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Abstract—Social networks have been popular platforms for
information propagation. An important use case is viral mar-
keting: given a promotion budget, an advertiser can choose
some influential users as the seed set and provide them free
or discounted sample products; in this way, the advertiser hopes
to increase the popularity of the product in the users’ friend
circles by the world-of-mouth effect, and thus maximizes the
number of users that information of the production can reach.
There has been a body of literature studying the influence
maximization problem. Nevertheless, the existing studies mostly
investigate the problem on a one-off basis, assuming fixed known
influence probabilities among users, or the knowledge of the
exact social network topology. In practice, the social network
topology and the influence probabilities are typically unknown
to the advertiser, which can be varying over time, i.e., in cases
of newly established, strengthened or weakened social ties. In
this paper, we focus on a dynamic non-stationary social network
and design a randomized algorithm, RSB, based on multi-armed
bandit optimization, to maximize influence propagation over
time. The algorithm produces a sequence of online decisions
and calibrates its explore-exploit strategy utilizing outcomes of
previous decisions. It is rigorously proven to achieve an upper-
bounded regret in reward and applicable to large-scale social
networks. Practical effectiveness of the algorithm is evaluated
using both synthetic and real-world datasets, which demonstrates
that our algorithm outperforms previous stationary methods
under non-stationary conditions.

I. INTRODUCTION

Influence maximization in social networks is an important
problem that seeks the best seed users to maximize the spread
of information [1]. Prominent use cases include advertising
and viral marketing [1][2]. When a company is promoting a
new product, it can engage some influential users as seeds
in a social network, providing them samples for free or at
discounted prices. These seed users may inform their friends of
this product, and their friends will further influence other users,
and so on. Through world-of-mouth distribution, the product
will get to be known by more and more users in the social
network. As it is common for a company to have a promotion
budget, it is most beneficial to identify the best set of seeds
so as to maximize the number of users that information can
eventually reach.

The influence maximization problem has been studied on
several probabilistic cascade models. In the independent cas-
cade model [1], each node probabilistically actives (influences)
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its neighbors at each time stamp independently of the history
thus far, and a node only attempts to activate a neighbor once.
In the linear threshold model [1], a node will be activated only
when the sum of influence probabilities from its neighbors
exceeds a threshold. The influence probability in the above
models, namely the probability for node u to activate its neigh-
bor v after u has been activated, is often decided empirically
in studies designing influence maximization algorithms, e.g.,
according to inverse of the indegree of v.

Based on these information propagation models, existing
studies mostly tackle the influence maximization problem
on a one-off basis, assuming that both the social network
topology and influence probabilities are fixed and available as
input. Kempe et al. [1] prove that the influence maximization
problem is NP hard but can be approximated to within a factor
of (1 − 1

e − ε) with a greedy hill-climbing method, where ε
is any positive real number. A number of other approximation
algorithms have also been proposed to achieve near-optimal
time complexity, including CELF [3], CELF++ [4], TIM [5],
and IMM [6]. In real-world social networks, exact network
topology and influence probabilities are typically unknown to
a third party advertiser, and are time-varying. For example,
new social ties are set up when people make new friends, and
the ties can be strengthened over time when they become more
familiar; two people become connected when collaborating on
a short-term project and the tie may weaken after the project
has ended; a couple may break up and be no longer connected
in the social network. It is therefore more realistic to describe
the influence probabilities and social network topology as
non-stationary. In addition, it is often hard to determine an
accurate stochastic distribution assumption for the variance
of influence probabilities, since no assumption may exist for
human behavior.

To handle unknown underlying distributions in online op-
timization, multi-armed bandit optimization has been applied
in related scenarios. The multi-armed bandit problem [7] is
a problem in which an agent has multiple arms to choose
from, and needs to decide a policy to select an arm at each
time. When chosen, an arm provides a random reward from
an unknown distribution specific to the arm, and the agent
utilizes the outcome to update his strategy. The objective is to
maximize the overall reward in the whole time span through
selecting a sequence of arms, thus minimize regret, which is
the gap between offline optimal overall reward and the actual
overall reward the agent has obtained. The design of multi-
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armed bandit algorithms mainly focuses on how to handle the
trade-off between exploration and exploitation [8], i.e., to try
the arm that has not been attempted before (exploration) or
the arm that has brought high reward so far (exploitation).
The basic version of the multi-armed bandit problem considers
picking only one arm each time, but there are many extensions,
e.g., combinatorial bandits [9] where multiple arms are chosen
at each time. Multi-armed bandit optimization has been applied
in a wide range of problem domains, including recommenda-
tion systems [10], online wireless channel allocation [11], and
opportunistic spectrum access [12].

Multi-armed bandit optimization has also been applied to
solve the influence maximization problem with unknown in-
fluence probabilities [9][13][14]. The existing algorithms have
been relying on assumptions of the rewards to guarantee nice
theoretical bounds on regret. For example, UCB [15] assumes
that the reward distributions are stationary and obtains a regret
bound of O(T ) under the adversary settings, i.e., there is a
rival assigning the rewards against the agent. There exist some
studies dealing with non-stationary bandits [16], but none can
be readily applied to the influence maximization problem.
Detailed discussions of the existing literature in these aspects
are given in Sec. II.

This paper designs an online randomized algorithm, referred
to as RSB, based on multi-armed bandit optimization, to
maximize influence propagation in a dynamic non-stationary
social network with unknown and non-stationary influence
probabilities between pairs of users. Our algorithm design does
not assume knowledge of the social graph and the influence
probability distributions, nor requires any initialization stage.
Regardless of the concrete influence probabilities or the topol-
ogy of the social network, an O(

√
TN lnN) regret bound is

rigorously proven where T is the number of time stages in
the entire system span and N is the number of nodes. To the
best of our knowledge, this is the first influence maximiza-
tion algorithm dealing with both unknown and non-stationary
influence probabilities. We evaluate practical effectiveness of
the algorithm using both synthetic and real-world datasets,
which demonstrates that our algorithm outperforms previous
stationary multi-armed bandit algorithms under non-stationary
conditions.

