
An Experimental Investigation of Hyperbolic
Routing with a Smart Forwarding Plane in NDN

Vince Lehman, Ashlesh Gawande
University of Memphis

{vslehman, agawande}@memphis.edu

Beichuan Zhang
The University of Arizona

bzhang@arizona.edu

Lixia Zhang
UCLA

lixia@cs.ucla.edu

Rodrigo Aldecoa, Dmitri Krioukov
Northeastern University
{raldecoa, dima}@neu.edu

Lan Wang
University of Memphis
lanwang@memphis.edu

Abstract—Routing in NDN networks must scale in terms of
forwarding table size and routing protocol overhead. Hyperbolic
routing (HR) presents a potential solution to address the routing
scalability problem, because it does not use traditional forwarding
tables or exchange routing updates upon changes in network
topologies. Although HR has the drawbacks of producing sub-
optimal routes or local minima for some destinations, these
issues can be mitigated by NDN’s intelligent data forwarding
plane. However, HR’s viability still depends on both the quality
of the routes HR provides and the overhead incurred at the
forwarding plane due to HR’s sub-optimal behavior. We designed
a new forwarding strategy called Adaptive Smoothed RTT-based
Forwarding (ASF) to mitigate HR’s sub-optimal path selection.
This paper describes our experimental investigation into the
packet delivery delay and overhead under HR as compared
with Named-Data Link State Routing (NLSR), which calculates
shortest paths. We run emulation experiments using various
topologies with different failure scenarios, probing intervals, and
maximum number of next hops for a name prefix. Our results
show that HR’s delay stretch has a median close to 1 and a
95th-percentile around or below 2, which does not grow with the
network size. HR’s message overhead in dynamic topologies is
nearly independent of the network size, while NLSR’s overhead
grows polynomially at least. These results suggest that HR
offers a more scalable routing solution with little impact on the
optimality of routing paths.

I. INTRODUCTION

Named Data Networking (NDN [1]) is a data-centric In-
ternet architecture that allows users to retrieve data directly
by their names. Thus, a native NDN routing scheme needs to
support forwarding using data names. Due to the sheer number
of content names in today’s Internet, the number of FIB entries
in an NDN network could be prohibitively large, and the
routing update overhead required to maintain consistent FIBs
of this size can also be costly. One of the major challenges
in realizing NDN is to bound the size of routing state while
supporting an unbounded data namespace.

At the same time, the requirements for routing protocols in
an NDN network also differ from that in an IP network [2].
NDN’s intelligent forwarding plane can quickly steer packets
around failures and discover best paths through active prob-
ing [3]. Consequently, fast routing convergence is no longer

a requirement in an NDN network, and the optimality of the
paths selected by routing protocols is not as important as in
an IP network. However, as shown by Yi et al. [2], a routing
protocol is still needed to help find working paths faster with
lower cost as compared to blindly probing all possible paths.

This paper investigates the viability of applying hyperbolic
routing (HR) to NDN networks. HR is greedy geometric
routing based on hyperbolic coordinates of nodes that encode
network geometry ([4], [5]). Assuming each node knows its
own and its neighbors’ coordinates and each Interest carries
coordinates corresponding to its data name prefix, a forwarder
simply computes the neighbors’ distance to the coordinates
and forwards Interests to the best next-hop(s) as measured by
hyperbolic distance. The following explains why we consider
HR a potential candidate to scale NDN routing.

First, because both the distance calculation and best next-
hop selection in HR can be done in real-time on a per-packet
basis, a node does not need to maintain a full FIB – it
can simply keep a small cache of calculated routes to avoid
repeated computation. In other words, HR does not need to
know the network’s topological connectivity to compute routes
and it does not incur the memory overhead of a full-size FIB.

Second, hyperbolic coordinates of a network are expected
to be stable for a long time (months or years), eliminating the
need for dynamic routing updates caused by short-term topol-
ogy changes. In today’s IP network, it has been shown that,
upon small- to medium-scale changes in network connectivity,
HR with backtracking can find alternative paths to destinations
without nodes changing their coordinates ([4]–[6]). With a
good forwarding strategy, NDN’s forwarding plane can also
find alternative paths quickly in various failure scenarios [3],
providing the backtracking capability to support HR.

Third, HR seems more suitable for NDN than geometric
routing schemes that rely on other network geometries as
the name spaces in an NDN network will likely evolve to
hierarchical tree-like organization. This organization appears
to be a ubiquitous and often emergent feature of large-scale
deployments, presumably because it allows for natural and
essentially optimal representation of large-scale information

ar
X

iv
:1

61
1.

00
40

3v
1

 [
cs

.N
I]

 1
 N

ov
 2

01
6

spaces [7]. Instead of relying on provider-assigned names to
facilitate aggregation, the main idea behind HR in NDN is to
utilize the name space and network structure to scale routing
by employing greedy routing using the underlying tree-like
geometry. Although the NDN namespace is much bigger than
IP’s, we believe that by using hierarchical names, much like
the URLs used to name today’s web content, NDN can achieve
a similar exponential reduction of space and overhead. We
note that the network and namespace geometry does not have
to be exactly a tree, or even close to a tree (as measured by
the treewidth metric, for example). According to the mathe-
matical results on coarse hyperbolic geometry [8], even very
approximate tree-like structures (Gromov-hyperbolic [8]) can
be mapped to hyperbolic spaces with low distance distortion.

The scalability benefits of HR, however, come with a
price. First, HR does not guarantee to find best paths for
all destinations. Second, HR can suffer from local minima
where packets get stuck at a node with no neighbor closer
to the destination than itself (this can happen with or without
topological changes). Both issues can in principle be handled
by NDN’s smart forwarding plane, but a thorough investigation
is necessary in order to answer the following questions: (a)
can HR with adaptive forwarding provide performance that
closely approximates that of a shortest path routing protocol
as measured by packet delay? and (b) is the cost of using HR,
i.e., the forwarding plane overhead due to active probing, much
lower than the overhead under conventional routing protocols?

To answer these questions, we first developed a forwarding
strategy called Adaptive Smoothed RTT-based Forwarding
(ASF) that handles suboptimal routes and loops under HR.
ASF is a relatively simple strategy so as to give us a baseline
performance of HR – if such a basic design can lead to
good performance, then any further improvement can only
strengthen HR’s viability for NDN.

