal distributions. This set of normal distributionsalongeach
dimension coupled with the covariancematrix provides us
with an MVN representation of the resourceusageprofiles.

Thequestioniswhether thesenormal approximationsare
adequate representations of their respective resourceusage
profiles? Furthermore, are the combination of these ap-
proximations into the MVN distribution sufficient for ac-
curate approximations of multi -dimensional resource re-
quirements? We show empirically in Section 4.2 that these
approximations of single-metric resourceusage profiles to
normal distributions are, in fact, highly accurate approxi-
mationsfor their respectivecritical regions. Next, weshow
how theMVN model can beused for resourcediscovery.

3.5 Applying MVN to resource discovery

An MVN-based multi -dimensional resource discovery
techniquefor n resourcemetrics, takesas its input an MVN
model of n resource usage profiles in the form of normal
distributionsµ = (µ1, µ2, ..., µn), σ = (σ1, σ2, ..., σn), and
an n×n covariancematrix Σ capturingthe correlationsbe-
tween resources. Also, it accepts a range of desired values
for each metric. For example: for effective CPU available,
[1.5 GHz,∞], andfor observed (node-level) network trans-
mission rates, [−∞, 1 Mbps]. Notice we must use −∞
instead of zero (even for nonnegative metrics) due to the
useof normal approximations.

As its output, this resourcediscovery techniqueuses the
MVN distribution CDF to compute the probabilit y that all
of theresourceusage variableswill f all within their respec-
tive given ranges simultaneously. Thus, if the resulting
probabilit y is greater than or equal to the desired guaran-
teed level of service for the given requirement, then that
nodewill bedeemed suitable for the application.

At a high level, each node in the system would analyze
its own traces to determine the correlation values between
all resourcemetrics, and performapproximationsto thenor-
mal distributionfor all such metrics. In order to represent its
aggregate multi -dimensional resource requirement capaci-
ties, only the normal distribution parameters (µi, σi) and
covariance matrix (Σ) need to be maintained, and propa-
gated to other nodesin thesystem asrequired (e.g., a central
manager, or neighborsin an overlay).

4 Evaluation

We next present an evaluation of HiDRA: our MVN
distribution-based resourcediscovery technique. We carry
out thisevaluation usingadata analysisof PlanetLab traces,
as well as througha livedeployment on PlanetLab. As part
of the evaluation, we first validate the accuracy of approxi-
matingindividual resourceusagedistributionsusing normal
distributions. Then we evaluate the accuracy of HiDRA for
multi -dimensional resourcediscovery. Finally, we evaluate
theperformanceof thistechniquethroughalivedeployment
on PlanetLab. We begin by describing our data analysis
methodologyfor evaluatingresourcediscovery techniques.

4.1 Data Analysis Methodology

We used a month-long PlanetLab trace of 427 nodes
obtained by CoMon [15] from February 2007for our ex-
periments. This traceprovided resourceusage values at 5
minute intervals for various resources for each node: CPU,
memory, network bandwidth, etc. In particular, we consid-
ered resourceusage metrics such as effective CPU (calcu-
lated from theCPU Burp statistic included in CoMon data),
observed network transmission rate (NetTx), observed re-
ceiverate(NetRx)6 and 5-minuteload average(5LoadAvg).
We did not consider memory usage, as PlanetLab has a
stringent memory usage policy, which renders memory us-
agedatauselessfor our purposes.
Emulating Resource Discovery: In order to evaluate re-
sourcediscovery techniquesthrough data analysis, we emu-
late the resourcediscovery processas follows. Thisprocess
from the client-side perspectivebeginsas a query (specify-
ing a requirement), receives an answer from the resource
discovery algorithm (consisting of a selection of nodes on
which to deploy), and then endsby evaluatingthegoodness
of the node selections, determining which nodes were ac-
ceptable, i.e., which nodes satisfied the requirement over
the li fetimeof thedeployment.

