
Queueing in the Mist:
Buffering and Scheduling with Limited Knowledge

Itamar Cohen and Gabriel Scalosub

Department of Communication Systems Engineering, Ben-Gurion University of the Negev,
Beer-Sheva 84105, Israel

Email: itamarq@post.bgu.ac.il, sgabriel@bgu.ac.il

Abstract

Scheduling and managing queues with bounded buffers are among the most
fundamental problems in computer networking. Traditionally, it is often as-
sumed that all the properties of each packet are known immediately upon ar-
rival. However, as traffic becomes increasingly heterogeneous and complex, such
assumptions are in many cases invalid. In particular, in various scenarios in-
formation about packet characteristics becomes available only after the packet
has undergone some initial processing. In this work, we study the problem of
managing queues with limited knowledge. We start by showing lower bounds
on the competitive ratio of any algorithm in such settings. The techniques used
in our proofs, which make use of a carefully crafted Markov process, may be of
independent interest, and can potentially be used in other similar settings as
well. Next, we use the insight obtained from these bounds to identify several
algorithmic concepts appropriate for the problem, and use these guidelines to
design a concrete algorithmic framework. We analyze the performance of our
proposed algorithm, and further show how it can be implemented in various
settings, which differ by the type and nature of the unknown information. We
further validate our results and algorithmic approach by an extensive simulation
study that provides further insights as to our algorithmic design principles in
face of limited knowledge.

Keywords: Buffer management, queueing, scheduling, uncertainty, limited
knowledge, competitive analysis, online algorithms

1. Introduction

Some of the most basic tasks in computer networks involve scheduling and
managing queues equipped with finite buffers, where the primary goal in such

An earlier version of this work was published in [1]. This work adds full proofs of all theo-
rems, stronger lower bounds, an improved competitive algorithm, and an extended simulation
study.

Preprint submitted to Computer Networks March 1, 2022

ar
X

iv
:1

70
6.

08
48

4v
3

 [
cs

.N
I]

 3
0

D
ec

 2
01

9

settings is maximizing the throughput of the system. The always-increasing het-
erogeneity and complexity of network traffic makes the challenge of maximizing
the throughput ever harder, as the packet processing required in such queues
spans a plethora of tasks including various forms of DPI, MPLS and VLAN
tagging, encryption / decryption, compression / decompression, and more.

The most prevalent assumption in the research studying these problems is
that the various properties of any packet – e.g., its QoS characteristic, its re-
quired processing, its deadline – are known upon its arrival. However, this
assumption is in many cases unrealistic. For instance, when a packet is recur-
sively encapsulated a few times by MPLS, PBB, 802.1Q, GRE or IPSec, it is
hard to determine in advance the total number of processing cycles that such
a packet would require [2, 3]. Furthermore, the QoS features of a packet are
commonly determined by its flow ID, which is in many cases known only after
parsing [3].

In data center network architectures such as PortLand [4], ingress switches
query a cache for an application-to-location address resolution. A cache miss,
which is unpredictable by nature, results in forwarding of the packet to the
switch software or to a central controller, which performs a few additional pro-
cessing cycles before the packet can be transmitted. Similarly, in the realm of
Software Defined Networks, ingress switches query a cache for obtaining rules
for a packet [5], which may also depend on priorities [6]. In such a case, a cache
miss results in additional processing until the rules are retrieved and the profit
from the packet is known.

In spite of this increased heterogeneity, and the fact that the processing
requirement of a packet might not be known in advance, these characteristics
usually become known once some initial processing is performed. This behavior
is common in many of the applications just described. Furthermore, for traffic
corresponding to the same flow, it is common for characteristics to be unknown
when the first few packets of the flow arrive at a network element, and once these
properties are unraveled, they become known for all subsequent packets of this
flow. It therefore follows that only part of the arriving packets has unknown
characteristics upon arrival, which become known after parsing.

In this work we address such scenarios where the characteristics of some
arriving traffic are unknown upon arrival, and are only revealed when a packet
has undergone some initial processing (parsing), “causing the mist to clear”.
We model and analyze the performance of algorithms in such settings, and
in particular we develop online scheduling and buffer management algorithms
for the problem of maximizing the profit obtained from delivered packets, and
provide guarantees on their expected performance using competitive analysis.

We focus on the general case of heterogeneous processing requirements (work)
and heterogeneous profits [7]. We assume priority queueing, where the exact
priorities depend on the specifics of the model studied. We present both algo-
rithms and lower bounds for the problem of dealing with unknown characteristics
in these models. Furthermore, we highlight some design concepts for settings
where algorithms have limited knowledge, which we believe might be applicable
to additional scenarios as well.

2

0 1 · · · 5 6 t

work=5

profit=5

work=5

profit=5

work=5

profit=5

work=5

profit=5

work=5

profit=5

work=5

profit=5

Figure 1: An illustrative example of an arrival sequence with known and unknown packets

As an illustration of the problem, assume we have a 3-slots buffer, equipped
with a single processor, and consider the arrival sequence depicted in Fig. 1. In
the first cycle we have seven unit-size packets arriving, out of which three will
provide a profit of 5 upon successful delivery, each requiring 5 processing cycles
(work). The characteristics of these three packets are known immediately upon
arrival. The characteristics of the remaining four packets (marked gray) are
unknown upon arrival. We therefore dub such packets U -packets (i.e., unknown
packets). Each of these four U -packets may turn out to be either a ”best” packet,
requiring minimal work and having maximal profit; a ”worst” packet, requiring
maximal work and having minimal profit; or anything in between. Thus, already
at the very beginning of this simple scenario, any buffering algorithm would
encounter an admission control dilemma: how many U -packets to accept, if any?
This dilemma can be addressed by various approaches including, e.g., allocating
some buffer space for U -packets, accepting U -packets only when current known
packets in the buffer are of poor characteristics, in terms of profit, or of profit
to work ratio, etc. In case that the algorithm accepts U -packets, an additional
question arises: which of the U -packets to accept into the buffer? Obviously,
for any online deterministic algorithm there exists a simple adversarial scenario,
which would cause it to accept only the ”worst” U -packets (namely, packets with
maximal work and minimum profit), while an optimal offline algorithm would
accept the best packets. This motivates our decision to focus our attention on
randomized algorithms.

We now turn to consider another aspect of handling traffic with some un-
known characteristics. Assume the scenario continues with 5 cycles without
any arrival, and then a cycle with an identical arrival pattern - namely, three
known packets with both work and profit of 5 per packet, and four U -packets.

3

This sheds light on a scheduling dilemma: which of the accepted packets should
better be processed first? every scheduling policy impacts the buffer space avail-
able in the next burst. For instance, a run-to-completion attitude would enable
finishing the processing of one known packet by the next burst, thus allowing
space for accepting a new packet without preemption. However, one may con-
sider an opposite attitude - namely, parsing as many U -packets as possible, thus
”causing the mist to clear”, allowing more educated decisions, once there are
new arrivals. In terms of priority queuing, this means over-prioritizing some
U -packets, and allowing them to be parsed immediately upon arrival. We fur-
ther develop appropriate algorithmic concepts based on the insights from this
illustrative example in Section 3.

1.1. System Model

Our system model consists of four main modules, namely, (a) an input queue
equipped with a finite buffer, (b) a buffer management module which performs
admission control (c) a scheduler module which decides which of the pending
packets should be processed, and (d) a processing element (PE), which performs
the processing of a packet.

We divide time into discrete cycles, where each cycle represents a fixed time
slot, and consists of three steps: (i) The transmission step, in which fully-
processed packets leave the queue, (ii) the arrival step, in which new packets
may arrive, and the buffer management module decides which of them should
be retained in the queue, and which of the currently buffered packets should be
pushed-out and dropped, and finally (iii) the processing step, in which the sched-
uler assigns a single packet for processing by the PE, which in turn processes
the packet.

We consider a sequence of unit-size packets arriving at the queue. Upon its
arrival, the characteristic of each packet may be known - in which case we refer
to the packet as a K-packet (i.e., known packet); or unknown - in which case we
refer to the packet as a U -packet (i.e., unknown packets). We let M denote the
maximum number of U -packets that may arrive in any single cycle. We focus
our attention on the case where M > 0, unless specifically stated otherwise.

Each arriving packet p has some (1) intrinsic benefit (profit) v(p) ∈ {1, . . . , V },
and (2) required number of processing cycles (work), w(p) ∈ {W0,W0 + 1, . . . ,W}.
Unless explicitly stated otherwise, we consider the most general case, namely,
W0 = 1. To simplify the expressions throughout the paper, we assume that
both V and W are powers of 2.1 We use the notation (w, v)-packet to denote
a packet with work w and profit v. We note that the uniform case where all
packets require the same amount of work, and all packets have the same profit,
is trivial, since the simple run-to-completion policy is optimal. We therefore
focus our attention on non-uniform traffic.

In our model, similarly to [8], upon processing a U -packet for the first time,
its properties become known. We therefore refer to such a first processing cycle

1Our results degrade by a mere constant factor otherwise.

4

of a U -packet as a parsing cycle. Non-parsing cycles where the processor is not
idle are referred to as work cycles.

The queue buffer can contain at most B packets. We assume B ≥ 2, since
the case where B = 1 is degenerate. The head-of-line (HoL) packet at time t
(for a given algorithm Alg) is the highest priority packet stored in the buffer
just prior to the processing step of cycle t, namely, the packet to be scheduled
for processing in the processing step of t. We say the buffer is empty at cycle t
if there are no packets in the buffer after the transmission step of cycle t.

We study queue management algorithms, which are responsible for both the
buffer management and the scheduling of packets for processing. In particular,
we focus our attention on algorithms targeted at maximizing the throughput of
the queue, i.e. the overall profit from all packets successfully transmitted out of
the queue. The throughput of algorithm Alg is denoted by TP (Alg). We use
the terms throughput and performance interchangeably.

We evaluate the performance of online algorithms using competitive analy-
sis [9, 10]. An algorithm Alg is said to be c-competitive if for every finite input
sequence σ, the throughput of any algorithm for this sequence is at most c times
the throughput of Alg (c ≥ 1). We let OPT denote any (possibly clairvoyant)
algorithm attaining optimal throughput. An algorithm is said to be greedy if it
accepts packets as long as there is available buffer space. We further focus our
attention on work-conserving algorithms, i.e., algorithms which never leave the
PE idle unnecessarily.

1.2. Related Work

Competitive algorithms for scheduling and management of bounded buffers
have been extensively studied for the past two decades. The problem was first
introduced in the context of differentiated services, where packets have uniform
size and processing requirements, but some of the packets have higher prior-
ities, represented by a higher profit associated with them [11, 12, 13]. The
numerous variants of this problem include models where packets have dead-
lines or maximum lifetime in the switch [12], environments involving multi-
queues [14, 15, 16, 17] and cases with packets dependencies [18, 19], to name
but a few. An extensive survey of these models and their analysis can be found
in [20].