We compared HR (in combination with ASF) with link state
routing in an NDN network, assuming static hyperbolic coor-
dinates and small-scale connectivity changes. We measured
the delay and loss rate experienced by NDN ping packets,
as well as the probing overhead of ASF and update message
overhead of link-state routing, in a 22-node NDN testbed
topology and four scaled-down Internet topologies with 41, 58,
78 and 99 nodes. We found that HR/ASF can provide paths
that are comparable with those of link state routing, achieving
a similar packet delay and loss rate, even under frequent failure
scenarios. The delay stretch of HR has a median close to 1
and a 95th-percentile below or around 2. More importantly,
our experiments show that HR’s per-node message overhead
in dynamic topologies grows very lowly as the network size
increases, while NLSR’s per-node overhead grows at least
polynomially, suggesting that HR can scale to much larger
topologies.

II. BACKGROUND

We examine hyperbolic routing performance by comparing
it with NLSR ([9]). Here we provide some background infor-
mation on NDN and the two routing approaches.

A. NDN

NDN enables users and applications to directly fetch data
identified by a given name. A consumer puts the name of a
desired piece of data into an Interest packet and sends it to the
network. Routers use this name to forward the Interest toward
the data producer(s). Once the Interest reaches a node that has
the requested data, the node will return a Data packet. This
Data packet follows in reverse the path taken by the Interest
to get back to the requesting consumer.

To forward the Interest and Data packets, each NDN router
maintains three data structures: a Forwarding Information
Base (FIB) containing precomputed routes (or a Route Cache
of recently computed routes in the case of HR), a Pending
Interest Table (PIT) containing all the Interests that have
been forwarded and are waiting for the returning data, and a
Content Store (CS) containing previously received Data. The
router also has a Forwarding Strategy module which takes
input from the FIB and observes data fetching performance to
determine whether and where to forward each Interest packet.
In Section III, we explain the NDN forwarding process when
hyperbolic routing is employed.

B. NLSR

NLSR ([9]) is a link-state routing protocol that uses NDN’s
Interest-Data packet exchanges to propagate reachability to
name prefixes instead of IP prefixes. Its operations are sim-
ilar to that of OSPF – link-state advertisements (LSAs) are
propagated throughout the entire network so that each router
can build a complete network topology. On the other hand,
unlike OSPF, NLSR computes multiple (non-equal-cost) paths
for each name prefix as an input to NDN’s forwarding strategy.

NLSR propagates two types of LSAs – Adjacency LSA
and Prefix LSA. The Adjacency LSA is used to advertise all
active links connecting one NDN router to its neighbors. The
Prefix LSA, on the other hand, is used to advertise all the
name prefixes that have been registered with the router. The
Link-State Database (LSDB) contains all the LSAs, and LSA
dissemination is viewed as a data synchronization problem of
the LSDBs maintained by the routers. ChronoSync [10] is used
to synchronize the LSDBs on all the nodes.

C. Hyperbolic Embedding

The initial motivation for HR comes from the seminal ob-
servation in [11] that any network topology can be embedded
into the hyperbolic plane such that greedy geometric routing
using the embedded node coordinates never gets stuck at
local minima, i.e. all sources can reach all destinations if
a forwarder selects as the next hop its neighbor closest to
the destination in the hyperbolic plane. In practical terms this
means that a forwarder does not have to keep next-hop routes
to all the destinations in the network in its FIB. The only
information required for forwarding decisions is the coordinate
of the destination in the packet and the coordinates of the
forwarder’s neighbors, leading to exponential reduction in FIB
space requirements. Unfortunately, upon a topology change,
the embedding in [11] must be recomputed from scratch.

To deal with this problem, several proposals have been
investigated. In [12], re-embedding is optimized using back-
pressure and other techniques. An entirely different embedding
strategy is proposed ([5], [13]–[15]) based on the existence of
geometric similarities between hyperbolic spaces and large-
scale Internet-like topologies; both exhibit hierarchical tree-
like organization ([16], [17]). The main benefit of this em-
bedding strategy is that it exploits the intrinsic hyperbolic
geometry of Internet-like networks [16] to find the congruent
coordinates of nodes on the hyperbolic plane. One outcome
of this strategy, implemented using maximum-likelihood tech-
niques ([5], [14]), is that the resulting embedding is remark-
ably robust. Even if network connectivity changes significantly
but the nodes do not change their coordinates, greedy for-
warding using these static coordinates can still find, with high
probability, alternative paths to destinations if they exist ([4],
[5]). In other words, even if the network topology is dynamic,
the network embedding and node coordinates do not have to be
recomputed, so HR does not incur the overhead of traditional
routing protocols upon network topology changes. The cost
paid for this routing overhead reduction in dynamic networks
is some slight increase of path stretch and decrease of success
ratio, defined as the percentage of source-destination pairs
reachable via greedy forwarding ([4], [5]).

III. HYPERBOLIC ROUTING IN NDN

To provide context for our forwarding strategy and exper-
iment design, below we describe how NDN forwarding may
work under hyperbolic routing and how hyperbolic coordinates
may be computed and distributed in NDN.

A. Interest Forwarding Process

Consumer

Coordinate Database
(e.g., NDNS)

Request
coordinates

Coordinates
Radius: 12.34
Angle: 1.23

Interest
Coordinates

...

Content
Store PIT

Route
Cache

Data
Add incoming

interface
Calculate

route

Forwarder

Forward

✓ ✓

✓✗ ✗

✗

Forwarding
Strategy

Fig. 1. Interest Forwarding under Hyperbolic Routing

Figure 1 shows how an Interest may be forwarded by a
router when hyperbolic routing is employed. Suppose the
consumer wants to retrieve the data identified by a particular
name, it first obtains the hyperbolic coordinates for the name,
e.g., from a distributed database such as the NDNS [18] (see
Section III-B). It then puts the data name and the coordinates
in an Interest, and sends the Interest to its connected router.
When the router receives the Interest, it first checks the
Content Store for matching data; if a match is found, the
router returns the Data packet on the interface from which
the Interest came. Otherwise, the router looks up the name
in its PIT, and if a matching entry exists, it simply records
the incoming interface of this Interest in the PIT entry. In the

absence of a matching PIT entry, the router checks the Route
Cache to see whether next hops for the coordinates carried
in the Interest have already been calculated; if not, the router
calculates the next hops to reach the coordinates using the
greedy geometric routing algorithm, and installs them in the
Route Cache. Finally, the router uses the forwarding strategy
to select one or multiple next hops to forward the Interest.