We execute each resourcediscovery algorithm over a 24
hour traceof data for making its decisions (for node-level
statistical guaranteesover thenext 24 hours), andthen eval-
uatethegoodnessof theselection by observingtheresource
usagedatafor theselected nodesfor thefollowing 24 hours.
We perform this evaluation for each successive day in the
month-longtrace. Each baseline algorithm (described next)
may use all or part of the 24 hours of data to make its de-
cisions. The MVN distribution-based algorithm (HiDRA)
uses the 24 hours of data to construct single-metric nor-
mal approximationsandcross-metric correlationswhich are
then used for multi -metric approximations.

6Note that NetTx and NetRx should not be confused with network
transmit or receive capacity.

Evaluation Metrics: The goodnessof choicebetween dif-
ferent resource discovery algorithms can be evaluated in
several ways. Resource discovery algorithms return a set
of nodes to the client application, indicating their best ef-
forts at finding the most accurate set of acceptable nodes.
We define the following evaluation metrics that take into
account theproportion of acceptablenodes—nodesthat ac-
tually meet the requirements—with respect to the selected
nodesaswell as the total number of nodes in thesystem.
• Precision is the proportion of nodes selected that were
actually acceptable. A precision value of 1 indicates that
every nodeselected bytheresourcediscovery algorithmful-
filled itsgiven requirements. However, precision byitself is
not enough, sinceit could still mean that the algorithm may
havemissed many acceptablenodes in the system.
• Recall is the proportion of acceptable nodes that were
chosen by the resource discovery algorithm of those that
existed in the whole system. A low recall value means that
the algorithm fails to find many acceptable nodes. How-
ever, one cannot consider recall alone, since atrivial algo-
rithm that selectsevery nodein thesystem will alwayshave
arecall of 1.
Resource Discovery Algorithms: Wewill comparethefol-
lowingresourcediscovery algorithms:
• Memoryless: This algorithm uses the last data point for
each metric on each node to estimate its expected capacity
over thenext day. Thisalgorithm emulatesresourcediscov-
ery algorithms that use recent resource usage information
to determine the suitabilit y of a node to meet a minimum
requirement, and does not incorporate statistical resource
usagepatterns into itsdecisions.
• History: This is a centralized algorithm with global his-
torical knowledge of the entire system. It maintains com-
plete 24-hour traces for each node. This provides a base-
line to determine the effect of data lossdue to approxima-
tion/aggregation onthe accuracy of resourcediscovery.
• Resource Bundles: This algorithm is used for single-
metric resourcediscovery results only. This uses Resource
Bundles [2] to aggregate the resourceusage histograms of
groupsof nodes into resourcebundles. Note this technique
is able to maintain the overall shape of the single-resource
distributions, whereas the NormApprox method below sac-
rificesall but the critical region of thedistributions. It must
be noted, however, that the Resource Bundles algorithm
performs aggregation at a more complex group-level gran-
ularity (instead of node-level granularity), supportingmore
functionality than merely resourcediscovery. In our experi-
ments, nodesarebundled based on histogramsimilarity. For
each bundle, if itsrepresentativemeetsthedesiredstatistical
requirement, all it smembersare considered acceptable.
• HiDRA: This algorithm uses the MVN-based resource
discovery described in the previous section. Our single-
dimensional version of HiDRA iscalled NormApprox.

4.2 Validating Normal Approximations

In order to justify our modeling of resource usage pro-
filesasnormal distributions, wehaveto show that these ap-
proximations are accurate models. Note that an important
assumption we have is that the main areaof interest for re-
source usage profiles is the critical region. If we assume
that applications will i nfrequently ask for percentiles less
than the 90th percentile, then it is reasonable to choose the
critical regionendpointsto bethe90th and 99th percentiles.