While traditionally it was assumed that packets have heterogeneous profits
but uniform work (processing requirements), some recent work introduced the
complementary problem, of uniform profits with heterogeneous work [21]. This
work presented an optimal algorithm for the fundamental problem, as well as on-
line algorithms and bounds on the competitive ratio for numerous variants. Sub-
sequent research investigated related problems with heterogeneous work com-
bined with heterogeneous packet sizes [22], or with heterogeneous profits [7, 23].
In particular, [7] showed that the competitive ratio of some straight-forward
deterministic algorithms for the problem of heterogeneous work combined with
heterogeneous profits is linear in either the maximal work W , or in the maximal
profit V , even when the characteristics of all packets are known upon arrival.
These results motivate our focus on randomized algorithms.

5

While most of the literature above assumed that all the characteristics of
packets are known upon arrival, this assumption was put in question recently [8]
by noting that it is often invalid. However, the main problem addressed in [8]
revolved around developing schemes for transmitting packets of the same flow
in-order, while our work focuses on maximizing throughput with limited buffer-
ing resources, and designing both buffer management and scheduling policies
targeted at this objective.

Maybe closest to our work are the recent studies considering serving in the
dark [24, 25], which investigate an extreme case where the online algorithm
learns the profit from a packet only after transmitting it. These studies con-
sider highly oblivious algorithms, whereas our model and our proposed algo-
rithms dwell in a middle-ground between the well studied models with complete
information, and these recent oblivious settings. Our work further considers
traffic with variable processing requirements, whereas [24, 25] focus on settings
where all packets require only a single processing cycle, and they differ only by
their profit.

The problem of optimal buffering of packets with variable work is closely
related to the problem of job scheduling in a multi-threaded processor, which
was extensively studied. A comprehensive survey of online algorithms for this
problem can be found in [26]. This body of work, however, differs significantly
from our currently studied model. The major differences are that packet buffer-
ing has to deal with limited buffering capabilities, and is targeted at maximizing
throughput. Processor job scheduling, however, usually has no strict buffering
limitations, and is mostly concerned with minimizing the response time.

1.3. Our Contribution

We introduce the problem of buffering and scheduling which aims to maxi-
mize throughput where the characteristics of some of the packets are unknown
upon arrival. We focus our attention on traffic where every packet has some
required processing cycles, and some profit associated with successfully trans-
mitting it. We make no assumption on the underlying process generating traffic,
thus rendering our results globally applicable.

In Section 2 we present lower bounds on the performance of any randomized
algorithm for the problem. Specifically, we show that no algorithm can have
a competitive ratio better than Ω(min {WV,M}), even against an adversary
which can accommodate merely 2 packets in its buffer, where W and V denote
the maximum work and profit of a packet, respectively, and M represents the
maximum number of unknown packets which may arrive in any single cycle. We
also prove stronger lower bounds for the general settings using a novel technique,
in which we bound the expected number of packets in the buffer of an optimal
offline algorithm by means of a Markov process.

In Section 3 We describe several algorithmic concepts tailored for dealing
with unknown characteristics in such systems. We follow by presenting an algo-
rithm that applies our suggested algorithmic concepts in Section 4. For the most
general case we prove our algorithm has a competitive ratio ofO(M log V logW).
We further show how to improve this bound in several important special cases.

6

In Sections 5-6 we present some modifications and heuristics applicable to our
algorithm that, while leaving the worst-case guarantees intact, are designed to
improve performance compared to the baseline algorithmic design. The modified
algorithm can cope with cases where neither the maximal amount of work and
profit, nor the maximum number of unknown packets per cycle, are known in
advance.

We further validate and evaluate the performance of our proposed algorithms
in Section 7 via an extensive simulation study. Our results highlight the effect
the various parameters have on the problem, well beyond the insights arising
from our rigorous mathematical analysis.

We conclude in Section 8 with a discussion of our results, and also highlight
several interesting open questions.

2. Lower Bounds

In this section we present lower bounds on the competitive ratio of any
randomized algorithm for our problem. These lower bounds serve two main
objectives: (i) They represent the best competitive ratio which one can hope
to achieve; and (ii) the hard scenarios used in the proofs of these lower bounds
highlight the challenges which any competitive online algorithm would have to
tackle.

2.1. Highly-restricted adversaries

In this section we prove lower bounds on the competitive ratio of any online
algorithm for our problem, compared to a highly-restricted adversary which uses
a buffer which can only store a single packet. This restriction on the amount of
buffer space available for the adversary enables us to better highlight the scaling
laws of the problem, depending on the various parameters.

Theorem 1. If V ≥ 1, M ≥ 1 and the work of each packet is w(p) ∈
{W0,W0 + 1, . . . ,W} where W ≥ 2, then the competitive ratio of any random-
ized algorithm for non-uniform traffic is at least

V (W − 1)

2W0

[
1−

(
1− 1

V (W − 1) + 1−W0

)MW0
]
,

even against an optimal offline algorithm which has a buffer which can only
store a single packet.

Proof. Since traffic is non uniform, we are guaranteed to have V (W − 1) + 1−
W0 6= 0. We prove the theorem using Yao’s method [27], where we define a
carefully crafted distribution over arrival sequences, and show a lower bound on
the ratio between the expected performance of an optimal clairvoyant algorithm
for the problem, and the expected performance of any deterministic algorithm
for the problem. We will show that the claim is true even if the optimal
offline algorithm uses a buffer that can hold only a single packet. We define the

7

following collection of arrival sequences, where each arrival sequence has two
phases: a Fill phase, and a Flush phase. The Fill phase consists of iterations as
follows. Each iteration begins with W0 cycles without arrivals; and continues
with W0 cycles with M U -packets arriving per cycle, where each packet is a
(W0, V)-packet with probability p, and a (W, 1)-packet with probability (1−p),
for some constant p to be determined later. The total number of cycles during
the fill phase is N , where N is a large integer, so we have N

2W0
iterations. Once

the fill phase ends, it is followed by the Flush phase, which consists of BW
cycles without arrivals. We note that due to the random choices of packets
being either (W0, V)-packets or (W, 1)-packets, the above structure induces a
distribution over a collection of possible arrival sequences.

To simplify our analysis, we define the SubOPT policy, which works as fol-
lows: Within the fill phase, during each iteration, SubOPT accepts at most one
(W0, V)-packet which has arrived during the iteration, if such a packet exists.
This packet is the one considered picked by SubOPT in that iteration. Starting
from the second iteration, during the first W0 cycles of each iteration, SubOPT
processes the packet it picked during the previous iteration (if such a packet
exists), and transmits it. During the flush phase, SubOPT processes and finally
transmits the packet it picked during the last iteration.

It should be noted that SubOPT is neither greedy, nor work conserving.
Moreover, the expected throughput of SubOPT clearly serves as a lower bound
on the expected optimal throughput possible.

We have N
2W0

iterations, and the probability that SubOPT successfully picks
a (W0, V)-packet during an iteration is exactly the probability of there being
a (W0, V)-packet arriving during that iteration, which is 1 − (1 − p)MW0 . The
throughput of SubOPT, which we recall is denoted by TP (SubOPT), therefore
satisfies

TP (SubOPT) ≥ NV

2W0
[1− (1− p)MW0] (1)

We now turn to consider the expected performance of any deterministic
algorithm Alg for the problem. We first assume that Alg begins the flush phase
with a buffer full of (W0, V)-packets, all of them unparsed. This provides Alg
with a profit of BV during the flush phase, while still having N processing
cycles during the fill phase for processing additional packets. This profit is
clearly an upper bound on the maximum possible throughput attainable by Alg
from packets transmitted during the flush phase, regardless of when they were
processed. For evaluating the gain of Alg during the fill phase, it therefore
suffices to consider only packets which Alg fully processes during this phase.

Consider now the profit of Alg from packets transmitted during the fill phase.
Recall that we assume that Alg is work-conserving. We assume that Alg is also
greedy, that is, Alg never discards a packet when its buffer is not full; being
greedy cannot decrease Alg’s performance. Alg has packets to process during
the entire fill phase, except for the first W0 cycles (where there are no arrivals
yet), namely, for N ′ = N − W0 cycles. Furthermore, since Alg is assumed
to always accept packets when the buffer is not full, and is work conserving,

8

there exists some 0 < r ≤ 1 such that the number of parsing, and work, cycles
performed by Alg are N ′r, and N ′(1− r), respectively.

Consider a case where Alg reveals a (W0, V)-packet q. Then, processing
q and finally transmitting it would surely not decrease the throughput of Alg
when contrasted with the alternative of dropping q. Thus, the best deterministic
algorithm Alg would work at least W0−1 work cycles per each parsing cycle, in
which a (W0, V)-packet is parsed (recall that we are merely interested in packets,
which Alg fully processes and transmits during the fill phase). Therefore, the
total number of work cycles contributing to the transmission of such packets
is at least W0 − 1 times larger then the expected number of parsing cycles, in
which a (W0, V)-packet is revealed: N ′(1− r) ≥ N ′rp(W0 − 1).

If the total number of work cycles during the fill phase exceeds the number of
cycles which are necessary for transmitting all the parsed (W0, V)-packets, Alg
may work also on (W, 1)-packets. Namely, if N ′(1−r) > N ′rp(W0−1), then Alg
may work on (W, 1)-packets for N ′(1− r)−N ′rp(W0 − 1) cycles, transmitting
at most one (W, 1)-packet once in W − 1 such cycles.

Combining the above reasoning we conclude that the overall throughput of
Alg satisfies

TP (Alg) ≤ N ′rpV +
N ′(1− r)−N ′rp(W0 − 1)

W − 1
+BV

= (N −W0)

[
V rp+

(1− r)− rp(W0 − 1)

W − 1

]
+BV

(2)

Considering the ratio between the lower bound on the expected performance
of SubOPT (as captured by Eq. 1) and the upper bound on the expected per-
formance of Alg (as captured by Eq. 2) and letting N → ∞, we conclude that
no algorithm can have a competitive ratio better than

V (W − 1)

2W0
· 1− (1− p)MW0

V rp(W − 1) + 1− r − rp(W0 − 1)

By choosing p∗ = [V (W − 1) + 1−W0]
−1

, the result follows.

We now aim to relate the lower bound established in Theorem 1 to a simpler
and more intuitive function of M,V and W . We do so by means of two proposi-
tions, which relate the bound to either Ω(M) or Ω(VW) for different ranges of

M . In the propositions we use our notation p∗ = [V (W − 1) + 1−W0]
−1

from
the proof of Theorem 1. Using this notation, note that Theorem 1 shows that
the competitive ratio is at least

V (W − 1)

2W0

[
1− (1− p∗)MW0

]
.

In the proofs of both propositions we will repeatedly use the following simple
inequality, which holds for any W0 ≥ 1:

1

V (W − 1)
=

1
1
p∗ +W0 − 1

≤ p∗. (3)

9

The following proposition shows that if M is relatively small, then the lower
bound established in Theorem 1 is Ω(M).