Because a large number of next hops may increase the size
of the Route Cache and time for selecting a route, the network
operator may specify an upper limit on the number of next
hops per name prefix, called Multi-path Factor in this paper.
We show in Section V that this is a key factor in forwarding
plane performance when hyperbolic routing is used.

Note that HR in NDN is very different from location-based
routing in IP. First, NDN Interests carry both data names and
the corresponding coordinates, with the latter simply acting
as hints to direct the forwarding. As such an Interest does
not necessarily reach the producer; as soon as the Interest
hits a router with the named content in its content store (the
probability of which likely increases as the Interest gets closer
to the producer), the content will be returned by that router.
Second, HR in NDN is multi-path instead of single-path, i.e.,
each router calculates multiple routes to the coordinates carried
in an Interest, so that if one greedy next hop fails to bring back
the data, other next hops can be explored.

B. Assigning and Disseminating Hyperbolic Coordinates

The assignment of hyperbolic coordinates for the current
Internet topology has been studied extensively ([5], [13]–[15]).
However, both the process and algorithm to assign hyperbolic
coordinates to NDN names are still open questions and part
of our ongoing work. One difficulty is that there is currently
no large-scale NDN deployment, or any reasonable model of
it, to experiment with.

For our experiments, we adopt the following approach to
assign the coordinates. First, since name prefixes are asso-
ciated with their producer sites, to be able to hyperbolically
route NDN Interests toward the producers, it is natural to map
a name prefix to the hyperbolic coordinate of the producer
site. In other words, hyperbolic routing to an NDN name
prefix relies on (but is not equal to!) greedy forwarding
toward the hyperbolic coordinate of its producer site. Second,
previous simulation work by Aldecoa and Krioukov [6] has
shown that hyperbolic coordinates derived from the Internet
AS-level topology using the HyperMap coordinate inference
algorithm [14] works reasonably well on the NDN testbed
topology – each site is assigned the hyperbolic coordinates of
the AS to which it belongs, and even with single-path greedy
forwarding, the success ratio for packet delivery is 82%. Given
that the connection between the testbed topology and AS-
level coordinates is rather indirect, the results are unexpectedly
good, encouraging us to test HR using this set of coordinates
with multi-path forwarding on the real NDN platform.

Our rationale for the above strawman approach is as fol-
lows. If the AS-level coordinates indeed lead to satisfactory
forwarding performance in our experiments under realistic

NDN settings, any improvement in the coordinate assignment
algorithm will result in even better performance, which justi-
fies further study of hyperbolic routing in NDN. In addition,
we can immediately use this approach on the current NDN
testbed to support longer-term evaluation of hyperbolic routing
without waiting for a better coordinate assignment algorithm.

We expect hyperbolic coordinates to be computed offline
based on local information before a new name prefix is added
to the network and occasionally thereafter to adapt to long-
term topological changes. As shown in previous work ([5],
[14]), a new node can compute its hyperbolic coordinate using
only the coordinates of other nodes in the network. That is,
quite surprisingly, the new node does not have to know any-
thing about network topology other than what existing nodes
it connects to. Furthermore, as shown in [15], the accuracy
of this coordinate computation is essentially indistinguishable
from the same computation but using only the coordinates of
few nodes that are hyperbolically closest to the new node. In
other words, new nodes can compute their coordinates using
only local information about network topology and geometry.

No routing information ever needs to be globally flooded
through the network at any step of the above process. New
coordinates can be disseminated by mechanisms outside rout-
ing, e.g., using NDNS [18], a distributed database similar to
DNS designed for NDN. Upon computing new coordinates, a
network operator can inject the name prefix and its coordinates
into the network’s own NDNS server. The coordinates can be
retrieved by any node on demand, similar to how DNS queries
work. Other options are possible, but their discussion is out
of scope for this paper.

IV. ADAPTIVE SRTT-BASED FORWARDING

Hyperbolic distance-based routing ranking may not reflect
the actual forwarding delay for two reasons. First, it is
possible that a next hop that is hyperbolically closer to the
destination may actually lead to a longer path than one that
is hyperbolically further from the destination. Second, when
there are failures and recoveries in the network, HR does not
adapt, thus its ranking may not reflect what is the shortest
path at the moment. To have forwarding performance similar
to that of shortest-path routing, we need a strategy that can
find a shorter path if available and adapt to network changes.

The forwarding strategies implemented in the current NDN
prototype focus on being able to retrieve contents, but may
not find the shortest path in some situations. For example, the
Best-Route Strategy simply uses the next hop ranked highest
by the routing protocol, which may not be optimal in the
case of HR. We compared the delay stretch in HR using
the Best-Route Strategy against the delay in LS using the
Best-Route strategy and confirmed that using the Best-Route
strategy with HR results in both high delay stretch and a high
loss rate (Section V-B). As such, we developed a new strategy
called Adaptive Smoothed RTT-based Forwarding (ASF) that
chooses the best next hop based on RTT measurement, and
also periodically probes other next hops to learn their RTTs.
This strategy is similar in spirit to the Red-Green-Yellow

strategy proposed by Yi et al. [3]. One important difference
is that the latter strategy probes alternative paths only when
routing ranking changes, which does not work with HR as
HR’s ranking does not adapt to short-term network changes.
Another difference is that Yi’s scheme does not consider
measured RTT when choosing the best next hop, which may
lead to suboptimal paths under HR.

While other proposed forwarding strategies (e.g., [19]–[22])
may be well suited for HR, they require modification of the
Data packet [19] or use more complex next hop selection
processes, with multiple parameters, that can make analysis
difficult [20]–[22]. We designed ASF to be easy to analyze,
therefore we did not optimize its various parameters, such as
probing period and probability, dynamically based on observed
performance. However, as we will show in Section V, it
performs surprisingly well in our experiments.

A. Best SRTT-based Forwarding

Every time a Data packet is received, we take a sample of
the RTT, i.e., the time between when the Interest was sent and
when the Data arrives. To accommodate fluctuations in RTT
values, we compute the Smoothed RTT (SRTT), a moving
average of the RTT samples, in the same way as TCP. We
maintain one SRTT for each next hop in a route entry.