The rest of the paper is organized as follows. We discuss
related work in Sec. II and present the problem model in
Sec. III. In Sec. IV and Sec. V, we present the detailed online
algorithm and provide theoretical analysis of its regret bound.
Simulation results are presented in Sec. VI. We conclude the
paper in Sec. VII.

II. RELATED WORK

A. Influence Maximization with Bandit Optimization

Recently, multi-armed bandit optimization has been applied
to solve influence maximization problem with incomplete
information of the social network. In particular, combinatorial
bandits are highly correlated to the influence maximization
problem, where the decision-making agent needs to select
multiple arms in each time stage. Chen et al. [9] define

a general bandit framework to deal with both linear and
non-linear reward functions. Applying the upper confidence
bound approach, they achieve a regret with a mild logarithmic
dependence on the total number of time stages. One appli-
cation of their framework is social influence maximization
with unknown influence probabilities. However, the reward
of each arm must be an i.i.d random process, i.e., the
reward distribution is stationary over time. Lei et al. [13]
present an online influence maximization framework utilizing
exploration-exploitation for seed selection and strategy updat-
ing. They assume that all connections in the social network are
known and only evaluate the performance of their algorithm
experimentally without any theoretical analysis.

Targeting news delivery, Massoulié et al. [17] propose a
greedy Bayesian approach in bandit optimization to identify
all posteriori interested users for delivering fresh news of
unknown topics, spamming least uninterested users at the same
time. Their regret bound is logarithmical with the number
of users. In each time stage, the news is pushed to only
one user, and their approach cannot be readily extended to
combinatorial scenarios. Yue et al. [18] model personalized
news recommendation using linear submodular bandits under
stationary probability distributions. Lin et al. [19] develop
a more general bandit optimization algorithm for a class of
problems using greedy methods, guaranteeing a good approx-
imation ratio. However, they still only consider stochastic
rewards with stationary distributions.

B. Multi-Armed Bandit with Non-Stationary Rewards

The simplest idea to tackle non-stationary rewards is to
decrease the weights of earlier feedback in next-step decision
making [20]. The problem it may lead to is that without
sufficient feedback information, it is hard to achieve a good
accuracy of reward estimation. Some algorithm designs as-
sume abrupt changes of the distributions occurring at arbitrary
intervals [21], and allow the agent to query a set of arms
not picked before and obtain outcomes as if these arms were
played. This assumption is reasonable in a stock market, i.e.,
people can acquire information of stocks they have never
purchased by following bearish or bullish trends, but not for
influence propagation, where there is no channel to obtain
outcomes of untried arms. Besbes et al. [22] assume that the
total variation of the rewards is given and design a randomized
algorithm based on Exp3, which assigns exponential weights
to arms for exploration and exploitation in adversary bandit
[23]. Only one arm is selected in each time stage, while we
focus on the case of combinatorial bandits. It is non-trivial to
extend the algorithm to combinatorial scenarios.

Gai et al. [24] study non-stationary bandit optimization
under the assumption that the state of a selected arm evolves
as an irreducible finite-state Markov process with unknown
transition matrix, while the distributions of other arms stay
unchanged (rested arms). Their work is applicable to many
graph theory problems, e.g., channel allocation in cognitive
radio networks. However, assuming rested arms is not realistic
in influence propagation in social networks. The same authors



further investigate restless bandits with Markov rewards [11],
where the states of an arm evolve dynamically over time
no matter whether it has been played. The algorithm utilizes
regenerative property of a Markov chain and achieves a regret
near logarithmic on the total number of time stages. Both
studies rely on an initialization stage, in which each arm
is tried for at least once. This is impractical for influence
propagation (e.g., market campaign) in a large-scale network,
as the cost of trying all nodes is unaffordable. Granmo et
al. [25] use Kalman filter to update estimation of the reward
distribution, and evaluate their results by simulation without
theoretical analysis. Kalman filter is only applicable to linear
dynamic system and the states inherently form a Markov chain.
It is not realistic to make the Markov chain assumption in
influence propagation, since human behavior does not simply
depend on one’s latest status.

III. PROBLEM MODEL

We model the social network as an influence graph G =
(N , E). N = {1, 2, . . . , N} is the set of users (nodes),
where N is the total number of nodes. E is the set of
social connections among the nodes. An unknown influence
probability ptn,m is associated with each edge (n,m) ∈ E ,
which is time varying following an unknown, non-stationary
distribution: after user n is activated (e.g., obtained information
of a product), he may activate his neighbor m (e.g., share
information of the product) with different probabilities at
different time stages t. In this way, each edge (n,m) is
associated with a non-stationary Bernoulli distribution: in t,
user n may activate his neighbor m with probability ptn,m,
or not with probability 1 − ptn,m. We do not assume any
cascade model of the information propagation system (e.g.,
independent cascade model or linear threshold model), and
our algorithm works with various cascade models as long as
the information spread brought by an activate node can be
modeled as a random variable.

Let T be the total number of time stages that the system
spans. In each time stage, a set of K seeds are selected as
information sources (e.g., the seed users that an advertiser
directly promotes the product to, whose number is decided by
the promotion budget), from which the information spreads to
other nodes in the network. The seed set is repeatedly selected
over different time stages. For example, a company may carry
out a promotion campaign for a series of time stages, e.g.,
a number of consecutive days. After the promotion in each
time stage via a potentially different set of seeds, the company
collects statistics on the number of purchases of their promoted
product(s) and utilizes this feedback to update its seed selec-
tion strategies in later time stages. The goal is to maximize
the expected overall influence spread in the whole time span
1, 2, . . . , T , i.e., the expected total number of activated nodes.
Let M be the collection of all subsets of N . In our bandit
optimization framework, we define a|S, meaning node a under
a given set S ∈ M, as an arm. The expected reward of
selecting an arm a|S is the expected marginal gain by adding
a into the existing seed set S, i.e., the expected additional

number of activated users after we add a into S. Let ft(S)
be an influence spread function in time stage t, indicating the
total number of activated nodes in t based on seed set S. The
value of ft(S) is a random variable. The expectation E[ft(S)]
is non-negative, monotone and submodular, as proven in [26].
The submodularity of the spread function is useful such that
we can utilize the benchmark based on greedy optimal value.
The expected reward of selecting an arm a|S in t is hence
E[ft(S ∪ {a})] − E[ft(S)]. Note that the expectation E[·] is
taken over both randomized rewards and randomized policies,
where a policy refers to the agent’s strategy for seed selection,
which is random given the random nature of our algorithm.1