Proposition 2. If V ≥ 1,W0 ≥ 1,W ≥ 2 and 1 ≤M ≤ V (W−1)
W0

, then

V (W − 1)

2W0

[
1− (1− p∗)MW0

]
≥ M

4

Proof. We show by induction on n that for any 1 ≤ n ≤ V (W − 1)

(1− p∗)n ≤ 1− n

2V (W − 1)
. (4)

By setting n = M ·W0, which is at most V (W − 1) by our assumption on M ,
and applying some algebraic manipulation, the result follows.

For n = 1, Eq. 4 reduces to requiring that 1
2V (W−1) ≤ p∗, which holds true

due to Eq. 3. For the induction step, by the induction hypothesis on n we have

(1− p∗)n+1 ≤ (1− p∗)
[
1− n

2V (W − 1)

]
.

It therefore suffices to prove that

(1− p∗)
[
1− n

2V (W − 1)

]
≤ 1− n+ 1

2V (W − 1)
,

which is equivalent to requiring that

1

2V (W − 1)
≤ p∗

[
1− n

2V (W − 1)

]
.

By Eq. 3 we have 1
2V (W−1) ≤

p∗

2 , which implies that it suffices to show that

p∗

2
≤ p∗

[
1− n

2V (W − 1)

]
which is satisfied for every n ≤ V (W − 1).

The following proposition shows that if M is relatively large, then the lower

bound established in Theorem 1 is Ω
(
VW
W0

)
.

Proposition 3. If V ≥ 1,W0 ≥ 1,W ≥ 2 and M > V (W−1)
W0

, then

V (W − 1)

2W0

[
1− (1− p∗)MW0

]
>
e− 1

4e
· VW
W0

10

Proof. By our assumption on M , and using Eq. 3, we have M ·W0 > V (W−1) ≥
1
p∗ . It follows that M ·W0 = a 1

p∗ for some a > 1, which in turn implies that

(1− p∗)M ·W0 =
[
(1− p∗) 1

p∗
]a
≤ e−a < e−1.

It follows that

V (W − 1)

2W0

[
1− (1− p∗)M ·W0

]
≥ V (W − 1)

2W0

(
1− 1

e

)
=
VW

2W0
· W − 1

W

(
1− 1

e

)
≥ e− 1

4e

V W

W0

Assigning W0 = 1 in Theorem 1 and Propositions 2 and 3 implies the fol-
lowing corollary:

Corollary 4. The competitive ratio of any randomized algorithm is Ω(min {VW,M}).

In the special case of uniform-profits, we are essentially interested in max-
imizing the overall number of packets successfully transmitted. Therefore we
may assign V = 1 in Corollary 4, implying the following corollary:

Corollary 5. In the case of uniform-profits, the competitive ratio of any ran-
domized algorithm is Ω(min {W,M}).

In the special case of uniform-work, we can assign W0 = W in Propositions
2 and 3, implying the following corollary:

Corollary 6. In the case of uniform-work, the competitive ratio of any ran-
domized algorithm is Ω(min {V,M}).

2.2. Non-restricted adversaries

In Section 2.1 we assumed that the optimal algorithm has a buffer capacity
of storing only one packet. This assumption significantly simplified the proofs
there. In this section we relax this assumption, and show a stronger bound
for the general, and more natural case, where the size of the buffer available
to the optimal algorithm is identical to the size that available to the online
algorithm. We use again Yao’s method [27], which we used in the proof of
Theorem 1. Furthermore, we use the same scenario and algorithm SubOPT,
defined in Section 2.1. However, as we now allow SubOPT to store multiple
packets in its buffer, SubOPT can increase its expected throughput by buffering
(W0, V)-packets whenever the number of arriving (W0, V)-packets in a single
iteration is larger than one, and processing them in iterations where no (W0, V)-
packets arrive. We now evaluate the performance in such settings.

11

Denote by qj the state where there are j (W0, V)-packets in the buffer of
SubOPT at the beginning of an iteration. Note, that when j > 0, the count
represented by qj also includes the packet, which is to be transmitted during the
iteration. Namely, SubOPT successfully transmits a packet in every iteration,
unless its buffer’s state is q0.

We now turn to describe the transition matrix. Denote the probability of
having exactly k (W0, V)-packets arriving during one iteration by αk. In each
iteration we have M · W0 arriving packets (M packets per cycle, times W0

cycles per iteration) which are i.i.d. where each packet is a (W0, V)-packet with
probability p. Therefore αk =

(
M ·W0

k

)
pk(1−p)M ·W0−k when 0 ≤ k ≤MW0 and

αk = 0 otherwise.
Then, the transition matrix is

Π =



α0 α1 α2 . . . αB−1 1−∑B−1
j=0 αj

α0 α1 α2 . . . αB−1 1−∑B−1
j=0 αj

0 α0 α1 . . . αB−2 1−∑B−2
j=0 αj

.

0 . . . 0 α0 α1 1−∑1
j=0 αj

0 0 . . . 0 α0 1− α0


where Πij is the probability of transition from state i to state j for each 0 ≤ i, j ≤
B. Π is irreducible, because it is possible to get from any buffer state to any other
buffer state by some arrival sequence. Π is also aperiodic, because its diagonal
is non-zero, which represents the fact that if the buffer contains i packets at the
beginning of a certain iteration, there exists a positive probability that it would
contain i packets also at the beginning of the next iteration. Furthermore, as
Π is finite, irreducible and aperiodic, it is also ergodic, namely, there exists a
steady state. For a long enough input sequence, we can neglect the transient
”warm-up” period, and assume that the expected number of iterations where
SubOPT gains nothing during phase 1 is N

2W0
· p0, where p0 is the probability

that SubOPT is in state q0. In the rest of the iterations in phase 1 SubOPT
gains V per iteration. Therefore, the expected throughput of SubOPT satisfies

TP (SubOPT) ≥ N

2W0
· V (1− p0) (5)

The expected throughput of Alg remains the same as in Eq. 2. In order to
obtain the competitive ratio for the fully heterogenous case, we divide Eq. 5 by
Eq. 2 and assign again W0 = 1 and p∗ = 1

V (W−1) . Then, when N → ∞ the

competitive ratio is c ≥ V
2 (W − 1)(1− p0).

We find p0 by solving the balance equations defining the steady state of the
system, i.e., finding the eigenvector of the transition matrix Π. Fig. 2 depicts
the lower bounds as a function of M when V = W = 10 for various buffer
sizes. Recall that the probability of a certain packet to be a (W0, V)-packet
is p∗ = 1

V (W−1) = 1
90 . Therefore only when M is large enough, the expected

number of (W0, V)-packets per iteration is sufficient for allowing SubOPT to

12

0 20 40 60 80
0

5

10

15

20

25

30

35

40

45

M

C
o
m

p
e
ti

ti
v
e

ra
ti

o
lo

w
e
r

b
o
u
n
d

B = 1

B = 2

B = 4

B = 8

B = 16

Figure 2: Lower bounds on the competitive ratio of every randomized algorithm when W =
V = 10 where the number of unknown packets arriving in a time slot varies, for different
values of B

really take advantage of its buffer for increasing its performance, resulting in a
stronger lower bound on the competitive ratio.

In the next section we use the insight obtained from the analysis in the cur-
rent section to identify several algorithmic concepts appropriate for the problem
of buffering with limited knowledge.

3. Algorithmic Concepts

In this section we describe the algorithmic concepts underlying our proposed
algorithms for dealing with scenarios of limited knowledge.

Random selection. For obtaining a good competitive ratio we would like to avoid
a scenario where OPT successfully transmits a bulk of “good” packets, which are
originally unknown, while having the online algorithm discard all these packets.
This translates to assuring each arriving U -packet has some minimal probability
of being accepted and parsed.

Speculatively Admit. Competitive algorithms must ensure they retain through-
put from both K-packets and U -packets. Furthermore, once a U -packet is ac-
cepted, there is a high motivation to reveal its characteristics as soon as possible,
thus making educated decisions in the next cycles.

We therefore propose to speculatively over-prioritize unknown packets over
known packets in certain cycles. We refer to the act of over-prioritizing an
unknown packet p in some cycle t as admitting p. Respectively, we refer to such
a cycle t as an admittance cycle, and to such a packet p as an admitted packet.

13

Classify and randomly select. Intuitively, as unknown packet characteristics are
drawn from a wider range of values, the task of maximizing throughput becomes
harder, especially when compared to the optimal throughput possible. To deal
with this diversity, we apply a Classify and Randomly Select scheme [28]. This
approach is based on the following notion: Assume we have an algorithm Algc
which is guaranteed to be c-competitive if traffic is sufficiently uniform, i.e., for
cases where traffic characteristics are within some well-defined range of values.
Given some arbitrary input sequence, which might be highly heterogeneous,
we virtually partition the sequence of arriving packets into N > 1 disjoint
sub-sequences, which we refer to as classes, such that each class is sufficiently
uniform, i.e., for any specific class 1 ≤ i ≤ N the characteristics of packets cor-
responding to class i are within some well-defined range of values (as prescribed
by Algc). The scheme then dictates selecting one of the classes uniformly at
random, and applying Algc to this class, while ignoring all packets correspond-
ing to other classes. One then shows that the overall competitive ratio of this
randomized approach is O(N · c)-competitive for the overall input sequence.

Alternate between fill & flush. This paradigm is especially crucial in cases of
limited information. The main motivation for this approach is that whenever
a “good” buffer state is identified, the algorithm should focus all its efforts
on monetizing the current state, maybe even at the cost of dropping packets
indistinctly. In terms of buffer management and scheduling, this translates to
defining some periods, in which the algorithm processes and transmits all the
packets in its buffer, even at the cost of discarding all the arrivals. If these flush
periods are short enough, the algorithm gains the high throughput from flushing
its buffer, yet without compromising too much throughput due to having packets
discarded during the flush.

4. Competitive Algorithms

In this section we present a basic competitive online algorithm for the prob-
lem of buffering and scheduling with limited knowledge. We first provide a
high-level description of our algorithm, and then turn to specify its details and
analyze its performance.

For simplicity of analysis and algorithm presentation, we assume that the set
of possible values of W and V – the work and profit per packet, respectively – are
known to the algorithm in advance. In Sections 5 and 6 we show how to remove
this assumption without harming the performance of our algorithm, and present
several improved variants of this algorithm. We further note that neither of our
proposed solutions require knowing the value of M – the maximum number of
unknown packets arriving in a single cycle – in advance.

4.1. High-level Description of Proposed Algorithm

Our algorithm is designed according to the algorithmic concepts presented
in Section 3 as follows.

14

Randomly select and speculatively admit. In every cycle t during which a U -
packet arrives, the algorithm picks t as an admittance cycle with some proba-
bility r (to be determined in the sequel). In every cycle chosen as an admittance
cycle, the algorithm picks exactly one of the U -packets arriving at t to serve as
the admitted packet. This U -packet is chosen uniformly at random out of all
U -packets arriving at t. At the end of the arrival step, the algorithm schedules
the admitted U -packet (if one exists) for processing, hence parsing the packet.
We note that if no such U -packet exists, or if t is not an admittance cycle,
then the algorithm may only accept known arriving packets, and would even-
tually schedule the top-priority packet residing in the Head-of-Line (HOL) for
processing. The exact notion of priority will be detailed later.