But is this still accurate for resourcediscovery require-
ments between the 90th and 99th percentiles? In Figure 4
we show the accuracy in terms of precision and recall for
95th percentile CPU requirements. NormApprox shows
moreprecisionthan History itself, similar to ResourceBun-
dles. We explain thisbehavior as the algorithmsbeingcon-
servative about their choice of nodes; it finds fewer nodes
than History, but is slightly more precise in its choice of
nodes. This most likely is a result of the approximation
and“smoothing” of thedistributions so that fewer nodesare
chosen. However, NormApprox hasrecall nearly ashighas
that of History; ResourceBundleslagsbehindin thisregard
sincethe accuracy of its aggregation technique depends on
other “similar” node resource usage profiles, whereas our
approximation technique is independent of other node dis-
tributions.

Thus, NormApprox is a highly accurate means for ap-
proximating node resourceusage profiles using normal ap-
proximations, even thoughthedistributionsthemselvesmay
not entirely be normal. This is sufficient sincewe wish to
model only themost important critical regionsof thedistri-
bution. Aswediscussed in Section 3.4, thisnormal approx-
imation is crucial for the MVN approach to work, and we
next show thebenefit of thisapproachfor multi -dimensional
resourcediscovery.

4.3 Multi-dimensional resource discovery

We now evaluate HiDRA over multi -dimensional re-
sourcerequirements. In our evaluation of HiDRA, we ask
the following questions:
• IsHiDRAaccurateacrossa wide variety of resourcemet-
rics? We would like to evaluate its performanceon a set of
resourcerequirements, varying of thenumber andcombina-
tion of metrics selected.
• Is HiDRAaccurate acrossa wide variety of requirement
percentiles inside the critical region? Given the require-
ment metric values and critical region, if we vary the re-
quirement percentile, we want to seehow accurate HiDRA
is inside the critical region, and investigate its accuracy for
percentilesoutsideof the critical region.
• How does the critical region size impact the accuracy of
HiDRA? As we hold constant the requirement metric val-

 1

 0.9

 0.8

 0.7

 0.6

 0.5

 0.4

 0.3

 0.2

 0.1

MeanCPU1020 MHz680 MHz340 MHz

P
re

ci
si

on

CPU Capacity Requirement

Memoryless
History

NormApprox
ResourceBundles

(a) Precision

 1

 0.9

 0.8

 0.7

 0.6

 0.5

 0.4

 0.3

 0.2

 0.1

MeanCPU1020 MHz680 MHz340 MHz

R
ec

al
l

CPU Capacity Requirement

Memoryless
History

NormApprox
ResourceBundles

(b) Recall

Figure 4. Normal Approximations (NormApprox) compared against baseline resource discovery al-
gorithms along with Resource Bund les. (p = 95th percentile for NormApprox, Cluster and History.)
420 PlanetLab nod e traces from Feb 2007 were used.

ues and the requirement percentile, we want to investigate
the changes on accuracy as we vary the boundaries of the
critical region.

4.3.1 Performance Across Different Requirements

In our analysis we used five multi -dimensional re-
source requirements for our evaluations, defined below.

Req EffCPU NetTx NetRx 5Load 15Load
(≥ MHz) (≤ Kbps) (≤ Kbps) (≤) (≤)

1 500 1000 1000 5.00
2 500 1000 5.00
3 1000 8.00
4 1000 5000
5 300 2000 2000
These requirementswere chosen to represent a wide va-

riety of applicationshavingadifferent multi -metric require-
ments. Also notice that there may be varying amounts of
correlations between various metrics chosen above, e.g.,
whilesomeof thesemetricsmay behighly correlated, (e.g.,
effectiveCPU andthe5-minuteLoad Average), othersmay
be largely independent of each other (e.g., Load Average
andNetTx).

The results of applying these requirements (with p = 95
percentile) can be seen in Figure 5. For each of the five re-
quirements, HiDRA consistently performsvery close to the
fully-informed History technique (that uses complete node
traces). The number of acceptable nodes chosen between
the History and HiDRA algorithms is extremely close. As
in thepreviousresults, HiDRA selects slightly fewer nodes,
showingaslightly better precision but slightly worserecall .