In each time stage t, starting from an empty set St = ∅, we
obtain a seed set of size K by adding nodes to St one by one
in some order. Let St = (a1

t , . . . , a
K
t ) be the completed seed

set, in which the kth element is the kth seed selected in this
time stage. Let S(1:k−1)

t represent the selected seed set with
elements 1, . . . , k − 1, and akt |S

(1:k−1)
t mean that node akt is

selected as the kth seed in t given previous choices in S(1:k−1)
t .

Let r̄kt (akt |S
(1:k−1)
t ) = E[ft(S

(1:k−1)
t ∪{a})]−E[ft(S

(1:k−1)
t )]

denote the expected marginal gain of choosing akt as the kth

seed in t. The expected total reward in time stage t is r̄t(St) =∑K
k=1 r̄

k
t (akt |S

(1:k−1)
t ) = E[ft(St)].

In this model, maximizing the expected total number of
activated nodes in 1, . . . , T is equivalent to maximizing the
expected overall reward in the entire span,

∑T
t=1 r̄t(St) =∑T

t=1 E[ft(St)]. It is further equivalent to minimizing the
regret, the gap between the expected overall reward that the
agent can obtain by running our online algorithm and the
offline optimal expected overall reward computed using full
knowledge of the system. In our algorithm design, we aim to
minimize the weak regret, i.e., the gap between the expected
overall reward achieved by our algorithm and the offline ex-
pected overall reward achieved by using the same best seed set
S∗ in all time stages, namely S∗ ∈ arg max

S∈M

∑T
t=1 E[ft(S)],

computed based on full knowledge of the entire system. Such
a weak regret is the difference between the expected overall
reward obtained by our algorithm and that achieved by the best
single action, i.e., sticking with one seed set in all time stages.
Weak regret is commonly used in the literature on analysing
non-stationary bandit algorithms [24][11][12][27], and the
key ingredient is to form accurate estimates on the average
condition for each arm [28], so as to find the arm performing
best in a long term. In particular, we analyze a greedy weak
regret, with detailed definition given in Definition 2 in Sec. V,
that compares the expected overall reward produced by our
algorithm with the lower bound of an approximate offline
overall reward achieved by a single best seed set derived by
a greedy approach. Greedy weak regret is a concept narrowed
down from weak regret, when the best single action is decided
by a greedy algorithm. We apply this notion so as to compare
with the lower bound of the greedy optimal value.

1Although [26] does not consider randomized policies, the submodularity
of E[ft(S)] still holds following results in [26], as expectation over policies
is a linear combination of submodular functions.



TABLE I: Notation

N # of nodes

N the set of nodes

M the collection of subsets of N
T the total number of time stages

C input parameter to Alg. 1

K the size of seed set

γ input parameter to Alg. 1

S
(1:k−1)
t the set containing the first k− 1 selected seeds in t

a|S(1:k−1)
t an arm in t, selecting node a given S(1:k−1)

t

ft(S) the influence spread of seed set S in t

rkt (a|S(1:k−1)
t ) reward of choosing a as kth seed based on S(1:k−1)

t
in t

r̄kt (a|S(1:k−1)
t ) expected reward of choosing a as kth seed based on

S
(1:k−1)
t in t

RegG(T ) greedy weak regret in the whole system span

Regk(t) position weak regret for the kth seed in t

akt selected node as kth seed in t

ãk optimal node as kth seed in all time stages

E[·] expectation taken over both random policies and
random rewards

OPT the offline maximal value of the expected overall
reward

IV. RSB: RANDOMIZED MULTI-ARMED BANDIT
ALGORITHM FOR NON-STATIONARY SOCIAL NETWORKS

Main Idea. We next design an online multi-armed bandit
algorithm to minimize the greedy weak regret. In each time
stage, we select the best seed set by sequentially selecting the
next best node given previous seed decisions. Given the set of
already selected seeds, we associate weights with candidate
arms, and deal with the varying environment (time-varying
underlying distributions of influence probabilities) by adjusting
the weights of arms based on rewards received due to previous
seed selection (the exploitation component of our algorithm).
Besides, we also include a constant γ

N in the weight of each
arm, where γ ∈ (0, 1] is a gaugeable value, in order to
enable exploration of arms never tried before. Different from
deterministic stationary bandit algorithms, our algorithm is
randomized in arm selection according to the weights, and
hence even if the environment changes abruptly, the algorithm
still has a chance to switch to the new best arm.
Algorithm Steps. Our multi-armed bandit algorithm for se-
lecting the best seed set in each time stage t is given in Alg. 1.
Here wn|S

(1:k−1)
t

t is the weight for selecting node n as the kth

seed in time stage t, while the set of already selected seeds in
t is S(1:k−1)

t . vn|S
(1:k−1)
t

t is an auxiliary quantity to compute
the weights, updated based on the past reward information of
arm n|S(1:k−1)

t , as an exploration measure. qn|S
(1:k−1)
t

t is the
probability of playing arm n|S(1:k−1)

t in t, derived from the
weights of the arms. rkt (a|S(1:k−1)

t ) denotes the realization
of the reward (actual marginal influence spread) by choosing
node a as the kth seed in t. C is an input parameter to the

algorithm, which satisfies C ≥ γrkt (n|S)

Nqkt (n|S)
,∀n ∈ N , S ∈M.