Classify and randomly select. We implicitly partition the possible types of ar-
riving packets into classes C1, C2, . . . Cm; the criteria for partitioning and the
exact value of m will be specified later. Our algorithm picks a single selected
class, uniformly at random from the m classes. Our goal is to provide guar-
antees on the performance of our proposed algorithm for packets belonging to
the selected class, which is henceforth denoted G. Packets which belong to
the selected class are referred to as G-packets. Following our previously intro-
duced notation, known (unknown) packets that belong to the selected class,
i.e., G-packets for which their attributes are known (unknown), are denoted as
GK-packets (GU -packets).

Focusing solely on packets belonging to G may seem like a questionable
choice, especially if there are few packets arriving which belong to this class, or
if the characteristics of packets belonging to this class are poor (e.g., they have
low profit and require much work). However, this naive description is meant
only to simplify the analysis. In Section 5 we show how to remedy this naive
approach in order to deal with these apparent shortcomings, while keeping the
analytic guarantees intact.

Alternate between fill & flush. Our algorithm will be alternating between two
states: the fill state, and the flush state. We define an algorithm to be Gfull if
its buffer is filled with known G-packets. Once becoming Gfull, our algorithm
switches to the flush state, during which it discards all arriving packets and
continuously processes queued packets. Once the buffer empties, the algorithm
returns to the fill phase. Again, in Section 5 we show how to improve upon this
naive simplified approach.

4.2. A General Classify and Randomly Select Mechanism

We now turn to explain the fundamentals of the classifying mechanism of
our algorithm.

For each packet p we assign a work-class C
(W)
i , and denote the set of po-

tential characteristic values within class C
(W)
i by X

(W)
i . Let δW denote the

maximal ratio between the work values of two packets, which belong to the

same work-class. Similarly, for each packet p we assign a profit-class C
(P)
i , and

15

Algorithm 1 UpdatePhase()

1: if buffer is empty then
2: phase = fill
3: else if buffer is Gfull then
4: phase = flush
5: end if . if buffer is neither empty nor Gfull, phase is unchanged.

Algorithm 2 SortBuf()

1: sort queued packets as follows: admitted packet first; GK-packets next; rest
of the packets last; break ties by FIFO

Algorithm 3 MakeRoom()

1: if the buffer is full then
2: SortBuf()
3: drop a packet from the tail
4: end if

denote the set of potential characteristic values within class C
(P)
i by X

(P)
i . Let

δV denote the maximal ratio between the profits of two packets, which belong
to the same profit-class. Throughout our analysis, we will use δV and δW which
are both constants.

Denote by `W and `V the number of work-classes and profit-classes, respec-

tively. We say a packet p is of combined-class C(i,j) if it is of work-class C
(W)
i

and of profit-class C
(P)
j . Note that in terms of work, the class to which a packet

p belongs is defined statically by the total work of p, and does not depend upon
its remaining processing cycles, which may change over time.

Upon initialization, the algorithm selects a class by picking i∗ ∈ {1, . . . , `W }
and j∗ ∈ {1, . . . , `V }, each chosen uniformly at random. Then, the selected
combined-class is G = C(i∗,j∗).

We will later define several ways to partition the packets into classes, each
tailored and optimized for some specific scenarios of possible work and profit
values.

4.3. The SA Algorithm

We now describe the details of our algorithm, Speculatively Admit (SA),
depicted in Algorithm 4. The pseudo-code in Algorithm 4 uses the procedures
UpdatePhase(), SortBuf(), and MakeRoom(), whose pseudo-code appears in Al-
gorithms 1, 2 and 3, respectively. The procedure MakeRoom() is destined to
assure a free space for a high-priority arriving packet, even at the cost of pushing-
out and dropping a lower-priority packet from the tail of the buffer, if the buffer
is full.

Once in the arrival step, algorithm SA updates its phase (line 1). In each
cycle, the algorithm tosses a coin with some probability r, to be determined

16

Algorithm 4 SA: at every time slot t after transmission

Arrival Step:

1: phase = UpdatePhase()
2: admittance = true w.p. r
3: while phase == fill and exists arriving packet p do
4: if p is a GK-packet then
5: if there are B − 1 GK-packets in the buffer then
6: drop admitted packet if exists
7: end if
8: MakeRoom()
9: accept p

10: else if p is unknown AND admittance then

11: if A
(U)

(tp) = 1 then

12: MakeRoom()
13: mark p as admitted
14: accept p
15: else

16: w.p. 1/A
(U)

(tp), swap the admitted packet with p.

17: end if
18: end if
19: if buffer is not full then
20: accept p
21: end if
22: phase = UpdatePhase()
23: SortBuf()
24: end while

Processing Step:

25: process HoL-packet
26: phase = UpdatePhase()
27: SortBuf()

later, to decide whether this is an admittance cycle, namely, a cycle in which
the algorithm may admit an unknown packet (line 2). If the phase is flush, the
algorithm skips the while loop (lines 3-24), thus discarding all arriving packets.

If the phase is fill, which in particular implies that the buffer is not Gfull,
the algorithm accepts every arriving GK-packet (lines 4-9). For assuring a free
slot for the arriving GK-packet, the algorithm calls MakeRoom() (line 8) before
accepting the packet (line 9). The if-clause in lines 5-7 handles the special case
where there are already B−1 GK-packets in the buffer; in this special case, after
accepting the arriving GK-packet, the buffer will become Gfull, and therefore it
should stop admitting packets.

If the phase is fill and this is an admittance cycle (line 10), the algorithm
admits a single U -packet arriving in this cycle, if such a packet exists. In

17

lines 11,16, A
(U)

(tp) denotes the number of U -packets which arrive in cycle t by the

arrival of packet p, including p itself. Lines 11-17 essentially perform a reservoir
sampling [29], which imply that the admitted U -packet is chosen uniformly at
random out of all U -packets arriving in this cycle.

Finally, if the buffer is not full, the algorithm greedily accepts every arriving
packet (lines 19-20).

While in the processing step, the algorithm simply processes the top-priority
packet in the buffer (line 25). Finally, the algorithm updates its phase and sorts
the queued packets each time it either accepts or processes a packet (lines 22-
23 and 26-27). Note that the marking of a packet as an “admitted packet” is
cycle-based, namely, once an admitted packet is processed, it is not considered
“admitted” anymore. To better understand SA, please refer to Appendix D,
showing a running example of the algorithm.

4.4. Performance Analysis

We now turn to show an upper bound on the performance of our algorithm
(for W,V > 1), captured by the following theorem (see Appendix B for the
proof):

Theorem 7. SA is O
([
M
r + δW · δV

]
· `W · `V

)
-competitive.

Theorem 7 shows an inverse linear dependency of the competitive ratio on
the probability of choosing a cycle as an admittance cycle r. Thus, the best
competitive ratio is attained for r = 1, i.e., every cycle where U -packets arrive
should be an admittance cycle. In practical scenarios, however, one might want
to be more conservative in choosing admittance cycles. E.g., one might choose
r < 1 so as to allow non-parsing cycles even when U -packets arrive, thus speed-
ing up the processing of GK-packets. If one indeed chooses r = 1, randomization
should be maintained only for choosing the specific U -packet to be admitted,
and the choice of the selected class. We further explore the effect of the choice
of parameter r in Section 7.

In the special cases of homogeneous work values (homogeneous profit values),
we assign δW = `W = 1 (δV = `V = 1, resp.) in the upper bound implied by
Theorem 7, and obtain the following corollary:

Corollary 8.
(a) In the special case of homogeneous work values, SA is O

((
M
r + δV

)
· `V

)
-

competitive.
(b) In the special case of homogeneous profit values, SA is O

((
M
r + δW

)
· `W

)
-

competitive.

Lastly, we note that when all packets are known upon arrival, i.e. M = 0,
SA is (δW · δV · `W · `V)-competitive (see Appendix B).

4.5. Concrete Classification Mechanisms

We now show various classify and randomly select mechanisms, which are
tailored and optimized for different scenarios, depending on the profit and work
values.

18

A linear classification. When a characteristic consists of a small set of potential
values, we let each class include a single value of this characteristic. As a result,
the competitive ratio of the algorithm is linearly depended upon the number
of distinct potential value of the respective characteristic. For instance, when
the set of potential work values is small, we let each potential work value define
a class. As a result, the competitive ratio of SA, implied by Theorem 7, is
linearly depended upon the number of distinct work values, captured by the

parameter `W . Note that in this case we have X
(W)
i = {wi}, implying that δW ,

the max-to-min ratio of values within X
(W)
i , is 1.

A logarithmic classification. When the set of potential values of a characteristic
is large, letting each value define a unique class results in a poor competitive
ratio. Therefore, in such cases we use a logarithmic-scaled class partitioning as
follows. We say that a packet p is of a certain class (either work- or profit-) i if
its corresponding value is in the interval

Xi =

{
[1, 2] i = 1

[2i−1 + 1, 2i] i > 1.
(6)

In particular, using the above partition packets into classes, we obtain that
δV = δW = 2, `V = log2 V and `W = log2W . Using Theorem 7, we obtain the
following corollary:

Corollary 9. SA is O
(
M
r log2W log2 V

)
-competitive.

We note that if we know the number of distinct values for each characteristics
and the values of W and V , we can choose the appropriate classification scheme
and have `W to be the minimum between log2W , and the number of distinct
work values; and have `V to be the minimum between log2 V , and the number of
distinct profit values. Moreover, in any of our classification schemes, δW , δV ≤ 2.

5. Improved Algorithms

Algorithm SA selects a single class uniformly at random so that the char-
acteristics of packets on which it focuses, namely, G-packets, differ by at most
a constant factor. This gives the sense of “uniformity” of traffic within the
class being targeted, which in turn reduces the variability of characteristics of
packets on which the algorithm focuses. However, in practice there are various
cases where the strict decisions made by SA can be relaxed without harming
its competitive performance guarantees. In practice, such relaxations actually
allow obtaining a throughput far superior to that of SA. In what follows we
describe such modifications, which we incorporate into our improved algorithm,
SA*, and prove that all our performance guarantees for SA still hold for SA*.

19

Class closure. Recall the partitioning of packets into classes, described in Sec-
tion 4.2, namely,

{
C(i,j)|i = 1, . . . , `W , j = 1, . . . , `V

}
. We let the (i, j)-closure

class be defined as C∗(i,j) =
⋃
i′≤i,j′≥j C(i′,j′).

This definition means that the work of any packet in C∗(i,j) is within a ratio
of at most δW of the work of any packet in C(i,j), and similarly for the profit
of any packet in C∗(i,j). Formally, for any packets p ∈ C(i,j) and p∗ ∈ C∗(i,j),

w(p∗) ≤ δW · w(p) and v(p∗) ≥ v(p)
δV

.

We let SA* denote the algorithm where the selected class G is chosen to be
C∗(i,j), for some values of i, j chosen uniformly at random from the appropriate

sets. A simple substitution argument shows that thus picking C∗(i,j) by SA*, in-
stead of selecting C(i,j) as done in SA, leaves the analysis detailed in Section 4.4
intact.