These results show that under a widevariety of resource
requirements, also among varied configurationsandmetrics
chosen under these requirements, HiDRA is a highly ac-
curate algorithm for resourcediscovery, performing on par
with a fully-informed algorithm.

 0

 20

 40

 60

 80

 100

 120

 140

Req 5Req 4Req3Req 2Req 1

N
od

es
 C

ho
se

n

Requirement

History-Unacceptable
History-Acceptable

HIDRA-Unacceptable
HIDRA-Acceptable

Total Actual Acceptable

Figure 5. Number of nod es chosen as acce pt-
able nod es for five different requirements un-
der the 95th percentile and critical region o f
90-99.

4.3.2 Performance Across Requirement Percentiles

Next, we show HiDRA’s performance as we vary the re-
quirement percentileitself (for Requirement 2 above) with a
critical region of 90-99. Theresultscan beseen in Figure6.
First noticehow both theprecisionandrecall of History de-
cline as the percentile value increases; this indicates that it
is more difficult to accurately predict a selection of nodes
for higher requirement percentiles. Theprecisionandrecall
of HiDRA approaches the goodnessof History as the per-
centile approaches the left boundary of the critical region,
the90th percentile. This ishappening becausethe modeled
normal distribution more accurately approximates the ac-
tual resourceprofilewithin the critical region, with an exact
overlap at the endpointsof the critical region. Thus, we ex-
pect HiDRA’s performanceto follow History more closely
within the critical region. In particular, it can be seen by
how the precision and recall of History and HiDRA both

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 75 80 85 90 95 100

A
cc

ur
ac

y

Percentile

History-Precision
HiDRA-Precision

History-Recall
HiDRA-Recall

Figure 6. Varying requirement percentiles
from 75 to 99, for Req 2 and critical region
of 90-99.

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 74 76 78 80 82 84 86 88 90

A
cc

ur
ac

y

Left Boundary to Critical Region (in percentile)

History-Precision
HiDRA-Precision

History-Recall
HiDRA-Recall

Figure 7. 95th percentile for Req 2, Varying
critical region left bound ary from 75 to 90;
right bound ary is 99.

match exactly at the 90th and 99th percentile points, the
critical region boundaries. Insidethe critical region, thepre-
cision of HiDRA is slightly better than that of History, while
recall l ags slightly behind. This indicates that, in the criti -
cal region, HiDRA tendsto select slightly fewer nodesthan
History, but its selection is slightly more accurate than that
of History. These results show that HiDRA is highly accu-
ratewhen the requirement percentile falls inside the critical
region.

4.3.3 Impact of Critical Region Boundaries

Next, we investigate the sensitivity of HiDRA’s perfor-
mancewhen wevary the critical regionleft boundary under
two different percentile choices (for Requirement 2 above).
Notethat the accuracy measuresfor History will not change
as it doesnot depend onthe critical region of HiDRA.

We set the percentile of the requirement to 95and vary
the left boundary of the critical region, keeping its right
boundary fixed at 99 percentile. The results can be seen in
Figure 7. In this example, the requirement is always inside
the critical region, and the measures of accuracy, both pre-

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 74 76 78 80 82 84 86 88 90

A
cc

ur
ac

y

Left Boundary to Critical Region (in percentile)

History-Precision
HiDRA-Precision

History-Recall
HiDRA-Recall

Figure 8. 75th percentile for Req 2, Varying
critical region left-bound ary from 75 to 90;
right bound ary is 99.

cisionand recall , show signsof improvement as the critical
region is boundtighter to thepercentile, asexpected.

Next we set the percentile to 75and again vary the left
boundary of the critical region in Figure 8. This time, the
requirement startsontheleft boundary of the critical region,
and moves outside of the region as we move the boundary
of the critical region to the right. Not surprisingly, both
precision and recall decline as the critical region moves
away from the percentile of interest. However, the devia-
tions from the History algorithm are not too severe (preci-
sion within 11%), showing that even with a misconfigured
critical region, the resultsarestill fairly accurate.