In Alg. 1, the K seeds are selected sequentially (line 3). The
weights w associated with the nodes should be equal at the
beginning of each time stage, and adjusted based on updated
v, each time after the seed set has been updated (lines 4-6).
The computation of wn|S

(1:k−1)
t

t aims to balance exploitation
and exploration: the first term is calculated based on past
reward information (exploitation) and the second constant term
is assigned for each arm no matter how many times it has
been tried (exploration). Next, the probability for adding an
additional node into the already selected set of seeds is decided
by normalizing its weight over the weights of all the remaining
nodes not in the existing seed set (lines 7-9). An arm is
randomly selected according to the probability distribution and
a reward a|S(1:k−1)

t is observed (lines 10-12), e.g., the addi-
tional number of product purchases received by promoting to
node a is collected. We then update vn|S

(1:k−1)
t

t by multiplying
an exponential factor (line 16), decided by r̂kt (a|S(1:k−1)

t ),
which can be understood as an unbiased estimation of the
reward of the arm. Computing r̂kt (a|S(1:k−1)

t ) by dividing the
actual reward by the probability of selecting the arm (line 13)
compensates the reward of actions with less probability to be
chosen and guarantees that the expectation of the estimated
reward and the actual reward are equal, when the expectation is
taken over both randomized policies and randomized rewards.
This equality helps us to derive the expected reward of RSB
in the proof. The updated weights will be used in selecting
future seeds in this time stage.

We will evaluate the impact of the input parameter γ
under practical settings in simulations. The input parameter
C is related to the largest spread brought by a seed, which
is unknown before running the algorithm. In fact, requiring
C ≥ γrkt (n|S)

Nqkt (n|S)
is only needed for regret analysis. We can

set the value of C empirically when running the algorithm in
practice, and will evaluate the performance of the algorithm
under an empirical value of C in simulations, which does not
necessarily satisfies the above condition.

We note that our algorithm does not rely on any knowledge
of the underlying social network topology and the influence
probabilities, but only utilizes the outcomes that are decided
by them. In addition, although the entire space of arms,
a|S, ∀a ∈ N , S ∈M, is exponential, the number of arms that
need to be dealt with in each time stage in Alg. 1 (weights
and probabilities computed and used in seed selection) is still
polynomial, as given in the following theorem.

Theorem 1. The time complexity of Alg. 1, executed in each
time stage t, is O(KN).

Proof: In each time stage t, we select K seeds. When
selecting the kth seed based on already selected seeds in
S

(1:k−1)
t , we compute/update weights, and compute selection

probabilities for at most N arms corresponding to N nodes in
the network. Therefore, the time complexity is O(KN).



Algorithm 1 RSB: Randomized Sequential Multi-armed Ban-
dit Algorithm for Non-Stationary Networks

Input: N , K, C, γ
Output: the seed set S(1:K)

t for each time stage t

1: set vn|S
(1:k−1)
1

1 = 1, ∀n ∈ N , k = 1, . . . ,K
2: for t = 1, 2, . . . , T do
3: for k = 1, 2, . . . ,K do
4: for each node n ∈ N do

5: set wn|S
(1:k−1)
t

t = (1− γ)
v
n|S(1:k−1)

t
t∑

n′∈N
v
n′|S(1:k−1)

t
t

+ γ
N

6: end for
7: for each node n ∈ N\S(1:k−1)

t do

8: q
n|S(1:k−1)

t
t =

w
n|S(1:k−1)

t
t∑

n′∈N\S(1:k−1)
t

w
n′|S(1:k−1)

t
t

9: end for
10: draw an arm a|S(1:k−1)

t according to the distribu-

tion {qn|S
(1:k−1)
t

t }
n∈N\S(1:k−1)

t

11: receive a reward rkt (a|S(1:k−1)
t )

12: set S(1:k)
t = S

(1:k−1)
t ∪ {a}

13: set r̂kt (a|S(1:k−1)
t ) =

rkt (a|S(1:k−1)
t )

q
a|S(1:k−1)

t
t

14: for all n ∈ N\{a}, set r̂kt (n|S(1:k−1)
t ) = 0

15: for each arm n|S(1:k−1)
t , ∀n ∈ N do

16: update v
n|S(1:k−1)

t+1

t+1 =

v
n|S(1:k−1)

t
t exp {γr̂

k
t (n|S(1:k−1)

t )
NC }

17: end for
18: end for
19: end for

V. REGRET ANALYSIS

We next analyze an upper bound of the greedy weak regret
achieved by Alg. 1. Let OPT denote the offline maximal value
of the expected overall reward

∑T
t=1 r̄t(S) =

∑T
t=1 E[ft(S)]

over all S ∈ M, computed based on complete knowledge
of the influence probability distributions and the social graph
topologies in 1, . . . , T . Let S∗ be the offline optimal seed set,
i.e., the single best seed set that maximizes

∑T
t=1 r̄t(S).

A. Reduction from Greedy Weak Regret to Position Weak
Regret

We define a position optimal reward OPT k as the sum
of the expected marginal gains achieved by using the best
kth seed in all time stages. The best kth seed maximizes∑T
t=1 r̄

k
t (a|S(1:k−1)

t ) based on full knowledge of the system,
given the first k− 1 seeds in S(1:k−1)

t in each t derived using
RSB. The idea is to reduce the original problem of finding
the best solution of the full set to a parallel bandit setting,
finding the best kth element under the condition determined
by our algorithm. Let ãk denote this optimal kth seed, i.e.,
ãk ∈ arg max

a∈N

∑T
t=1 r̄

k
t (a|S(1:k−1)

t ). Such a best kth seed

may form different arms, ãk|S(1:k−1)
t , under different seed

sets S
(1:k−1)
t in different time stages. We have OPT k =

max
a∈N

∑T
t=1 r̄

k
t (a|S(1:k−1)

t ) =
∑T
t=1 r̄

k
t (ãk|S(1:k−1)

t ).