Fill during flush (pipelining). Algorithm SA was defined such that no arriving
packets are ever accepted during the flush phase. This enables the partitioning
of time into disjoint intervals (determined by SA’s buffer being empty et the
end of such an interval), and applying the comparison of performance of OPT,
on the one hand, and SA, on the other hand, independently for each interval.
In practice, however, allowing the acceptance of packets during a flush phase
cannot harm the analysis, nor the actual performance, if this is done prudently:
packets which arrive during the flush phase are accepted according to the same
priority suggested by the algorithm’s behavior in the fill phase. Furthermore,
the algorithm stores in the buffer packets which arrive during the flush phase,
but never schedules them for processing before it successfully transmits all B
packets that were stored in the buffer when it turned Gfull.

Improved scheduling. SA sorts the queued packets in GK-first order. For sim-
plicity of presentation, we assumed in Section 4 that within the set of GK-
packets, as well as within the set of non-GK-packets, packets are internally
ordered by FIFO. However, one may consider other approaches as well to per-
forming such scheduling for each of these sets (while maintaining GK-first order
between the sets). We consider specifically the following methods: (i) FIFO,
(ii) W -then-V , which orders packets by a non-decreasing order of remaining
work, and breaks ties by non-increasing order of profit, and (iii) non-increasing
order of packet effectiveness, where the effectiveness of a packet is defined as its
profit-to-work ratio.

We emphasize that the packet scheduled for processing during an admit-
tance cycle remains a U -packet, which is selected uniformly at random from
the arriving U -packets at this cycle. All the non-admitted U -packets, however,
are located at the tail of the queue, thus representing the fact that their prior-
ity is lower than that of every known packet. By applying different scheduling
regimes, we obtain different flavors of SA*.

The following Theorem shows that the performance of all flavors of SA* is
at least as good as the performance of SA.

Theorem 10. SA* is O
([
M
r + δW · δV

]
· `W · `V

)
-competitive.

20

For the proof, see Appendix C. We study the performance of the various
flavors of SA* in Section 7.

6. Practical Implementation

While presenting our basic algorithm in Section 4, we assumed for simplicity
that the values of W and V – the maximal work and profit per packet, respec-
tively – are known to the algorithm in advance. We now show how to relax
these assumptions without harming the performance of our algorithms.

We refer to an algorithm implementation that does not know these values
in advance as a values-oblivious algorithm, and to an algorithm implementation
that knows the values of W and V in advance as a values-aware algorithm. We
will show that a values-oblivious algorithm can obtain a performance which is no
worse than that of a values-aware algorithm, even if the values-aware algorithm
knows not only W and V , but also the concrete classes in which packets will
arrive.

Our implementation of a values-oblivious algorithm is based on an appli-
cation of reservoir sampling [29] on classes revealed during packet arrivals, as
we will detail shortly. A new class is revealed either due to the arrival of a
K-packet p, or due to a U -packet q being parsed, corresponding to a class pre-
viously unknown to the algorithm. We call such an event an uncovering of a
new class.

The values-oblivious algorithm implementation performs the following along-
side all decisions made by the values-aware algorithm: Before the arrival se-
quence begins we initiate a counter N of known classes to be N = 0. Upon the
uncovering of a new class at t the algorithm increments N by one (to reflect the
updated number of known classes), and replaces the previously selected class
with the new class with probability 1/N .

As the above procedure essentially performs a reservoir sampling on the col-
lection of classes known to the algorithm, it essentially implements the selection
of a class uniformly at random among all a posteriori known classes [29].

It therefore follows that the distribution of the packets corresponding to the
eventual selected class (after the sequence ends) handled by the values-oblivious
algorithm is identical to the distribution of the packets handled by the values-
aware algorithm. Therefore the expected performance of the values-oblivious
algorithm is lower bounded by the expected performance of the values-aware
algorithm. We note that the implementation of the values-oblivious algorithm
can be applied to any of the variants described in our previous sections.

7. Simulation Study

In this section we present the results of our simulation study intended to
validate our theoretical results, and provide further insight into our algorithmic
design. Our choice of distributions for the parameters of the traffic characteristic
enables us to evaluate our algorithms performance in a wide range of settings.

21

These choices, as we show in the sequel, are also motivated by the properties of
real-world traffic.

7.1. Simulation Settings

We simulate a single queue in a gateway router which handles a bursty arrival
sequence of packets with high work requirements (corresponding, e.g., to IPSec
packets, requiring AES encryption/decryption) as well as packets with low work
requirements (such as simple IP packets requiring merely IPv4-trie processing).
Arriving packets also have arbitrary profits, modeling various QoS levels.

Our traffic is generated by a Markov modulated Poisson process (MMPP)
with two states, LOW and HIGH, such that the burst during the HIGH state
generates an average of 10 packets per cycle, while the LOW state generates
an average of only 0.5 packet per cycle. The average duration of LOW-state
periods is a factor W longer than the average duration of HIGH-state periods.
This is targeted at allowing some traffic arriving during the HIGH-state to be
drained during the LOW-state.

In our simulations, we do not deterministically bound the maximum number,
M , of U -packets arriving in a cycle, but rather control the expected intensity of
U -packets by letting each arriving packet be a U -packet with some probability
α ∈ [0, 1]. We thus obtain that the expected number of U -packets per cycle
during the HIGH state is 10α.

In real-life scenarios, the maximum work, W , required by a packet, is highly
implementation-depended. It depends on the specific hardware, processing el-
ements, and software modules. However, several works which investigated the
required work on typical tasks [30, 31, 32] indicate that W is two orders of
magnitude larger than the work required for doing an IPv4-trie search or classi-
fication of a packet. We refer to IPv4-trie search or classification of a packet as
the baseline unit of work, captured by our notion of “parsing”. We therefore set
the maximum work required by a packet to W = 256 throughout this section.
As the potential set of characteristics is large, we use a logarithmic classification
scheme (recall Section 4.5).

Determining the maximum profit, V , associated with a packet, is a chal-
lenging task. This value depends both on implementation details, as well as on
proprietary commercial and business considerations. In order to have a diverse
set of values, which model distinct QoS requirements, we set the maximum
profit associated with a packet to V = 16 throughout this section.

The values W = 256 and V = 16 imply a total of 8 · 4 = 32 potential classes
for the algorithm to select from, respectively. The value of each characteristic
for each packet is drawn from an approximation of a Pareto-distribution as
follows. First, we randomly generate numbers, following a Pareto-distribution.
Next, numbers are rounded, to get integer values. Finally, for disallowing values
above the maximum (256 for work values and 16 for profit values), all the cases
where the randomly generated values were above the maximum were truncated,
namely, treated as if the generated value was exactly the maximal value. The
averages and standard deviations of the values obtained after this generation

22

Value

P
D

F

Figure 3: Probability distribution function of the characteristics values

process are 17.97 and 22.22 for packet work, and 3.66 and 3.20 for packet profit.
The schematic probability distribution function of the characteristics values is
depicted in Fig. 3. Note the spike at its maximum, due to the truncation
described above. Unless stated otherwise, we assume that B = 10, r = 1 and
each arriving packet is a U -packet with probability α = 0.3. We thus obtain that
the expected number of U -packets arriving during the HIGH state is 0.3 ·10 = 3
per cycle.

As a benchmark which serves as an upper bound on the optimal performance
possible, we consider a relaxation of the offline problem as a knapsack problem.
Arriving packets are viewed as items, each with its size (corresponding to the
packet’s work) and value (corresponding to the packet’s profit). The allocated
knapsack size equals the number of time slots during which packets arrive. The
goal is to choose a highest-value subset of items which fits within the given knap-
sack size. This is indeed a relaxation of the problem of maximizing throughput
during the arrival sequence in the offline setting, since the knapsack problem is
not restricted by any finite buffer size during the arrival sequence, nor by the
arrival time of packets (e.g., it may “pack” packets even before they arrive).

We employ the classic 2-approximation greedy algorithm for solving the
knapsack problem [33], and use its performance as an approximate upper bound
on the performance of OPT. For considering the additional profit which OPT
may gain from packets which reside in its buffer at the end of the arrival se-
quence, we simply allow the offline approximation an additional throughput of
BV for free, which is an upper bound on the benefit it may achieve after the
arrival sequence ends.

We compare the performance of studied algorithms by evaluating their per-
formance ratio, which is the ratio between the algorithm’s performance and that
of our approximate upper bound on the performance of OPT.

We compare the performance of the following algorithms:

23

1. FIFO: A simple greedy non-preemptive FIFO discipline that simply ac-
cepts packets and processes each packet until completion, regardless of its
required work or value.

2. SA: Algorithm SA, described in Section 4.

3. SA* FIFO: Algorithm SA* where priority ties are broken by FIFO order.

4. SA* W -Then-V : Algorithm SA* where priority ties are broken in non-
decreasing order of remaining work, and further ties are broken in non-
increasing order of profit. This variant is denoted by SA*W − V in Fig-
ures 4-7.

5. SA* EFFECT: Algorithm SA* where priority ties are broken in non-
increasing order of their profit-to-work ratio.

We recall that all the flavors of SA* listed above maintain a GK-first order,
and differ only in the internal ordering within each set (namely, within the set
of GK-packets, as well as within the set of non-GK-packets).

All flavors of SA* described above employ the class-closure and the fill-
during-flush modifications defined in Section 5. For each choice of parameters we
show the average of running 100 independently-generated traces of 10K packets
each. In all our simulations the standard deviation was below 0.035.

7.2. Simulation Results

Figures 4-7 show the results of our simulation study. First we note that
SA exhibits a very low performance ratio, similar to that of a simple FIFO
(which disregards packets parameters altogether). This is due to the fact that
SA focuses only on a specific class, which consists of a relatively small part of
the input, and it thus spends processing cycles on packets that would not be
eventually transmitted.

For the variants of SA* we consider, in all simulations the best scheduling
policy is by non-increasing effectiveness, followed by employing the W -then-V
approach. FIFO scheduling, in spite of it being simple and attractive, comes in
last in all scenarios. This behavior is explained by the fact that both former
scheduling policies in SA* clear the buffer more effectively once it is Gfull. The
latter FIFO scheduling approach clears the buffer in an oblivious manner, and
therefore doesn’t free up space for new arrivals fast enough. We now turn to
discuss each of the scenarios considered in our study.