Given a route entry, we divide its next hops into three
groups. Group 1 contains next hops that have SRTT values,
i.e., they are working at the moment and returning Data. Group
2 contains next hops that do not have measurements yet. Group
3 contains next hops that are experiencing Interest timeouts.

When an Interest arrives, the strategy picks the next hop
with the lowest SRTT in Group 1. If this group is empty, the
strategy will choose the next hop with the lowest routing cost
from Group 2 or, if Group 2 is empty, from Group 3. Group 2
is preferred over Group 3, because next hops that have never
been used may work while next hops that are timing-out likely
do not work.

B. Probabilistic SRTT-based Probing

As network conditions change over time, the shortest path
may also change. If an alternate next hop becomes better than
the current next hop, we will not be able to discover it if
we are not sampling its SRTT. To solve this problem, ASF
employs a periodic and probabilistic probing scheme to probe
next hops not currently in use. The first probe is scheduled
to occur shortly after an entry is created in the Route Cache.
In our experiments, the delay is a random interval between
[0, T1] seconds, where T1 is 5 by default. This random delay
prevents triggering probing at each router along the Interest’s
path at the same time. After the first probe, the subsequent
probes are scheduled to occur every T2 seconds, which is set
to 60 in our experiments (see Section V).

A probing Interest carries the same name as the original
Interest but with a different nonce. We use the same name
for two reasons: a different name under the same prefix may
be mapped to different coordinates (e.g., /google/sports and
/google/music may have different coordinates); and routers

do not have a way to generate a valid new name – if the
generated name does not have associated data, then the router
will mistakenly take the lack of Data as an indication that the
path does not work. We use a different nonce to ensure that
if the probed path works, data will be returned on this path
in addition to the primary path so that we can take an RTT
sample of the probed path. Note that Interest aggregation and
caching may cause some RTT estimates to be inaccurate, but
will not negatively affect the SRTT measurements in the long
run, because even if one RTT estimate returns an inaccurate
RTT, subsequent measurements will cause the SRTT estimate
to eventually converge to the correct one. Moreover, even if
the strategy switches to an alternative path due to a false RTT
measurement, eventually the good path will be probed and the
strategy will switch back.

To quickly gain information about a next hop that has no
measurements, ASF first chooses the next hop with the lowest
routing cost from Group 2 to probe (see Section IV-A about
how the next hops are grouped). When Group 2 becomes
empty, ASF will probabilistically choose a next hop from
Group 1 and Group 3 to probe. The next hops in Group 1
and 3 are ranked by SRTT and HR distance, respectively,
while Group 1 has higher ranking than Group 3. The probing
probability of the next hop that has rank i = 1, . . . , N in the
sorted list (1 being the highest ranking) is

P (i) = 2
N + 1− i
N(N + 1)

. (1)

In this way, next hops that performed better previously are
more likely to be probed, thus allowing the strategy to revert
back to a better performing path after recovery from a failure.

V. EXPERIMENT METHODOLOGY AND RESULTS

In principle, data retrieval in NDN can operate without
any routing since interfaces can simply be tried in sequence
without any routing hints. But, this strategy is equivalent to
random walking through the network which would incur huge
delays in large networks. Shortest path routing minimizes de-
lays but incurs the traditional high link-state routing overhead.
Thus, we focus our evaluation to study the delay-overhead
trade-off space in comparison between NLSR and HR with
the ASF strategy. To study this trade-off space, we measure
NLSR’s routing overhead and HR/ASF’s probing overhead,
as well as the ping-traffic delay and loss, in packet-level
emulation experiments in static and dynamic networks. Since
we are interested in routing scalability, we need to evaluate
how the delay and overhead numbers scale with the growing
network size N . Therefore, we design experiments not only
for a current NDN testbed snapshot (N = 22), but also for a
sequence of Internet-like topologies obtained from the current
AS Internet topology by rescaling it down to different sizes
with N ranging from N = 41 to N = 99, the latter limited
by our computational constraints.

A. Methodology

This work is intended to be the first step of our investigation
and as such, we do not expect to draw a final conclusion on the

TABLE I
TOPOLOGIES DERIVED FROM THE INTERNET AS TOPOLOGY

Nodes (N) 41 58 78 99
Links (M) 155 251 345 442

Average Degree (k̄) 7.56 8.66 8.85 8.93

feasibility of HR in NDN. Instead, we view the results from
this study as an input to the next step. Rather than looking
at the combinations of all possible factors that may affect the
performance of HR, we focus on a few so that we may gain
an in-depth understanding of them. Below, we describe and
justify our experiment design.

14#

##UM#

UIUC#

###UA#

##WU#

#MICH#

REMAP#

CSU#

##NEU#

#UCI#

##LIP6#

CAIDA#

PKU#

UCLA#

TONGJI#

##BUPT#

25#

3#

16#

69#

17#

15#
14#

56#

85#

1#

93#
1#

14#

33#

25#

14#

3#

16#

3#

17#

5#

21#

112#

1#

9#18#

18#

12#

URJC#

86#

15#

15#

127#

9#

18#

18#

##WASEDA#

75#

98#

48#

144#

SystemX#

BASEL#

Orange1#

10#

2#

2#

BYU#

9#

8#

30#

ANYANG#

38#

33#

54#

22#

Fig. 2. Network topology with 22 nodes and 50 links based on NDN testbed
(link cost is based on one-way delay between nodes)

Topology, Network Size, and Traffic – one of our experiment
topologies is a snapshot of the actual NDN testbed topology
with 22 nodes and 50 links (Figure 2). The routing cost of each
link is set to the delay between the two neighboring nodes.
The hyperbolic coordinates of the nodes are set equal to the
coordinates of the AS to which these nodes belong [6]. The
per AS coordinates are computed using the algorithms and
data described in [14] and [15]. Testbed nodes that belong
to the same AS have small disturbances added to make the
coordinates unique. Each node advertises one name prefix
and produces ping data under that name prefix. The ndnping
tool [23] is used to send ping Interests from every node to
every other name prefix once a second. All the ping names
are unique, so caching will not affect the ping delays.