Definition 1. The position weak regret for the kth seed is

Regk(T ) =

T∑
t=1

r̄kt (ãk|S(1:k−1)
t )−

T∑
t=1

r̄kt (akt |S
(1:k−1)
t )

where ãk ∈ arg max
a∈N

∑T
t=1 r̄

k
t (a|S(1:k−1)

t ) and akt |S
(1:k−1)
t is

the arm selected by Alg. 1 in time stage t. The conditional set
S

(1:k−1)
t is also decided by Alg. 1.

The following theorem states the relationship between po-
sition weak regret and OPT , which will be used to bound the
greedy weak regret in Theorem 3. Its proof can be found in
Appendix A.

Theorem 2. For any position k = 1, 2, . . . ,K, we have

T∑
t=1

(
r̄t(S

(1:k)
t )− r̄t(S(1:k−1)

t )
)

≥ 1

K

(
OPT −

T∑
t=1

r̄t(S
(1:k−1)
t )

)
−Regk(T ).

Let F (S) =
∑T
t=1 E[ft(S)], ∀S ∈ M, which denotes

the expected overall influence spread over the whole sys-
tem span. F (S) is a submodular function since it is the
summation of submodular functions E[ft(S)],∀t = 1, . . . , T .
Then we can design a greedy approach to compute a S
that approximately maximizes the expected overall reward∑T
t=1 r̄t(S) =

∑T
t=1 E[ft(S)] based on full knowledge of the

system: after deciding S(1:k−1), we select a local optimal node
as the kth seed, that maximizes the expected marginal influence
spread, i.e., node u such that u ∈ arg max

v∈N\S(1:k−1)

{F (S(1:k−1) ∪

{v})−F (S(1:k−1))}. We can easily prove that the approximate
offline solution computed this way achieves an approximation
ratio of 1− 1

e , i.e., the expected overall reward it achieves is
at least (1 − 1

e )OPT , following Theorem 3.5 in [26], based
on submodularity of the spread function and local optimality
when selecting each seed. The reason that we compute this
approximate offline solution using the greedy approach (which
runs in polynomial time) is that computing S∗ has been shown
to be an NP hard problem [1].

Using the approximate offline overall reward computed as
above, we define a greedy weak regret as follows, which we
use to evaluate the performance of our algorithm RSB.

Definition 2. The greedy weak regret is defined as the gap
between the lower bound of the approximate offline overall
reward derived by the greedy approach and the expected
overall reward produced by RSB in Alg. 1, i.e.,

RegG(T ) = (1− 1

e
)OPT −

T∑
t=1

r̄t(S
(1:K)
t ).



The following theorem shows that the overall position weak
regret provides an upper bound of the greedy weak regret. The
proof can be found in Appendix B.

Theorem 3. The greedy weak regret is upper bounded by
the sum of position weak regrets over all positions k =
1, 2, . . . ,K, i.e.,

RegG(T ) ≤
K∑
k=1

Regk(T ).

Based on Theorem 3, we seek to bound the position weak
regret for each k, in order to derive an upper bound of
RegG(T ).

B. Bounding Greedy Weak Regret

According to Definition 1, the position weak regret for the
kth seed is

Regk(T ) =

T∑
t=1

rkt (ãk|S(1:k−1)
t )−

T∑
t=1

rkt (akt |S
(1:k−1)
t )

= max
n∈N

T∑
t=1

rkt (n|S(1:k−1)
t )−

T∑
t=1

rkt (akt |S
(1:k−1)
t ).

Let D be the upper bound of the realization of reward, i.e.,
rkt (n|S) ≤ D, ∀n ∈ N , S ∈ M. The following theorem
states an upper bound of the position weak regret for each k.
In particular, if γ is set to a special value, it can minimize the
regret bound. The proof can be found in Appendix C.

Theorem 4. Let Rkmax = max
n∈N

∑T
t=1 r̄

k
t (n|S(1:k−1)

t ) be the

expected overall reward achieved by selecting the best kth

arm given S
(1:k−1)
t ,∀t = 1, . . . , T , derived by Alg. 1. Let

RkRSB =
∑T
t=1 E[rkt (akt |S

(1:k−1)
t )] denote the expected over-

all marginal gain obtained by adding the kth seeds into the
given S(1:k−1)

t ,∀t = 1, . . . , T . For any parameter γ ∈ (0, 1],
we have

Regk(T ) = Rkmax −RkRSB

≤ (1 + (e− 2)
D

C
)γRkmax +

NC lnN

γ
.

If we set γ = min{1,
√

NC lnN
(1+(e−2) D

C )g
} where constant g ≥

Rkmax, ∀k = 1, . . . ,K, we have the following minimum upper
bound

K∑
k=1

Regk(T ) ≤ 2K

√
1 + (e− 2)

D

C

√
gCN lnN.

Corollary 1. The greedy weak regret achieved by Alg. 1 is
upper bounded as follows:

RegG(T ) ≤ 2K

√
1 + (e− 2)

D

C

√
DCTN lnN,

i.e., the upper bound of the greedy weak regret of Alg. 1 is
O(
√
TN lnN).

It shows that our greedy weak regret is sublinear with both
N and T . The proof can be found in Appendix D.

VI. PERFORMANCE EVALUATION

A. Data Sets

1) Tencent Weibo Traces: We produce a dynamic social
network based on Tencent Weibo2 traces containing the fol-
lowing links among 4257 users for 7 consecutive days during
November 2011. Each directed following link (n,m) indicates
that user n follows user m [29]. The links among the users
vary from one day to the next, giving a dynamic social graph.
To prolong the trace duration, we further repeat the variation
of the social graph on 7-day cycles to form a 100-day duration
(T ), which we believe reasonable since human behavior may
well follow a weakly periodicity.

2) Synthetic Data: As Weibo traces only provide the dy-
namic behavior of a specific social network, we also generate
a synthetic dynamic social network by combining the model in
[30] with the Erdős-Rényi model and preferential attachment:
we generate an initial graph with 5000 nodes and connect
each pair of node with probability 0.005 (a directed link);
then in each time stage, we select 1000 edges uniformly
and change their heads to other nodes randomly picked with
probabilities proportional to their indegrees. In this way, we
generate a sequence of social graphs for T = 100 time stages.
Preferential attachment is a representative mechanism to model
the topology of a social network, that the more connected a
node is, the more likely it is to receive new links.