7.2.1. The Effect of Selected Class

Our first set of results sheds light on the effect of the class selected by an
algorithm on its performance. Fig. 4 shows the results where the selected profit-
class j∗ is 1, which makes SA* allow all profits, and the choice of work-class i∗

varies. The most interesting phenomena is exhibited by SA* FIFO. Its perfor-
mance is very poor if the work-class may contain packets requiring very little
work. This is due to the fact that only a small fraction of the traffic requires this

24

little work, and the algorithm scarcely arrives at being Gfull. As a consequence,
the algorithm handles many low-priority packets, which are handled in FIFO or-
der, giving rise to far-from-optimal decisions. The algorithm steadily improves
up to some point, and then its performance deteriorates fast as it assigns high-
priority to packets with increasingly higher processing requirements. In this
case the algorithm becomes Gfull too frequently, and allocates many processing
cycles to low-effectiveness packets. The maximum performance is achieved for
i∗ = 3, which implies that the algorithm flushes whenever its buffer is filled up
with packets whose work is at most 2i

∗
= 8. This value suffices to allow the

algorithm to prioritize a rather large portion of the arrivals (recalling the Pareto
distribution governing packet work-values), while ensuring the processing toll of
high-priority packet is not too large. This strikes a (somewhat static) balance
between the amount of work required by a packet, and its expected potential
profit. The other variants of SA* exhibit a gradually decreasing performance,
due to their higher readiness to compromise over the required work of packets
they deem as high-priority traffic. SA shows a similar performance deteriora-
tion, for a similar reason, when the selected work-class i∗ is increased from 1 up
to 6. However, when increasing i∗ above 6, SA’s performance increases again.
This improvement is explained by the fact that, due to the Pareto-distribution of
the work values, the number of packets which belong to each work-class rapidly
diminishes when switching to work-class indices closest to the maximum of 8;
recall that SA over-prioritizes only packets which belong to a single randomly
selected class, i.e., SA does not employ the class closure optimization (described
in Section 5). In such a case, SA is coerced into processing also packets which
do not belong to the selected class – namely, packets with lower work – which
somewhat compensates for the poor choice of the work-class. We verified this
explanation by additional simulations (not shown here), in which the work-class
of packets was chosen from the uniform distribution. In such a case, where there
is an abundance of packets from every possible work-class, the performance of
SA consistently degrades with the increase of i∗, which implies a poorer choice
of work-class.

Similar phenomena are exhibited in Fig. 5, where we consider the effect of
the profit-class j∗ selected by an algorithm on its performance. In this set of
simulations all work-values were allowed (i.e., the selected work-class is 8). In
this scenario the performance of all algorithms improves as the selected profit-
class index increases, and the algorithms are able to better restrict their focus
on high profit packets as the packets receiving high-priority. We note the fact
that SA* FIFO and regular FIFO have a matching performance in the case the
selected profit-class is 1, since in this case SA* FIFO is identical to plain FIFO
(since it simply indiscriminately accepts and processes all incoming packets in
FIFO order).

In subsequent results described hereafter, we fix both the work-class and the
profit-class to be 3, which represents a mid-range class for both the profit and
the work.

25

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Selected work-class

T
h
ro

u
g
h
p
u
t

ra
ti

o

FIFO SA SA∗ FIFO SA∗ W -V SA∗ EFFECT

Figure 4: Effect of chosen work-class i∗

7.2.2. The Effect of Missing Information

Fig. 6 illustrates the performance ratio of our algorithms as a function of the
expected number of U -packets arriving during the HIGH state, where we vary
the value of α from 0 to 1. This provides further insight as to the performance of
each algorithm as a function of the intensity of unknown packets. We recall that
for our choice of parameters, the values of α translate to having the expected
number of unknown packets per cycle during the HIGH state vary from 0 to
10. As one could expect, the performance ratio of SA and of all versions of SA*

degrades as the amount of uncertainty increases.
Finally, we study the intensity of exploring unknown packets, as depicted by

the choice of parameter r which determines whether a cycle is an admittance
cycle or not. The results depicted in Fig. 7 consider the case of high uncertainty,
where α = 1, that is, all arriving packets are unknown.

Observe first the special case where r = 0, which represents an extreme
case, in which, although all arriving packets are unknown, our algorithms do
not explore any new packets, and actually degenerate to a simple FIFO, and
therefore exhibit identical performance. Increasing the admittance probability
r, however, yields a steady increase in performance, albeit with diminishing
returns. Similar results were obtained also when some of the packets are known,
but with smaller marginal benefits. These results coincide with our analytic
results, which further validate our algorithmic approach.

26

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Selected profit-class

T
h
ro

u
g
h
p
u
t

ra
ti

o

FIFO SA SA∗ FIFO SA∗ W -V SA∗ EFFECT

Figure 5: Effect of chosen profit-class j∗

8. Conclusions and Future Work

We consider the problem of managing buffers where traffic has unknown
characteristics, namely required processing and profits. We show lower bounds
on the competitive ratio of any online algorithm for the problem. We define
several algorithmic concepts targeted at such settings, and develop several al-
gorithms that follow our suggested prescription. Our theoretical analysis shows
that the competitive ratio of our algorithms is not far from the best competitive
ratio any online algorithm can achieve. We validate the performance of our
algorithms via simulation which further serves to elucidate our design criteria.
Our work can be viewed as a first step in developing fine-grained algorithms
handling scenarios of limited knowledge in networking environments for highly
heterogeneous traffic.

Our work gives rise to a multitude of open questions, including: (i) closing
the gap between our lower and upper bound for the problem, (ii) applying our
proposed approaches to other limited knowledge networking environments, and
(iii) devising additional algorithmic paradigms for handling limited knowledge
in heterogeneous settings.

References

References

[1] I. Cohen, G. Scalosub, Queueing in the mist: Buffering and scheduling with
limited knowledge, in: IWQoS, IEEE, 2017, pp. 1–6.

27

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

T
h
ro

u
g
h
p
u
t

ra
ti

o

FIFO SA SA∗ FIFO SA∗ W -V SA∗ EFFECT

Figure 6: Effect of expected number of U -packets during the HIGH state

[2] K. Karras, T. Wild, A. Herkersdorf, A folded pipeline network processor
architecture for 100 gbit/s networks, in: ANCS, 2010, p. 2.

[3] C. Kozanitis, J. Huber, S. Singh, G. Varghese, Leaping multiple headers in
a single bound: wire-speed parsing using the kangaroo system, in: INFO-
COM, 2010, pp. 830–838.

[4] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri,
S. Radhakrishnan, V. Subramanya, A. Vahdat, Portland: a scalable fault-
tolerant layer 2 data center network fabric, in: SIGCOMM, Vol. 39, 2009,
pp. 39–50.

[5] M. Yu, J. Rexford, M. J. Freedman, J. Wang, Scalable flow-based network-
ing with difane, in: SIGCOMM, Vol. 41, 2011, pp. 351–362.

[6] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. Gude, N. McKeown,
S. Shenker, Rethinking enterprise network control, IEEE/ACM Transac-
tions on Networking 17 (4) (2009) 1270–1283.

[7] P. Chuprikov, S. Nikolenko, K. Kogan, Priority queueing with multiple
packet characteristics, in: INFOCOM, 2015, pp. 1418–1426.

[8] A. Shpiner, I. Keslassy, R. Cohen, Scaling multi-core network processors
without the reordering bottleneck, in: HPSR, 2014, pp. 146–153.

[9] D. D. Sleator, R. E. Tarjan, Amortized efficiency of list update and paging
rules, Communications of the ACM 28 (2) (1985) 202–208.

28

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r

T
h
ro

u
g
h
p
u
t

ra
ti

o

FIFO SA SA∗ FIFO SA∗ W -V SA∗ EFFECT

Figure 7: Effect of admittance probability of U -packets r

[10] A. Borodin, R. El-Yaniv, Online computation and competitive analysis,
Cambridge University Press, 2005.

[11] W. A. Aiello, Y. Mansour, S. Rajagopolan, A. Rosén, Competitive queue
policies for differentiated services, in: INFOCOM, Vol. 2, 2000, pp. 431–
440.

[12] A. Kesselman, Z. Lotker, Y. Mansour, B. Patt-Shamir, B. Schieber,
M. Sviridenko, Buffer overflow management in qos switches, SIAM Journal
on Computing 33 (3) (2004) 563–583.

[13] Y. Mansour, B. Patt-Shamir, O. Lapid, Optimal smoothing schedules for
real-time streams, in: PODC, 2000, pp. 21–29.

[14] S. Albers, M. Schmidt, On the performance of greedy algorithms in packet
buffering, SIAM Journal on Computing 35 (2) (2005) 278–304.

[15] Y. Azar, Y. Richter, An improved algorithm for cioq switches, in: ESA,
2004, pp. 65–76.

[16] A. Kesselman, K. Kogan, M. Segal, Packet mode and qos algorithms for
buffered crossbar switches with fifo queuing, Distributed Computing 23 (3)
(2010) 163–175.

[17] Y. Kanizo, D. Hay, I. Keslassy, The crosspoint-queued switch, in: INFO-
COM, 2009, pp. 729–737.

29

[18] A. Kesselman, B. Patt-Shamir, G. Scalosub, Competitive buffer manage-
ment with packet dependencies, Theoretical Computer Science 489–490
(2013) 75–87.

[19] Y. Mansour, B. Patt-Shamir, D. Rawitz, Overflow management with mul-
tipart packets, Computer Networks 56 (15) (2012) 3456–3467.

[20] M. H. Goldwasser, A survey of buffer management policies for packet
switches, ACM SIGACT News 41 (1) (2010) 100–128.

[21] I. Keslassy, K. Kogan, G. Scalosub, M. Segal, Providing performance guar-
antees in multipass network processors, IEEE/ACM Transactions on Net-
working 20 (6) (2012) 1895–1909.

[22] K. Kogan, A. López-Ortiz, S. Nikolenko, G. Scalosub, M. Segal, Balancing
work and size with bounded buffers, in: COMSNETS, 2014.

[23] Y. Azar, O. Gilon, Buffer management for packets with processing times,
in: ESA, 2015, pp. 47–58.

[24] Y. Azar, I. R. Cohen, I. Gamzu, The loss of serving in the dark, in: STOC,
2013, pp. 951–960.

[25] Y. Azar, I. R. Cohen, Serving in the dark should be done non-uniformly,
in: ICALP, 2015, pp. 91–102.

[26] K. Pruhs, Competitive online scheduling for server systems, ACM SIG-
METRICS Perf. Eval. Review 34 (4) (2007) 52–58.

[27] A. C.-C. Yao, Probabilistic computations: Toward a unified measure of
complexity, in: FOCS, 1977, pp. 222–227.

[28] B. Awerbuch, Y. Bartal, A. Fiat, A. Rosén, Competitive non-preemptive
call control., in: SODA, 1994, pp. 312–320.

[29] J. S. Vitter, Random sampling with a reservoir, ACM Transactions on
Mathematical Software 11 (1) (1985) 37–57.

[30] R. Ramaswamy, N. Weng, T. Wolf, Analysis of network processing work-
loads, Journal of Systems Architecture 55 (10) (2009) 421–433.

[31] M. E. Salehi, S. M. Fakhraie, Quantitative analysis of packet-processing ap-
plications regarding architectural guidelines for network-processing-engine
development, Journal of Systems Architecture 55 (7) (2009) 373–386.

[32] M. E. Salehi, S. M. Fakhraie, A. Yazdanbakhsh, Instruction set architec-
tural guidelines for embedded packet-processing engines, Journal of Sys-
tems Architecture 58 (3) (2012) 112–125.