4.3.4 Selecting The Critical Region

Our results provide some guiding principles for the choice
of critical region boundaries. First, we observe that tighter
critical regions surrounding the requirement percentile re-
sult in higher accuracy. Second, when the requirement per-
centile falls outside the critical region, there is a dropoff in
accuracy.

These two observations highlight a tradeoff concerning
critical region selection. If the critical region is too wide,
several percentiles would likely fall i nside the region, but
accuracy would suffer from approximatingsuch a wide re-
gion. On the other hand, if the critical region is too small ,
the accuracy would behighinside theregion, but many per-
centiles are likely to fall outside of the critical region. This
tradeoff suggests that thewidth of the critical regioncan be
fine-tuned and dynamically adapted based onthefrequently
desired percentile values. For instance, even if the initial
critical regionwaschosen as[90-99], if most queriesarefor
95 percentile requirements, then the critical region can be
tightened to [95-99]. Similarly, if many percentiles appear
to fall outside the critical region, then, it can be expanded
or the rangemoved to includethedesired values.

4.4 Implementation

We deployed our HiDRA algorithm on 307 nodes in
PlanetLab. Our primary goal was to validate the results
we saw in our analysis, throughan online deployment of
HiDRA in areal system andalso to measuretheoverhead of
HiDRA. We chose threesimple multi -dimensional require-
ments to inject into our implementation:

Req EffCPU (≥ MHz) NetTx (≤ Mbps) NetRx (≤ Kbps)
1 500 10 10
2 1000 10 10
3 1500 8 8

Nodes monitored their own resource usage time series
via their own accessto their local CoMon daemon process.
We limited our monitoring to the threeresourcemetrics of
interest: effective CPU, network transmit bandwidth ob-
served and network receivebandwidth observed. From this
time series, the nodescomputed their own normal approxi-
mations to individual metrics and also the covariance(i.e.,
correlation) matrix. Thisfunctionality wasimplemented us-
ing a Perl script. Then these normal distribution and corre-
lation data were sent to a centralized query manager node,
which executed the HiDRA algorithm using a Fortran im-
plementation of the MVN distribution function [7]. The
critical region was defined between the 90th and 99th per-
centile values for each of the resource metrics. Also, the
History and Memorylessalgorithms were employed in this
system by each node sending a historical traceof its re-
sourceusage. For clarity, werefer to thenode-level resource
profileMVN distribution parametersmaintained byHiDRA
as resourcedescriptors.

In our resourcediscovery framework, we choseto utili ze
a centralized query manager because PlanetLab is a rela-
tively small system. Here we placelessfocuson the actual
means of data propagation in the system7, and rather pay
attention to the amount of data, and provide results on the
data transfer overhead “per update” asa result.

We propagated updatesevery 10minutesof theresource
descriptors at each node to the centralized query manager.
Note that if the centralized query manager goes offline, its
complete data store of resource descriptors will be com-
pletely replenished within 10 minutes of coming back on-
line by receiving the usual amount of data from each node
every 10minutes. Also notethat thesizeof theresourcede-
scriptors is independent of the sizeof the tracefrom which
it originated; it isof fixed sizedependent only on how many
resourcedimensionsarebeingmeasured.

We chose atime window of 24 hours for application de-
ployment which is also used for resource descriptor con-
struction. We submitted our query for the three multi -
resource requirements to the central query manager and

7Forms of propagation (in structured or unstructured systems) include
gossipping andflooding, aswell ascommunication in systemsthat assume
somesuper-node or hierarchical based overlay such as [19].