B. Time-varying Influence Probabilities

We employ the following three models to generate nonuni-
form and time-varying influence probabilities in a social graph.
• The Weighted Cascade (WC) model [1]: the influence

probability ptn,m of edge (n,m) at time t is 1
dtm

, where
dtm is the indegree of node m at t. The probabilities are
varying due to the changes of links in a dynamic social
graph.

• The Trivalency (TR) model [31]: in each time stage, the
influence probability of an edge in the social graph is
assigned a value among {0.1, 0.01, 0.001} uniformly
randomly, corresponding to three types of social ties -
strong, medium and weak. The assigned probability on
an edge may change from one time stage to the next.

• A Fluctuating Reward (FR) model. We design this model
such that influence probabilities evolve over time in a
similar fashion as a sinusoidal wave (also similar to that
used in [32]): the influence probability of each edge starts
from a random value drawn uniformly within [0, 0.1];
then in each time stage, it increases or decreases at a
constant rate 0.3

T until reaching the largest value 0.1 or
the smallest value 0.

C. Schemes for Comparison

We compare RSB with a random algorithm and OG-UCB
proposed in [19]. With the random algorithm, the agent always
selects a seed uniformly randomly among all candidate nodes.
OG-UCB is designed for stationary scenarios, which associates

2http://t.qq.com/



a confidence bound with each arm and chooses the arm with
the highest upper confidence bound greedily.

We note that although a number of bandit algorithms have
been proposed for influence maximization (as discussed in
Sec. II-A), most are not directly comparable since they run
with the complete knowledge of a social network. We compare
with OG-UCB since it is the only existing bandit algorithm
without requiring knowledge of the social graph topology. In
addition, the bandit algorithms designed for non-stationary
systems in Sec. II-B either deal with 1 arm or assume Markov
rewards, and hence cannot be readily extended for comparison.

In computing greedy weak regret, we also compute the
approximate offline optimal overall reward by the greedy
offline algorithm discussed before Definition 2 in Sec. V.

D. Evaluation Results

To show greedy weak regret values in a unified range in
our figures, we plot the ratio between greedy weak regret
and the approximate offline optimal overall reward, i.e.,
approx. offline opt. overall reward−overall reward by RSB

approx. offline opt. overall reward .
Especially, a data point at a specific T represents the above
ratio computed using overall rewards in [1, T ]. We set K = 5,
γ = 0.2 (default), D = 120 and C = 1 in our experiments.

Fig. 1–Fig. 4 show the results obtained using synthetic data
or Tencent Weibo traces under different time-varying models
of influence probabilities. We observe that the regret ratios
(and hence information spread) achieved by RSB and the
random algorithm are usually similar at the early stages of
the system, when RSB has not cumulated much feedback.
RSB gets better than the other algorithms (lower regret and
hence better spread) after more time stages, validating that
RSB can improve with more feedback received from the real
system. Besides, OG-UCB performs the worst especially with
the ongoing of time, showing that it is only suitable for fixed
influence probability distributions and does not work well in
cases of time-varying influence probabilities. The increase of
cumulative regret by RSB with the increase of time stages, if
any, is always slower than that of the other algorithms.

In Fig. 5, we compare the regret ratios of RSB achieved
under different values of input parameter γ, using Tencent
Weibo traces under the FR model. From line 5 of Alg. 1, we
can see γ = 0 represents pure exploitation and γ = 1 indicates
pure exploration. Although Theorem 4 requires γ > 0 for the
bound to be meaningful, we can still test the extreme case
that γ = 0 when running the algorithm in practice. RSB
performs worst in these extreme cases. γ∆ = 0.18 is computed
following the formula in Theorem 4 which minimizes the
theoretical upper bound. We observe that γ∆ achieves near-
lowest regrets in actual execution of our algorithm under
practical settings as well.

In Fig. 6, we evaluate the impact of different graph sizes N ,
by extracting subgraphs of different sizes using Tencent Weibo
traces. We observe that the regret is larger in larger networks,
but it always improve when the system runs for longer period
of time.

VII. CONCLUSION

This paper investigates online influence maximization in dy-
namic social networks with non-stationary influence probabil-
ity distributions among participants. We design a randomized
algorithm based on multi-armed bandit optimization to guide
source selection for information dissemination over multiple
time stages, aiming to maximize the overall spread over the
system span. The algorithm is simple and neat, relying on
carefully designed, continuously updating preferences on seed
selection, which exploit real-world feedback from previous
decisions, as well as explore new choices. As the first in
the literature, the algorithm does not require knowledge of
the dynamic social graph topology, nor time-varying influence
probabilities, but is able to achieve an upper-bounded weak
regret, as compared to an approximate offline optimal reward.
Simulations based on both synthetic and real-world datasets
further validate that our algorithm is more adaptive to a
changing environment than heuristic and stationary bandit al-
gorithms. In addition, our algorithm is also applicable to many
other real-world problems such as advertisement placement
[9], as long as the reward functions are submodular or there
exists an approximate offline algorithm that can achieve an
approximation ratio of (1 − 1

e ). In future work, we seek
to apply similar algorithms to solve the other real-world
problems.
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Fig. 1: Synthetic data and WC model.
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Fig. 2: Synthetic data and TR model.
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Fig. 3: Synthetic data and FR model.
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Fig. 4: Tencent Weibo trace and FR
model: γ = 0.2.
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APPENDIX A
PROOF OF THEOREM 2

Proof: At any time t, given fixed S(1:k−1)
t , there exists a

node a ∈ S∗ so that a ∈ arg max
a∈S∗

∑T
t=1 r̄

k
t (a|S(1:k−1)

t ). Then

a can satisfy the following inequality.