Furthermore, in order to test the scaling properties of HR,
we used realistic Internet-like topologies of a varying size
N ranging between 41 and 99, the upper limit constrained
by our computational resources. As shown in [24], the AS
Internet topology is self-similar, meaning that its subgraphs
induced by the N highest-degree nodes have all the structural
properties of the original full topology, albeit renormalized
to smaller values of N and higher values of the average
degree k̄. That is, the smaller the size N of these subgraphs,
the larger their average degree k̄ [24], an effect related to
the rich-club phenomenon [25]. For example, the subgraph
consisting of N = 100 highest-degree nodes has average
degree k̄ = 40.78, while the average degree in the full Internet
topology (N = 37, 618) is k̄ = 5.22. In the real Internet,

however, the average degree is approximately constant as the
Internet grows over years ([5], [14]). Therefore, to construct
Internet-like topologies of small varying size and approxi-
mately constant average degree, we start with the full Internet
AS topology embedded in the hyperbolic plane using the
HyperMap algorithm [14]. We extract its subgraphs induced
by different numbers N of highest degree nodes, and in each
of these subgraphs, we then retain only M = k̄N/2 “shortest”
links, i.e., links between hyperbolically closest nodes, where
k̄ = 5.22 is the average degree in the full Internet topology.
These shortest links are the most significant links in the
topology, mostly between the pairs of nodes with the highest
values of the product of their degrees [5]. Removing the
rest of the links disconnects the subgraphs, so we extract
the largest connected components from them. These largest
components are then the networks on which we perform our
routing scalability analysis. The values of N , M , and k̄ are
reported in Table I. To assign an appropriate delay to each link,
the geographic coordinates between each AS associated with
the nodes on a link is computed. The computed geographic
distance is then used to approximate a delay for the link.

Hyperbolic Routing – For our evaluation purposes only, we
have implemented HR within NLSR to distribute routers’
hyperbolic coordinates. NLSR maps each name prefix to its
originating router’s coordinates and then calculates a ranked
list of next hops using the neighbor routers’ coordinates.
Note that in a real deployment, the coordinates are not
flooded globally (see Section III-B). To evaluate how well
our proposed ASF strategy can help HR handle sub-optimal
routes, we compared HR’s performance under ASF with that
under the default Best-Route strategy which simply uses the
best route selected by the routing protocol. Another important
variable we examine is how the multi-path factor affects
forwarding performance when HR is used. When more next
hops are available in a route entry, the forwarding strategy
may eventually find a next hop that is able to return Data. In
our experiments, we evaluate HR using a multi-path factor of
2, 3, 4, and all possible next hops per prefix.

Link State Routing Protocol – While we could have used
another routing protocol to compare HR against, we chose
link-state (LS) as it is simple to analyze and calculates shortest
paths. Since LS routing provides optimal paths, probing for
alternative paths is unnecessary. Thus, we can use the Best-
Route forwarding strategy which always uses the highest
routing ranked next hop to forward an Interest. Indeed, we
have verified in our experiments that, under LS, using ASF and
Best-Route strategies provide the same performance. Further-
more, with the Best-Route strategy, LS performs identically
amongst tests with two, three, or all possible next hops per
prefix, as only the highest ranked next hop is used. We
therefore use NLSR with the Best-Route strategy and a multi-
path factor of 2 in all of our comparisons with HR.

Environment – All our experiments were performed using
Mini-NDN [26], an NDN network emulation tool. In Mini-
NDN, an entire experiment runs on a single machine, and

each node in the network topology is executed in a container
with its own resources.

Metrics – we use the following three metrics for comparing
packet delay and overhead:
• Delay Stretch - Delay stretch indicates the ratio between
a packets delay in HR vs. its delay in LS. A stretch of 1
indicates that HR is not incurring any additional delay over
what is required in LS. To calculate the delay stretch, the RTT
of a ping in HR is divided by the RTT of the corresponding
ping in LS for each node pair. Then, for each second of the
experiment, we calculate the median, 75th percentile, and 95th
percentile of the delay stretches among all the node pairs.
• Loss Rate - For each node, the loss rate is the total number of
ping timeouts from that node to all other nodes in the network
divided by the total number of pings from that node.
• Message Overhead - The total message overhead for link-
state routing is calculated by adding together the SYNC Inter-
ests/Data and LSA Interests/Data sent during the experiment.
Note that we ignore the NLSR message overhead during
the initial routing convergence. For HR, the total message
overhead is equal to the number of probe Interests sent by ASF.
We do not include the overhead for distributing hyperbolic
coordinates for two reasons. First, these coordinates remain
stable for months or years, and any messages triggered by their
changes occur at time scales much larger than those of LSA
and SYNC messages. Second, we expect that these coordinates
are retrieved on demand by consumers, and they can be cached
by the consumers and any intermediate routers for a long time
(given that they seldom change).

We also considered comparing the total number of for-
warded Ping Interests and Ping Data packets under the two
approaches to assess the cost of suboptimal paths in HR.
However, this metric can be misleading as HR with shorter
unsuccessful paths may appear to have a lower number of
ping packets than NLSR with longer successful paths.

B. ASF vs. Best-Route and The Impact of Multi-path Factor

We first compare the ASF strategy with Best-Route strategy
and then study the impact of multi-path factor. We use the
22-node testbed topology and let every node ping every other
node once per second. We use four different multi-path factors
(2, 3, 4 and all) for forwarding and a probing interval of 60
seconds for ASF. The results for a multi-path factor of 3 are
similar and therefore omitted for brevity.

Figure 3 shows the delay stretch of HR over link state1.
First of all, compared with the Best-Route strategy, ASF
allows hyperbolic routing to achieve much lower delay stretch.
Second, we make the following observations for HR with ASF
(Fig 3(b)-(d)): (1) the median stretch is almost 1 and the 75th-
percentile stretch is slightly higher than 1. This shows that the

1Note that we remove those pings that experienced timeouts from the
calculation. As such, the stretch curve may increase in the first few seconds
as some ping pairs initially experienced timeouts in HR but through ASF
probing the subsequent pings were able to find working paths. When their
stretch values were included in the calculation, there may be an increase in
the various stretch statistics.

a) HR with Best-Route Strategy

b) HR with ASF and 2 next hops

c) HR with ASF and 4 next hops

d) HR with ASF and all next hops

Fig. 3. Delay stretch of HR compared to link-state routing with Best-Route
strategy on 22-node testbed topology without failures.

packet delays under HR/ASF are quite close to those under
link-state routing except in a small fraction of the cases; (2) the
95th-percentile curve stabilizes after one probing interval of
60 seconds, meaning that the ASF strategy is quick in finding
better paths when the initial ranking based on hyperbolic
coordinates is suboptimal; (3) a higher multi-path factor leads
to a slight increase in performance as the strategy has more
choices to get out of loops and suboptimal paths, but a multi-
path factor of 4 is nearly as good as all next hops.