 0

 50

 100

 150

 200

 250

Req 3Req 2Req 1

N
od

es
 C

ho
se

n

95th Percentile Requirement

Memoryless-Unacceptable
Memoryless-Acceptable

History-Unacceptable
History-Acceptable

HiDRA-Unacceptable
HiDRA-Acceptable

Total Actual Acceptable

Figure 9. Node selection for three different re-
qu irements und er the 95th percentile in ou r
PlanetLab implementation

 0

 50

 100

 150

 200

 250

 300

Req 3Req 2Req 1

N
od

es
 C

ho
se

n

75th Percentile Requirement

Memoryless-Unacceptable
Memoryless-Acceptable

History-Unacceptable
History-Acceptable

HiDRA-Unacceptable
HiDRA-Acceptable

Total Actual Acceptable

Figure 10. Node selection for three different
requirements und er the 75th percentile in ou r
PlanetLab implementation

received responses from each of the algorithms. Then to
evaluatethis responseof theresourcediscovery algorithms,
we analyzed the future traces of the nodes chosen for de-
ployment to measure the goodnessof choice of nodes for
a pseudo-application8. A node chosen by an algorithm that
satisfied its requirementsishereby called “acceptable”, and
a node that doesnot satisfy its requirements is labeled “un-
acceptable” in the evaluation that follows.
Resource discovery accuracy: We evaluated our results
over threedifferent percentiles for each of the threemulti -
resourcerequirements. The results are shown in Figures 9
and 10. As seen above in section 4.3, HiDRA’s selection of
nodes shows precision on-par with (or better than) History
alongeach of the threerequirements. Also, HiDRA has a
recall slightly lower than that of History, which we also saw
in the previousanalysis. Even in the 75th percentile exper-
iment that does not lie in the critical region, the precision
and recall of HiDRA is remarkably close to History, show-
ingagain that HiDRA isrobust to an improperly configured

8PlanetLab has stringent rulesfor network bandwidth andmemory con-
sumption that are prohibitive to extensive multi -metric experimentation,
which led us to use apseudo-application, instead of a real application.

critical region. Our evaluation of this live implementation
confirms our results in the data analysis section above that
HiDRA is a highly accurate means for multi -dimensional
resourcediscovery.
Data overhead: The total size of all 307 resource de-
scriptors at the central node was 70 KB. A fully-informed
history-based algorithm would need about 99 MB of full
traces from all nodes, which is 1,458times more overhead
than using our resource descriptors. The memorylessap-
proach would have adata transfer sizeof 6 KB per update,
but we have shown it is highly inaccurate. Again, note that
our resourcedescriptorsdescribethewholetrace, so wefeel
this isa fair comparison, especially in systemsthat may use
flooding or gossiping of the resource descriptors. An im-
pressive property of HiDRA is its data size independence
from the tracelength. Additionally, we can also be flexible
in how often we send data in HiDRA because resourceus-
age distributions are unlikely to change over the short run,
and henceHiDRA can send updates lessfrequently than a
history-based or memorylessalgorithm, reducing the net-
work transmission overhead further.

5 Conclusion

Statistical resourcediscovery is critical for applications
to find suitable resources in dynamic and heterogeneous
large-scaledistributed systems. A key problem isachieving
such statistical resource discovery for multiple resources
simultaneously. In this paper, we presented HiDRA, a
multi -dimensional resource discovery algorithm that em-
ploys multivariate normal distribution for the probabili stic
modeling of resource capacity over multiple dimensions.
Our PlanetLab trace-based analysis showed that HiDRA
performsnearly as well as the fully-informed History tech-
nique (with better precision than History and recall within
3%of History). SinceHiDRA has such a compact represen-
tation of nodebehavior onmultiplemetrics simultaneously,
it becomesavery attractivesolutionfor large-scalesystems
that need a scalable resourcediscovery mechanism. Also,
HiDRA provides statistical guarantees to applications that
allow deployments to be more stable and reliable, not sub-
ject to frequent failures or migration scenarios. Our live
implementation in the PlanetLab testbed shows our system
to be afeasible, low-overhead methodin findingacceptable
nodesfor applications.