[33] D. P. Williamson, D. B. Shmoys, The Design of Approximation Algorithms,
Cambridge University Press, 2011.

30

Appendix A. Preliminaries

We now define some of the notation that will be used throughout the ap-
pendix.

For every cycle t and packet type α, we denote by Aα(t) the number of

α-packets that arrive in cycle t. For instance, A
(K)

(t) (A
(U)

(t)) denotes the
number of K-packets (U -packets) which arrive in cycle t. This notation can be

combined with the work and profit values of packets. For instance, A
(U)

(w,v)(t)
denotes the number of U -packets with work w and profit v, which arrive in cycle
t.

Our proofs involve a careful analysis of the expected profit of our algorithms
from packets which arrive when it is either in the fill or the flush phase. There-
fore, we now turn to define the exact notion of cycles belonging to either phase.
We say that an algorithm is in the flush phase in a specific cycle t if it is in the
flush state at the end of the arrival step of cycle t. If it’s not in the flush phase
in cycle t, then we say it is in the fill phase in cycle t. Denote by P (fill) and
P (flush) the sets of cycles in which our algorithm is in the fill and flush phases,
respectively.

For every packet type α, we denote by Sα(t) the expected profit of the
algorithm from α-packets which arrive in cycle t, and by Sα =

∑
t Sα(t) the

overall expected profit of Alg from α-packets. We denote by Oα the expected
profit of some optimal solution, OPT, from α-packets. Again, these notations
can be combined with previous notations. For instance, OGU (t) denotes the

overall expected profit of OPT from GU -packets. Furthermore, O
(fill)

GU denotes

the expected profit of OPT from GU -packets which arrive during P (fill).

Appendix B. Proof Of Theorem 7

Our proof will follow from a series of propositions. Initially, we aim to prove
that SA successfully transmits every GK-packet which arrives during the fill
phase, by showing that it never drops such a packet once it is accepted to the
buffer.

Proposition 11. SA successfully transmits every GK-packet which arrives dur-
ing the fill phase.

Proof. We first note, that any GK-packet arriving during the fill phase (depicted
by the while loop in lines 3-24) is accepted (line 9).

Next, we show that SA never drops a GK-packet which resides in its buffer.
We consider all cases where SA drops a packet from its buffer, and prove that
it cannot be a GK-packet.

In line 6, SA drops an admitted packet, namely, a picked U -packet, and not
a GK-packet.

In line 8, SA performs the MakeRoom() procedure, which may result in
dropping the last packet in the buffer. However, as this line dwells within the
while loop of lines 3-24, we know that the phase is fill, and therefore there

31

are at most B − 1 GK-packets in the buffer. Furthermore, if there are exactly
B − 1 GK-packets in the buffer, the if-clause in lines 5-7 assures that there is
no admitted packet in the buffer. Hence, if the buffer is full, it contains at least
one low-priority packet – namely, a packet which is not admitted and not a
GK-packet. After sorting the buffer, this low-priority, non-GK packet, will be
located in the tail of the queue and dropped.

SA may perform the MakeRoom() procedure also in line 12, if A
(U)

(tp) = 1. In

this case, the arriving packet p is the first U -packet arriving in this cycle – and
it is not admitted yet. As a result, there is no admitted packet in the buffer.
Furthermore, as this line is executed during the fill phase (the while loop of
lines 3-24), there are at most B − 1 GK-packets in the buffer. Hence, if the
buffer is full, it contains at least one low-priority, non-GK-packet, which is the
packet dropped.

The following lemma shows that the overall number ofG-packets transmitted
by SA is at least a significant fraction of the number of G-packets accepted by
an optimal policy during a fill phase.

Lemma 12. SG ≥ r
MO

(fill)
G .

Proof. Let t denote a cycle in the fill phase, in which U -packets arrive. Then,
with probability r SA admits one U -packet, denoted p. As the algorithm im-
plements reservoir sampling [29], p is picked uniformly at random out of at
most M unknown arrivals, and therefore the probability that p ∈ GU is at least
AGU (t)/M . As p is parsed in the cycle of arrival, in the subsequent cycle it is
known. By Proposition 11, if p is a GK-packet, then SA will eventually transmit

p. Recalling that X
(W)
i∗ and X

(P)
j∗ denote the ranges of the work and profit val-

ues within the selected work and profit class C(i∗,j∗) (see Sec. 4.5), we conclude
that

SGU (t) ≥ r

M

∑
w∈X(W)

i∗ ,v∈X(P)

j∗

[v ·A(U)
(w,v)(t)]. (B.1)

Summing Eq. B.1 over all the cycles within the fill phase,

SGU ≥ r

M

∑
t∈P (fill)

∑
w∈X(W)

i∗ ,v∈X(P)

j∗

[v ·A(U)
(w,v)(t)] ≥

r

M
O

(fill)

GU . (B.2)

In addition, by Proposition 11, SGK ≥ O(fill)

GK . Therefore

SG = SGK + SGU ≥ r

M
(O

(fill)

GK +O
(fill)

GU) =
r

M
O

(fill)
G . (B.3)

We are now in a position to prove Theorem 7.

32

Proof of Theorem 7. Every class C(i,j) is the selected class with probability
1

`W ·`V . Using Lemma 12 we therefore have for all i ∈ {1, 2, . . . , `W } and

j ∈ {1, 2, . . . , `V }, S(i,j) ≥ r
M ·`W ·`V O

(fill)
(i,j) .

Summing over all the classes, we obtain that the expected performance of
our algorithm satisfies

`W∑
i=1

`V∑
j=1

S(i,j) ≥
r

M · `W · `V

`W∑
i=1

`V∑
j=1

O
(fill)
(i,j) . (B.4)

If SA is never Gfull during an arrival sequence, then O(i,j) = O
(fill)
(i,j) and there-

fore, by Eq. B.4 the ratio between the performance of OPT and the expected
throughput of SA is at most M

r · `W · `V , as required.
Assume next that SA becomes Gfull during an input sequence. In such a

case we compare the overall throughput due to packets transmitted by SA until
the first cycle in which its buffer is empty again, and the profit obtained by
OPT due to packets accepted by OPT during the same interval. We note that
our analysis would also apply to subsequent such intervals, namely, until the
subsequent cycle in which SA is empty again.

We note that in case SA becomes Gfull, SA holds in its buffer exactly B
G-packets, and all these packets are transmitted by the time SA is empty again.
By the definition of δW in Section 4.2, the maximal work which SA dedicates
to any of these packets is at most δW times higher than the minimal work
which OPT dedicates to any G-packet. As a result, during the flush phase, in
which SA handles B G-packets, OPT can handle at most δWB +B G-packets.
Furthermore, by the definition of δV in Section 4.2, the maximal profit of OPT
from any G-packet is at most δV higher than the minimal profit of SA from any
G-packet. Combining the above reasoning implies that

O
(flush)
G

SG
≤ δWB +B

B
· δV = (δW + 1)δV . (B.5)

As every class C(i,j) is the selected class w.p. 1
`W ·`V , we have

∀i ∈ {1 . . . `W } , j ∈ {1 . . . `V } , S(i,j) ≥
1

(δW + 1)δV · `W · `V
O

(flush)
(i,j) .

Summing over all the classes we obtain

`W∑
i=1

`V∑
j=1

S(i,j) ≥
1

(δW + 1)δV · `W · `V

`W∑
i=1

`V∑
j=1

O
(flush)
(i,j) . (B.6)

Combining Equations B.4 and B.6 implies that the competitive ratio of SA
is at most∑`W

i=1

∑`V
j=1

[
O

(fill)
(i,j) +O

(flush)
(i,j)

]
∑`W
i=1

∑`V
j=1 S(i,j)

≤
[
M

r
+ (δW + 1)δV

]
· `W · `V , (B.7)

33

which completes the proof.

In the special case where all packets are known upon arrival, we obtain the
following upper bound on the competitive ratio of SA:

Corollary 13. When M = 0, SA is O(δW · δV · `W · `V)-competitive.

Proof. We follow the proof of Theorem 7, and carefully check the required
changes.

When all packets are known, Proposition 11 remains essentially intact. Fur-

thermore, we have SG = SGK ≥ O
(fill)

GK = O
(fill)
G , which replaces Lemma 12.

Accordingly, Eq. B.4 is modified to

`W∑
i=1

`V∑
j=1

S(i,j) ≥
1

`W · `V

`W∑
i=1

`V∑
j=1

O
(fill)
(i,j) . (B.8)

Equation B.6 remains intact, as in deriving it we use the classify and ran-
domly select scheme, independently of M . Combining Equations B.8 and B.6
implies that when all packets are known, the competitive ratio of SA is at most∑`W

i=1

∑`V
j=1

[
O

(fill)
(i,j) +O

(flush)
(i,j)

]
∑`W
i=1

∑`V
j=1 S(i,j)

≤ [1 + (δW + 1)δV] · `W · `V , (B.9)

which completes the proof.

Appendix C. Proof Of Theorem 10

Proof. We first consider the effect of uniformly at random selecting a class
closure, instead of selecting a specific class. First, note that the proof of Lemma

12 also directly applies to SA*, implying that S∗G∗ ≥ r
MO

(fill)
G . Furthermore, the

arguments used in the proof of Theorem 7 also apply to SA*, and in particular
SA* satisfies Equation B.7, where we substitute in the denominator S(i,j) by
S∗(i,j).

Consider next the affect of performing fill during flush. In SA* we accept
packets also during the flush phase, but we never process any of these packets
before all packets contributing to the algorithm being Gfull are transmitted, i.e.,
they are never processed before the flush phase is complete. We enumerate the
fill phases and the subsequent flush phases as follows: Pfill1 , Pflush1

, Pfill2 , Pflush2
, . . . , Pfilln , Pflushn

,
where n ≥ 1. It should be noted that each such phase corresponds to a series
of disjoint time intervals defined by the first cycle of the sequence of phases.
We further denote the Pflush0

phase as an empty set of cycles, and in case that
the sequence ends by a fill phase, we also let Pflushn

denote an empty set of
cycles. Similarly, we further define P ∗filli

, P ∗flushi
, for the appropriate values of i,

to denote the fill and flush phases corresponding to SA*.
Denote the profit accrued by SA and OPT from packets which arrive during

the ith fill phase by S(Pfilli
) and O(Pfilli

) respectively. Similarly, denote the profit

34

of SA and OPT obtained from packets which arrive during the ith flush phase
by S(Pflushi

) and O(Pflushi
), respectively. Similarly, we let S∗(P

∗
filli

) and S∗(P
∗
flushi

)

indicate the profit of SA* obtained from packets which arrive during its ith fill
and flush phase, respectively.

Using this notation, we recall that, by the analysis of SA presented in The-
orem 7

O(Pfilli
) +O(Pflushi

) ≤
[
M

r
+ (δW + 1)δV

]
`W · `V · S(Pfilli

) (C.1)

for every i = 1, . . . , n.
This induces an implicit mapping φ of the units of profit obtained from

G-packets accepted by OPT during Pfilli ∪ Pflushi
to the units of profit ob-

tained from G-packets accepted by SA during Pfilli (either known, or unknown
that were parsed), such that every unit of profit obtained by SA has at most[
M
r + (δW + 1)δV

]
`W · `V units of profit mapped to it.