T∑
t=1

r̄kt (a|S(1:k−1)
t ) =

T∑
t=1

(
r̄t(S

(1:k−1)
t ∪ {a})− r̄t(S(1:k−1)

t )
)

≥ 1

K

( T∑
t=1

r̄t(S
∗ ∪ S(1:k−1)

t )−
T∑
t=1

r̄t(S
(1:k−1)
t )

)
(1)



≥ 1

K

( T∑
t=1

r̄t(S
∗)−

T∑
t=1

r̄t(S
(1:k−1)
t )

)
The inequality (1) holds because of pigeonhole principle.

As we can select node a with the largest total marginal gain
over the whole time period, its marginal reward is equal or
larger than the mean value of all nodes belonging to S∗.

Note that although r̄kt (a|S(1:k−1)
t ) is the expectation taken

of random policy’s actions, the optimal solution is determinis-
tic thus r̄kt (a|S(1:k−1)

t ) reduces to the expectation of random
reward only here.

Let ãk be the selected seed with full information fixing
S

(1:k−1)
t , i.e., it maximizes the total marginal gain which is

equal or larger than
∑T
t=1 f

k
t (a|S(1:k−1)

t ), ∀a ∈ N under the
conditional set S(1:k−1)

t . Thus we have

T∑
t=1

r̄kt (ãk|S(1:k−1)
t ) ≥ 1

K

( T∑
t=1

r̄t(S
∗)−

T∑
t=1

r̄t(S
(1:k−1)
t )

)
.

Define ∆(r̄kt ) = r̄t(S
(1:k)
t )− r̄t(S(1:k−1)

t ). Noting that

T∑
t=1

r̄kt (ãk|S(1:k−1)
t )−Regk(T ) =

T∑
t=1

r̄kt (akt |S
(1:k−1)
t )

which is the expected value of marginal gain by adding akt to
S

(1:k−1)
t . This implies that

T∑
t=1

∆(r̄kt ) =

T∑
t=1

r̄kt (ãk|S(1:k−1)
t )−Regk(T ).

Then we have
T∑
t=1

∆(r̄kt ) ≥ 1

K

(
OPT −

T∑
t=1

r̄t(S
(1:k−1)
t )

)
−Regk(T ).

APPENDIX B
PROOF OF THEOREM 3

Proof: We prove the following inequality for each posi-
tion k by induction.

OPT −
T∑
t=1

r̄t(S
(1:k)
t ) ≤ (1− 1

K
)kOPT +

k∑
m=1

Regm(T )

(2)

The base case k = 0 is trivial. In the induction, let

Zk = OPT −
T∑
t=1

r̄t(S
(1:k)
t ) = OPT −

k∑
m=1

T∑
t=1

∆(r̄mt ).

Thus Zk = Zk−1 −
∑T
t=1 ∆(r̄kt ).

According to Theorem 2, we know that
T∑
t=1

∆(r̄kt ) ≥ 1

K
Zk−1 −Regk(T ).

Then we have Zk ≤ (1− 1
K )Zk−1 +Regk(T ).

Combining with the induction hypothesis, we can obtain the
inequality 2. By taking k = K and using (1− 1

K )K < 1
e , we

have
T∑
t=1

r̄t(S
(1:K)
t ) ≥ (1− 1

e
)OPT −

K∑
k=1

Regk(T ).

Combining with Definition 2, the proof is completed.

APPENDIX C
PROOF OF THEOREM 4

Proof: We show the following trivial facts derived from
the definitions where a|S(1:k−1)

t is the selected arm in Alg. 1.

q
n|S(1:k−1)

t
t ≥ wn|S

(1:k−1)
t

t , ∀n ∈ N\S(1:k−1)
t

N∑
n=1

w
n|S(1:k−1)

t
t r̂kt (n|S(1:k−1)

t )

≤ wa|S
(1:k−1)
t

t

rkt (a|S(1:k−1)
t )

w
a|S(1:k−1)

t
t

≤ rkt (a|S(1:k−1)
t ) (3)

N∑
n=1

w
n|S(1:k−1)

t
t (r̂kt (n|S(1:k−1)

t ))2

≤ wa|S
(1:k−1)
t

t

rkt (a|S(1:k−1)
t )

w
a|S(1:k−1)

t
t

r̂kt (a|S(1:k−1)
t )

≤ D
N∑
n=1

r̂kt (n|S(1:k−1)
t ). (4)

We will prove the inequality under any position k. In the
end we will illustrate that it still holds for the whole K− size
seed set. Under the conditional set S(1:k−1)

t , ∀t = 1, 2, . . . , T .

Let Vt =
∑N
n=1 v

n|S(1:k−1)
t

t . Then for all actions in Algorithm
1, we have

Vt+1

Vt
=

N∑
n=1

v
n|S(1:k−1)

t+1

t+1

Vt

=

N∑
n=1

v
n|S(1:k−1)

t
t

Vt
exp {γr̂

k
t (n|S(1:k−1)

t )

NC
}

=

N∑
n=1

w
n|S(1:k−1)

t
t − γ

N

1− γ
exp {γr̂

k
t (n|S(1:k−1)

t )

NC
}

≤
N∑
n=1

w
n|S(1:k−1)

t
t − γ

N

1− γ
[1 +

γr̂kt (n|S(1:k−1)
t )

NC

+ (e− 2)(
γr̂kt (n|S(1:k−1)

t )

NC
)2] (5)

≤ 1 +
γ
NC

1− γ
rkt (a|S(1:k−1)

t )

+
(e− 2)( γ

NC )2

1− γ
D

N∑
n=1

r̂kt (n|S(1:k−1)
t ). (6)



The inequality (5) uses the fact that ex ≤ 1 +x+ (e−2)x2

for x ≤ 1 and the inequality (6) is derived by the facts (3) and
(4). Using the inequality 1 + x ≤ ex and taking logarithms,
we have

ln
Vt+1

Vt
≤

γ
NC

1− γ
rkt (a|S(1:k−1)

t )

+
(e− 2)( γ

NC )2D

1− γ

N∑
n=1

r̂kt (n|S(1:k−1)
t ).