References

[1] D. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and
D. Werthimer. SETI@home: An Experiment in Public-
ResourceComputing. Communicationsof theACM, 45(11),
2002.

[2] M. Cardosa and A. Chandra. Resourcebundles: Using ag-
gregationfor statistical wide-arearesourcediscovery andal-
location. In Proceedings of the 2008The 28th International
ConferenceonDistributed Computing Systems(ICDCS’08),
pages 760–768, 2008.

[3] I . Chang-Yen, D. Smith, and N.-F. Tzeng. Structured peer-
to-peer resourcediscovery for computational grids. In MG
’08: Proceedings of the 15th ACM Mardi Gras conference,
pages 1–8, New York, NY, USA, 2008. ACM.

[4] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and
S. Shenker. MakingGnutella-li ke P2P SystemsScalable. In
Proceedings of ACM SIGCOMM, Aug. 2003.

[5] K. Church, A. Greenberg, and J. Hamilton. On delivering
embarrassingly distributed cloudservices. In Seventh ACM
Workshop onHot Topics in Networks (Hotnets’08), 2008.

[6] I . Foster and C. Kesselman, editors. Grid2: Blueprint for
a New Computing Infrastructure. Morgan Kauffman, CA,
USA, 2004.

[7] A. Genz. http://www.math.wsu.edu/faculty/
genz/software/software.html.

[8] J.-S. Kim, P. Keleher, M. Marsh, B. Bhattacharjee, and
A. Sussman. UsingContent-AddressableNetworksfor Load
Balancing in Desktop Grids. In HPDC’07, June 2007.

[9] Y. J. Kim, A. Boyd, B. D. Athey, and J. M. Patel. miblast:
scalable evaluation of abatch of nucleotidesequencequeries
with blast. Nucleic Acids Res, 33:4335–4344, 2005.

[10] M. Litzkow, M. Livny, and M. Mutka. Condor - a hunter of
idle workstations. In Proceedings of the 8th International
Conferenceof Distributed Computing Systems, June 1988.

[11] V. Lo, D. Zappala, D. Zhou, Y. Liu, and S. Zhao. Cluster
Computing ontheFly: P2P Scheduling of IdleCycles in the
Internet. In Proceedings of the IEEE Fourth International
ConferenceonPeer-to-Peer Systems, 2004.

[12] J. W. Mickens andB. D. Noble. Predicting node availabilit y
in peer-to-peer networks. In SIGMETRICS ’05: Proceed-
ings of the 2005ACM SIGMETRICS international confer-
ence on Measurement and modeling of computer systems,
pages 378–379, New York, NY, USA, 2005. ACM.

[13] D. Oppenheimer, J. Albrecht, D. Patterson, and A. Vahdat.
Distributed resourcediscovery on PlanetLab with SWORD.
In WORLDS’04, Dec. 2004.

[14] D. Oppenheimer, B. Chun, D. Patterson, A. C. Snoeren, and
A. Vahdat. ServicePlacement in a Shared Wide-AreaPlat-
form. In Usenix Annual Technical Conference, June 2006.

[15] K. Park andV. S. Pai. Comon: amostly-scalablemonitoring
system for planetlab. SIGOPSOper. Syst. Rev., 40(1), 2006.

[16] R. Raman, M. Livny, and M. Solomon. Matchmaking: Dis-
tributed ResourceManagement for High Throughput Com-
puting. In HPDC’98, July 1998.

[17] R. V. Renesse, K. P. Birman, and W. Vogels. Astrolabe: A
robust andscalable technology for distributed system moni-
toring, management, and datamining. ACM Trans. Comput.
Syst., 21(2):164–206, 2003.

[18] R. Wolski. Experiences with predicting resource perfor-
manceon-line in computational grid settings. SIGMETRICS
Perform. Eval. Rev., 30(4):41–49, 2003.

[19] P. Yalagandula andM. Dahlin. A ScalableDistributed Infor-
mationManagement System. In SIGCOMM’04, 2004.