Fig. 4. Loss Rate of HR on 22-Node Topology without Failures

TABLE II
PER-NODE MESSAGE OVERHEAD IN 22-NODE NDN TESTBED

TOPOLOGY (PACKETS/SECOND)

Experiment No Failure Sequential Failure
LS HR LS HR

Next Hops 2 2 4 all 2 4
Overhead 1.05 1.01 0.98 0.96 2.80 0.33

Although this experiment does not have any topological
failures, losses may still occur in HR due to the multi-path
factor, which imposes a limit on the number of next hops
installed for each route entry. If every next hop in a route entry
causes a loop in the network, the strategy will not be able to
find a next hop to get out of the loop. Note that even when all
next hops are available to the strategy, the forwarding plane
may still experience initial losses while the strategy determines
working paths. Figure 4 shows the loss rate for each node
under HR (there are no losses in link-state routing). First, even
with only 2 next hops, ASF has lower loss rate than the Best-
Route strategy. Second, we can observe that the more next
hops available for the ASF strategy the lower the loss rates,
and a multi-path factor of 4 has nearly no loss for all the
nodes.

The message overhead for link-state (LS) and HR is shown
in Table II. In the no-failure case, HR has a slightly lower
overhead than that of link state and the difference between the
various multi-path factors is very small. This is not surprising
as the probing algorithm has a fixed probing interval so each
node generates the same number of probes for each route entry
regardless of the number of next hops in the route entry, but
the probes may cross different number of hops depending on
the paths they travel, so the total number of probe Interests
forwarded by all the nodes will vary slightly. For an Internet-
scale topology, however, there may be nodes with tens or
hundreds of neighbors. Using all next hops on these highly-
connected nodes would be infeasible as each entry in the Route
Cache will be very large and the statistics of the next hops will
consume a significant amount of memory. Moreover, next-hop
selection will be very time-consuming.

Based on the above results, we use a multi-path factor of 4
and a probing interval of 60 seconds for HR and ASF in the
remaining experiments. With these parameters, HR with ASF
has lower overhead than LS but is still effective in finding
paths during failure and recovery periods.

C. Message Overhead under Different Traffic Profiles
We now use the 22-node topology and no-failure scenario to

evaluate the message overhead under different traffic profiles.
More specifically, each node pings a percentage α of all the
name prefixes in the network at 1 ping/second per name prefix.
The pinged prefixes are uniformly selected, so each prefix is
pinged by αN nodes. We vary α from 10% to 100%.

Since ASF probes every name prefix seen in recent Interests
(we call them “active name prefixes”) at a constant rate, a
node’s overhead should increase with the number of active
name prefixes at that node. In contrast, NLSR’s message
overhead should be independent of the regular Interest/Data
traffic as long as the latter does not congest the links, since
NLSR’s control messages are not triggered by traffic.

Fig. 5. Message Overhead in 22-Node Topology with Different Traffic
Profiles (No Failures)

Figure 5 shows that, as expected, a smaller α is associated
with lower HR/ASF probing overhead, while the LS overhead
remains constant. In particular, when α is 10%, the LS
overhead is over four times that of HR/ASF. The results also
show that the HR/ASF overhead does not increase linearly
with α. The reason is that although each node pings only αN
name prefixes, the number of active name prefixes at certain
nodes can be much higher than αN if they are on the path
of other nodes’ Interests. This phenomenon is most prominent
when α is small and diminishes as α increases.

The implication of the above results is the following:
HR/ASF is much more efficient than LS in an environment
where users are not interested in all the name prefixes. We
take user preference into account by having each node ping a
percentage of name prefixes. but each node selects the pinged
name prefixes uniformly, so every name prefix is pinged by
the same number of nodes and produces the same amount of
ping replies. In practice, however, the data distribution among
name prefixes is more likely to be highly skewed (e.g., 90%
of data is produced under 10% of name prefixes), as shown
in previous studies ([27], [28]). Therefore, our experiments
likely over-estimated the number of active name prefixes and
thus the probing overhead of HR/ASF in a real network should
be even lower than in our experiments.

D. Stress Test: Sequential Node Failure Scenario
We continue to use the 22-node topology but introduce

sequential failures of the 10 most connected nodes – more

specifically, after the first 60 seconds, a different node fails
for 90 seconds every 180 seconds until all the 10 nodes have
failed once. Every node pings 10% of the name prefixes, i.e.,
α = 10%, at 1 ping per second.

Fig. 6. Delay Stretch for HR in 22-Node Testbed Topology under Sequential
Failure of 10 Most Connected Nodes and α = 10% (vertical dash lines
indicate when nodes fail and recover.)

Figure 6 shows that, under a series of node failures, the
median of the delay stretch remains near 1 for the entirety of
the experiment. The average values of the 75th-percentile and
the 95th-percentile stretch are 1.04 and 1.82, respectively. The
largest 75th-percentile stretch and 95th-percentile stretch are
1.41 and 3.07, respectively. HR and LS have an average loss
rate of 2.62% and 2.48%, respectively. However, as Figure 7
shows, one of the nodes has a large difference in loss rate,
which is under investigation. Overall these results indicate that
the packet delay under HR with ASF approximates that of LS.
Meanwhile, the HR/ASF approach has room for improvement
in minimizing losses. Note, however, that the node failures
occurring every 180 seconds is an extreme scenario intended
to stress our design, so one should not use the above loss rates
to infer HR/ASF’s performance in real networks.

Fig. 7. Loss Rate in 22-Node Topology under Sequential Node Failures (note
that we exclude pings sent to the failed nodes from the loss rate calculation.)