Let rkRSB =
∑T
t=1 r

k
t (akt |S

(1:k−1)
t ) and thus RkRSB =

E[rkRSB ]. Then summing over t, we can get all reward obtained
by the agent over period 1, . . . , T for the position k as follows.

ln
VT+1

V1
≤

γ
NC

1− γ
rkRSB

+
(e− 2)( γ

NC )2D

1− γ

T∑
t=1

N∑
n=1

r̂kt (n|S(1:k−1)
t )

For any node nj ∈ N whatever the agent selects it, we have

ln
VT+1

V1
≥ ln

v
nj |S(1:k−1)

T+1

T+1

V1
.

Since v
nj |S(1:k−1)

T+1

T+1 = v
nj |S(1:k−1)

1
1

∏T
t=1 exp {γr̂

k
t (nj |S(1:k−1)

t )
NC }

and vnj |S(1:k−1)
1

1 = 1, we can derive the following inequality.

ln
VT+1

V1
≥ γ

NC

T∑
t=1

r̂kt (nj |S(1:k−1)
t )− lnN

Based on the inequalities above, we can derive

rkRSB ≥ (1− γ)

T∑
t=1

r̂kt (nj |S(1:k−1)
t )− NC lnN

γ

− (e− 2)
γD

NC

T∑
t=1

N∑
n=1

r̂kt (n|S(1:k−1)
t ).

Then we take the expectation on policy’s actions as well as
random rewards. Noting that given the choice a1, a2, . . . , at−1

before, for any node nj ∈ N\S(1:k−1)
t , we have

E[r̂kt (nj |S(1:k−1)
t )|a1, a2, . . . , at−1]

= E[q
n|S(1:k−1)

t
t · r

k
t (nj |S(1:k−1)

t )

q
n|S(1:k−1)

t
t

+ (1− qn|S
(1:k−1)
t

t ) · 0]

= r̄kt (nj |S(1:k−1)
t ). (7)

For any node nj ∈ S(1:k−1)
t , if we play this node again, the

realization of marginal gain might not be zero. But if we con-
sider the expected marginal reward, it must be zero. Since we
do not allow the agent to select the same node as a seed twice
in each time stage in Algorithm 1, we have r̂kt (nj |S(1:k−1)

t ) =

0 and E[r̂kt (nj |S(1:k−1)
t )|a1, a2, . . . , at−1] = 0. Note that

r̄kt (nj |S(1:k−1)
t ) = 0, the equation (7) still holds.

Then we can get

RkRSB ≥ (1− γ)

T∑
t=1

r̄kt (nj |S(1:k−1)
t )− NC lnN

γ

− (e− 2)
γD

NC

T∑
t=1

N∑
n=1

r̄kt (n|S(1:k−1)
t ).

Since over the whole period, the expected marginal gain
of any node n ∈ N is no larger than that of the best seed,
which is Rkmax, it is apparent

∑T
t=1

∑N
n=1 r̄

k
t (n|S(1:k−1)

t ) ≤
NRkmax. Since node nj is chosen arbitrarily, we can choose
it as the best seed ãk under the conditional set S(1:k−1)

t , thus
we have

∑T
t=1 r̄

k
t (ãk|S(1:k−1)

t ) = Rkmax. Combined with these
two results, we have

Rkmax −RkRSB ≤ (1 + (e− 2)
D

C
)γRkmax +

NC lnN

γ
.

Note that the expectation above is under any conditional
set S(1:k−1)

t , ∀t = 1, 2, . . . , T , which is related to previous
choices for position 1, . . . , k− 1. This is consistent with Def-
inition 1, that S(1:k−1)

t is decided by Alg. 1. The expectation
in Rkmax is also reduced to randomizing on reward only.

Since
∑K
k=1R

k
max ≤ gK, summing up for all positions

1, 2, . . . ,K, we can get
K∑
k=1

Rkmax −
K∑
k=1

RkRSB ≤ (1 + (e− 2)
D

C
)γgK +

NCK lnN

γ
.

(8)

Taking the first derivative of the right part in inequality
(8), we can set γ = min{1,

√
NC lnN

(1+(e−2) D
C )g
} to minimize the

bound, then in the period 1, . . . , T

K∑
k=1

Regk(T ) =

K∑
k=1

Rkmax −
K∑
k=1

RkRSB

≤ 2K

√
1 + (e− 2)

D

C

√
gCN lnN. (9)

Note that if γ = 1, we have
√
NC lnN ≥√

(1 + (e− 2)DC )g. The bound (9) is larger than the maximal
reward Kg, then it must holds.

APPENDIX D
PROOF OF COROLLARY 1

Proof: It is apparent that the expected number of activated
nodes from a seed can not exceed C, the size of the largest
connected component in the social graph. Then the overall
reward achieved over the entire system span can not exceed
CT . Thus we can set g = CT . According to Theorems 3 and
4, we have

RegG(T ) ≤
K∑
k=1

Regk(T )

≤ 2K

√
1 + (e− 2)

D

C

√
DCTN lnN.

Then we have RegG(T ) is bounded by O(
√
TN lnN).


	I Introduction
	II Related Work
	II-A Influence Maximization with Bandit Optimization
	II-B Multi-Armed Bandit with Non-Stationary Rewards

	III Problem Model
	IV RSB: Randomized Multi-armed Bandit Algorithm for Non-Stationary Social Networks
	V Regret Analysis
	V-A Reduction from Greedy Weak Regret to Position Weak Regret
	V-B Bounding Greedy Weak Regret

	VI Performance Evaluation
	VI-A Data Sets
	VI-A1 Tencent Weibo Traces
	VI-A2 Synthetic Data

	VI-B Time-varying Influence Probabilities
	VI-C Schemes for Comparison
	VI-D Evaluation Results

	VII Conclusion
	References
	Appendix A: Proof of Theorem ??
	Appendix B: Proof of Theorem ??
	Appendix C: Proof of Theorem ??
	Appendix D: Proof of Corollary ??