As shown in Table II, link state’s overhead under sequential
failures is 2.80 packets/second, which is 8.5 times the overhead
of HR, 0.33 packets/second. Note that α is 10% in this
experiment so HR’s probing overhead is less than that when all
the name prefixes are pinged. Figure 8 shows the instantaneous
overhead of HR and LS as well as the ratio between HR and
LS’s cumulative overhead over time. For a short period at the

Fig. 8. Message Overhead in 22-Node Topology under Sequential Failure
of 10 Most Connected Nodes and α = 10%

beginning, HR has more overhead than LS due to probes being
triggered by pings, but HR’s overhead is quickly overtaken
by LS’s overhead. HR’s overhead is nearly a 10th of LS’s
overhead for the remainder of the experiment. LS’s routing
overhead also has instantaneous overhead spikes reaching as
high as 138 packets per second when node failures and re-
coveries happen, while HR’s probing overhead remains below
7 packets per second and only increases at probing intervals
(60 seconds). These results confirm that HR/ASF’s probing
overhead is primarily determined by its probing interval and
the number of active name prefixes in the network2, while link-
state routing’s overhead increases as the network dynamics
increase since it must send LSA Interests/Data as well as SYNC
Interest/Data for each failure and recovery.

E. Scaling to Larger Topologies

To study how HR’s performance and overhead scale with the
network size, we run experiments on five topologies ranging
from 22 nodes to 99 nodes (Section V-A), with sequential
failure of the 10 most connected nodes in each experiment.
Each node pings 10% of the name prefixes, e.g., 4 name
prefixes in the 41-node topology and 10 name prefixes in the
99-node topology. This is a rather crude approximation of the
“network effect” – the larger the network, the more resources
a consumer can retrieve and the more people with which the
consumer may want to communicate.

Figure 9(a) shows the delay stretch as a function of the
number of links in the topology3. The four Internet-derived
topologies have rather small delay stretches close to 1, much
smaller than that for the 22-node testbed network, perhaps
because they have richer connectivity as indicated by their

2Topological changes such as node failures and recoveries may change the
paths probes take and affect the probing overhead accordingly, but path length
differences are small in highly connected networks.

3The two ends of a box represent the 25th and 75th percentile values
and the whiskers extend the box by 1.5 times the interquartile range or
to the most extreme data value in that range. The lower end of the delay
stretch is sometimes below 1 because of small variations in RTT in different
experiments. For example, a ping packet in the LS experiment may have
experienced some queuing delay but the corresponding packet in the HR
experiment may have had an un-congested path.

a) Delay Stretch

b) Message Overhead

Fig. 9. HR Performance as a Function of Increasing Network Size (Sequential
Failure of 10 Most Connected Nodes and α = 10%)

higher average degree (from 7.56 to 8.93) compared to the
testbed topology (4.55). The richer the network connectivity,
the smaller the difference between the best path and subopti-
mal paths and the easier it is for the forwarding plane to find
alternative paths to get around loops and failures.

Figure 9(b) shows that the message overhead of HR is much
lower than that of LS in all the topologies. From the 22-node to
the 99-node topology, HR’s overhead grows very slowly from
0.33 packets/sec to 0.6 packets/sec and LS’s overhead grows
from 2.80 packets/sec to 44.32 packets/sec. More specifically,
the LS overhead first increases linearly until 345 links (78-
nodes) and then increases sharply from 345 links to 442 links
(99-nodes). Our results suggest that HR scales much better
than LS while achieving similar data delay as LS.

VI. RELATED WORK

Yi et al. ([2], [3]) have shown that NDN’s adaptive forward-
ing plane can detect and recover from link failures quickly and
can enable the use of routing protocols that were previously
viewed as unsuitable for real networks. This is one of the
reasons why HR may work well in NDN and help address its
routing scalability problem (Section I).

We made the decision to develop our own ASF strategy,
because currently proposed and implemented strategies, in-
cluding the one proposed in Yi et al.’s work ([2], [3]), are
either not available in NFD or do not sufficiently meet our
requirements (Section IV). Note that our objective for this
work is not to develop the optimal strategy, but to get a
baseline performance of HR with a basic forwarding strategy;
further improvement on the strategy will lead to even better
HR performance. Our design is influenced by the following

two forwarding strategies. Chiocchetti et al. [19] developed
an ICN forwarding algorithm called INFORM which uses
probing to learn the delay between nodes; this knowledge is
then used to choose an interface to forward more effectively.
INFORM uses RTTs piggybacked on Data to get an accurate
estimate for Data retrieval. Unlike INFORM, our design does
not require changes to the Interest/Data format. Qian et al. [20]
presented an adaptive forwarding strategy that uses an ant
colony optimization based algorithm to probabilistically select
interfaces for probing. We also use past measurements to
influence the probability of picking an interface for probing,
but our algorithm is simpler and easier to analyze.

To evaluate the feasibility of HR on the NDN testbed, the
authors of [6] simulated different overlay topologies of the
NDN hub nodes by connecting each node to its m = 1, 2, 3
hyperbolically closest neighboring nodes. For each value of
m, they measured the success ratio and three types of stretch
measures, with all possible removals of one link and one node.
They found that although m = 2 is enough for a 100% success
ratio on the NDN testbed, they recommend using m = 3 for
greater reliability. Rather than making the overlay topology
more resilient under HR, our work focuses on using smart
forwarding strategy and multi-path forwarding to improve the
packet delivery ratio.

VII. CONCLUSION

We have evaluated some important scalability characteristics
of HR in NDN. HR is an attractive candidate to address
NDN routing scalability issues since it does not require the
precise full knowledge of the topological connectivity of
highly dynamic networks. Our evaluations shows that HR’s
forwarding plane overhead in such networks is much lower
than NLSR’s control overhead, while achieving similar packet
delay and loss rates. Most importantly, we have shown that
as a function of the network size, HR’s per-node message
overhead is almost constant and close to zero, versus the
usual polynomial growth experienced by traditional links-
state routing. Taken together, these results suggest that HR
has immense potential to be an extremely scalable routing
solution for NDN and possibly other networks. Yet, several
technical issues require further investigation. These include
mechanisms to compute and distribute hyperbolic coordinates
in a decentralized manner, properly taking into account link
delays.

VIII. ACKNOWLEDGMENTS

This work was supported by NSF Grants 0964236, 1040036,
1039615, 1040868, 1344495, 1345142, 1345286, 1345318,
and 1441828.

REFERENCES

[1] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, k. claffy, P. Crowley,
C. Papadopoulos, L. Wang, and B. Zhang, “Named Data Networking,”
ACM SIGCOMM Computer Communication Review (CCR), vol. 44,
no. 3, pp. 66–73, Jul 2014.

[2] C. Yi, J. Abraham, A. Afanasyev, L. Wang, B. Zhang, and L. Zhang,
“On the role of routing in named data networking,” in Proceedings of
ACM SIGCOMM ICN Conference, 2014.

[3] C. Yi, A. Afanasyev, I. Moiseenko, L. Wang, B. Zhang, and L. Zhang,
“A case for stateful forwarding plane,” Computer Communications:
Information-Centric Networking Special Issue, vol. 36, no. 7, pp. 779–
791, April 2013.

[4] F. Papadopoulos, D. Krioukov, M. Boguñá, and A. Vahdat, “Greedy
Forwarding in Dynamic Scale-Free Networks Embedded in Hyperbolic
Metric Spaces,” in IEEE INFOCOM, Mar 2010.

[5] M. Boguñá, F. Papadopoulos, and D. Krioukov, “Sustaining the Internet
with Hyperbolic Mapping,” Nature Comms, vol. 1, p. 62, 2010.

[6] R. Aldecoa and D. Krioukov, “Greedy Forwarding on the NDN Testbed,”
http://www.caida.org/research/routing/greedy forwarding ndn/, May
2014.

[7] J. Lamping, R. Rao, and P. Pirolli, “A focus+context technique based
on hyperbolic geometry for visualizing large hierarchies,” in SIGCHI,
1995, pp. 401–408.

[8] M. Gromov, Metric Structures for Riemannian and Non-Riemannian
Spaces. Boston: Birkhäuser, 2007.

[9] V. Lehman, A. M. Hoque, Y. Yu, L. Wang, B. Zhang, and L. Zhang,
“A secure link state routing protocol for NDN,” NDN, Technical Report
NDN-0037, Jan. 2016.

[10] Z. Zhu and A. Afanasyev, “Let’s ChronoSync: Decentralized dataset
state synchronization in Named Data Networking,” in Proceedings of
IEEE ICNP, 2013.

[11] R. Kleinberg, “Geographic Routing Using Hyperbolic Space,” in INFO-
COM, 2007.

[12] A. Cvetkovski and M. Crovella, “Hyperbolic Embedding and Routing
for Dynamic Graphs,” in INFOCOM, 2009.

[13] F. Papadopoulos, C. Psomas, and D. Krioukov, “Replaying the geometric
growth of complex networks and application to the AS internet,” ACM
SIGMETRICS Perf E R, vol. 40, no. 3, p. 104, 2012.

[14] ——, “Network mapping by replaying hyperbolic growth,” IEEE ACM
Transactions on Networking, vol. 23, no. 1, p. 198, 2014.

[15] F. Papadopoulos, R. Aldecoa, and D. Krioukov, “Network geometry
inference using common neighbors,” Physical Review E, vol. 92, no. 2,
p. 022807, 2015.

[16] D. Krioukov, F. Papadopoulos, M. Kitsak, A. Vahdat, and M. Boguñá,
“Hyperbolic geometry of complex networks,” Physical Review E,
vol. 82, p. 036106, 2010.

[17] F. Papadopoulos, M. Kitsak, M. A. Serrano, M. Boguñá, and D. Kri-
oukov, “Popularity versus similarity in growing networks,” Nature, vol.
489, pp. 537–540, 2012.

[18] A. Afanasyev, “Addressing operational challenges in named data net-
working through ndns distributed database,” Ph.D. dissertation, Univer-
sity of California Los Angeles, 2013.

[19] R. Chiocchetti, D. Perino, G. Carofiglio, D. Rossi, and G. Rossini, “In-
form: A dynamic interest forwarding mechanism for information centric
networking,” in Proceedings of the 3rd ACM SIGCOMM Workshop on
Information-centric Networking, 2013.

[20] H. Qian, R. Ravindran, G.-Q. Wang, and D. Medhi, “Probability-based
adaptive forwarding strategy in named data networking,” in Integrated
Network Management (IM 2013), 2013 IFIP/IEEE International Sym-
posium on, May 2013, pp. 1094–1101.

[21] K. M. Schneider and U. R. Krieger, “Beyond network selection: Ex-
ploiting access network heterogeneity with named data networking,” in
Proceedings of the 2nd International Conference on ICN, ser. ICN ’15.
New York, NY, USA: ACM, 2015, pp. 137–146.

[22] L. Chengming, L. Wenjing, and K. OKAMURA, “A greedy ant colony
forwarding algorithm for named data networking,” Proceedings of the
Asia-Pacific advanced network, vol. 34, pp. 17–26, 2013.

[23] “ndn-tools github,” https://github.com/named-data/ndn-tools.
[24] M. A. Serrano, D. Krioukov, and M. Boguñá, “Self-Similarity of

Complex Networks and Hidden Metric Spaces,” Phys Rev Lett, vol.
100, p. 78701, 2008.

[25] S. Zhou and R. Mondragon, “The Rich-Club Phenomenon in the Internet
Topology,” IEEE Commun Lett, vol. 8, no. 3, p. 180, 2004.

[26] “Mini-NDN GitHub,” https://github.com/named-data/mini-ndn.
[27] C. Kim, M. Caesar, A. Gerber, and J. Rexford, “Revisiting route caching:

The world should be flat,” in Proceedings of the 10th International
Conference on Passive and Active Network Measurement, 2009.

[28] J. Rexford, J. Wang, Z. Xiao, and Y. Zhang, “BGP routing stability
of popular destinations,” in ACM SIGCOMM Internet Measurement
Workshop (IMW), 2002.

http://www.caida.org/research/routing/greedy_forwarding_ndn/
https://github.com/named-data/ndn-tools
https://github.com/named-data/mini-ndn

	I Introduction
	II Background
	II-A NDN
	II-B NLSR
	II-C Hyperbolic Embedding

	III Hyperbolic Routing in NDN
	III-A Interest Forwarding Process
	III-B Assigning and Disseminating Hyperbolic Coordinates

	IV Adaptive SRTT-based Forwarding
	IV-A Best SRTT-based Forwarding
	IV-B Probabilistic SRTT-based Probing

	V Experiment Methodology and Results
	V-A Methodology
	V-B ASF vs. Best-Route and The Impact of Multi-path Factor
	V-C Message Overhead under Different Traffic Profiles
	V-D Stress Test: Sequential Node Failure Scenario
	V-E Scaling to Larger Topologies

	VI Related Work
	VII Conclusion
	VIII Acknowledgments
	References