A key observation is noting that the image of mapping φ is essentially the
profit attained from the set of G-packets contributing to the algorithm being
Gfull at the end of the corresponding fill phase.

As SA* may accept packets during flush, in the beginning of the subsequent
fill phase the buffer of SA* may not be empty. In particular, there could be
G-packets accepted during the recent flush phase that are stored in the buffer.
However, none of these packets have any OPT packets mapped to them. It
follows that these packets can contribute to SA* becoming Gfull in the new fill
phase, and any profit implicitly mapped to the profit of these packets by φ would
correspond to packets arriving during the new fill phase, or its subsequent flush
phase. The implicit mapping is depicted in Fig. C.8, along with the difference
between the mapping arising from the behavior of SA (visualized above the time
axis), and the mapping arising from the behavior of SA*(visualized below the
time axis). Note that the fill and flush phases of both algorithms need not be
synchronized, since SA* can potentially become Gfull “faster” than SA.

It follows that Eq. C.1 now translates to

O(P∗filli
) +O(P∗flushi

) ≤[
M
r + (δW + 1)δV

]
`W · `V ·

[
S
∗(P∗flushi−1

)
+ S∗(P

∗
filli

)
] (C.2)

for every i = 1, . . . , n. Summing over all i = 1, . . . , n, we obtain that the
competitive ratio guarantee for SA* is the same as that for SA.

Lastly, the analysis of SA does not assume any specific scheduling rule to be
applied, as long as the G(K)-first order rule is maintained. Thus, our competitive
ratio guarantee is independent of the specific ordering within the set of GK-
packets, as well as within the set of non-GK-packets.

Appendix D. Running Example of SA

Figure D.9 exemplifies a running of SA equipped with a 3-slots buffer. Each
packet is represented by a square. If it is a known (w, v)-packet, then (w, v)

35

time

Pfill1 Pflush1
Pfill2 Pflush2

Pfill3 Pflush3
Pfill4 Pflush4

P ∗
fill1

P ∗
flush1

P ∗
fill2

P ∗
flush2

P ∗
fill3

P ∗
flush3

P ∗
fill4

P ∗
flush4

packets accepted by OPT

packets accepted by OPT

G-packets contributing
to SA being Gfull

G-packets contributing
to SA* being Gfull

Figure C.8: Visualization of the mappings induced by the analysis of SA and SA*, for the first 4
fill and flush phases. The fill and flush phases of SA are denoted Pfilli and Pflushi

, respectively,

whereas the fill and flush phases of SA* are denoted P ∗
filli

and P ∗
flushi

, respectively. The top

part shows the mapping of profit corresponding to packets accepted by OPT along time, to
the profit corresponding to G-packets accepted by SA during the fill phase (since SA does not
accept any packets during the flush phase). The bottom part shows the induced mapping of
profit obtained by packets accepted by OPT along time to the profit of G-packets accepted
by SA* during both the preceding flush phase, and the current fill phase.

(namely, its work, profit values, resp.) appears within the square representing
the packet. If the packet is unknown, however, the (unknown) work and profit
values do not appear, and the packet’s color is dark gray.

Known packets which belong to the selected class (GK-packets) are marked
in light gray. The figure assumes that the (randomly-chosen) selected class
is the class of packets with work- and profit- values within the range [3, 4].
Recall, that this range refers to the characteristics of a packet upon arrival.
For instance, a (3, 3)-packet always belongs to the selected class, although after
being processed its residual work decreases, and it becomes a (2, 3)-packet, and
later a (1, 3)-packet, and so on.

Each cycle begins with the transmission step, in which a fully processed
packet, if such exists, leaves the queue. In our example there is no packet
transmitted since we focus our attention on handling arrivals and determining
priorities which are the core components of our algorithm. This step is followed
by the arrival step, where arriving packets are handled by the algorithm. Finally,
the cycle ends with a processing step, where the head-of-line (HoL) packet is
processed. This packet is emphasized by an extra internal square. The state of
the queue at the end of each cycle is depicted by a light-gray background. At
each cycle the algorithm tosses a coin, and assigns the cycle as an admittance
cycle w.p. r. In this example, we assume that cycles 1, 3, 5, 6 are admittance
cycles. We now turn to explain the scenario depicted in Figure D.9 cycle by
cycle.

t = 0. Begin with an empty buffer.

t = 1. A known (4, 4)-packet arrives. As both its work- and profit- values
belong to the ranges [3,4], it is a GK-packet, and therefore it is retained by the

36

algorithm (recall that GK-packets are never dropped during the fill phase, as
shown in Proposition 11).

Next, a U -packet arrives. As this is an admittance cycle, this U -packet is
admitted, that is, accepted into the buffer, and assigned to the HoL. Since this
is the last packet to arrive in this cycle, and being the HoL-packet, this packet
is processed in the processing step. We refer to this packet as being parsed in
this cycle, as this is the first processing cycle of this packet.

After parsing, the characteristics of the HoL packet become known: it is now
a known (1, 8)-packet. Namely, when it arrived, it was a (2, 8)-packet which has
received one cycle of processing. By these values, this packet does not belong
to the selected class. Therefore, it is pushed down to the buffer’s tail. Instead,
the GK-packet, with values (4, 4) is assigned to be the HoL packet. It should
be noted that although the parsed (1, 8)-packet is superior to any GK-packet
currently in the buffer (since it carries a profit value of 8 while requiring just one
more cycle of work), SA still prefers GK-packets over this packet. We note that
the improved SA* algorithm would re-assign such a packet to be a GK-packet
by considering the selective class closure.

t = 2. No packets arrive. The HoL-packet, (4, 4), is processed, and becomes a
(3, 4)-packet.

t = 3. This is an admittance cycle. Therefore, the first arriving U -packet is
admitted. In particular, this cycle well exemplifies the buffer’s ordering: at top-
priority is the admitted packet; at a second priority is the GK-packet, (3, 4);
the remaining packet in the buffer, (1, 8), is of a lowest priority.

When a second U -packet arrives, SA tosses a coin, and replaces the previously-
admitted packet with the new arriving U -packet w.p. 1/2. When a third U -
packet arrives, SA tosses a coin again, and replaces the previously-admitted
packet with the new arriving U -packet w.p. 1/3.

In the processing step, SA parses the admitted packet, unraveling it as a
(3, 3)-packet. Namely, upon arrival its characteristics were (4, 3), ascribing it
to the selected class. As there already exists another GK-packet in the buffer
(the (3, 4)-packet) SA breaks the tie between the two GK-packets in its buffer
by FIFO order. We note that the improved SA* algorithm would transition to
the flush phase at this point, since it would have been full of GK-packets.

t = 4. First, we have an arriving known (2, 5)-packet. By its characteristics, it
is not a GK-packet. Therefore, it is assigned the lowest priority. In particular, as
the buffer is full, this packet is discarded. Next, a U -packet arrives. However, as
this is a non-admittance cycle, the U -packet is discarded as well. Finally, during
the processing step, the HoL packet is processed, decreasing its remaining work
to 2.

t = 5. We have a single arriving U -packet. As it is an admitted cycle, this U -
packet is admitted, hence, accepted and parsed. In order to make room for this
admitted packet, the (1, 8)-packet in the tail is pushed-out and dropped. After

37

parsing, the U -packet is uncovered as a (1, 2)-packet. Namely, upon arrival it
was a (2, 2)-packet. By these characteristics, this packet does not belong to the
selected class, and therefore has the lowest priority, and downgraded to the tail.

t = 6. This is an admittance cycle. Therefore the first arriving U -packet is
admitted, pushing-out from the buffer the (1, 2)-packet, which was in the tail.
When a second U -packet arrives, it replaces the previously-admitted packet w.p.
1/2. Then, a (2, 7)-packet arrives. By its characteristics, it is neither an admit-
ted packet (as it is a K-packet), nor does it belong to the selected class. As a
result, the (2, 7)-packet is assigned the lowest priority, and is therefore discarded.
The last arrival in this cycle is a known (4, 4)-packet. By its characteristics, it
is a GK-packet. Since the buffer already contains B − 1 = 2 GK-packets, the
U -packet at the HoL is dropped, and the newly arriving CsK-packet is accepted
to the queue (see lines 4-9 in Algorithm 4). The queue therefore becomes Gfull,
i.e., the buffer is full with GK-packets. SA then switches to the flush state, and
it will merely process all the packets in its buffer in a run-to-completion manner
and transmit all the fully-processed packets, until the buffer is empty again.

38

A
rr
iv
a
l

Q
u
eu
e
S
ta
te

t = 0

(4, 4)

(4, 4)

(4, 4) (1, 8)

(4, 4)

t = 1

(1, 8)

(4, 4)

(1, 8)

(3, 4)

t = 2

(1, 8)

(3, 4)

(1, 8)

(3, 4)

(1, 8)

(3, 4)

(1, 8)

(3, 3)

(3, 4)

t = 3

A
rr
iv
a
l

Q
u
eu
e
S
ta
te

(2, 5)

(1, 8)

(3, 3)

(3, 4)

(1, 8)

(3, 3)

(3, 4)

(1, 8)

(3, 3)

(2, 4)

t = 4

(3, 3)

(2, 4)

(1, 2)

(3, 3)

(2, 4)

t = 5

(3, 3)

(2, 4)

(3, 3)

(2, 4)

(2, 7)

(3, 3)

(2, 4)

(4, 4)

(4, 4)

(3, 3)

(2, 4)

(4, 4)

(3, 3)

(1, 4)

t = 6

Figure D.9: Running Example of SA, equipped with a 3-slots buffer. Each known packet
is labeled (w(p), v(p)), where w is the remaining work and v is the profit. GK -packets are
marked by light gray. U -packets are colored by dark gray.
Each cycle begins with a transmission step, in which a fully-processed packet, if such exists, is
transmitted. Next comes the arrival step, where arriving packets are handled by the algorithm
one by one. For each arriving packet, the buffer below the arrival depicts the state of the buffer
after handling the packet’s arrival. The packet in the queue’s head-of-line (HoL) at the end of
the arrival step is emphasized by an extra, internal, square. This packet is the one processed
in the processing step. The state of the buffer at the end of each cycle is highlighted with
light-gray background.

39

	1 Introduction
	1.1 System Model
	1.2 Related Work
	1.3 Our Contribution

	2 Lower Bounds
	2.1 Highly-restricted adversaries
	2.2 Non-restricted adversaries

	3 Algorithmic Concepts
	4 Competitive Algorithms
	4.1 High-level Description of Proposed Algorithm
	4.2 A General Classify and Randomly Select Mechanism
	4.3 The `39`42`"613A``45`47`"603ASA Algorithm
	4.4 Performance Analysis
	4.5 Concrete Classification Mechanisms

	5 Improved Algorithms
	6 Practical Implementation
	7 Simulation Study
	7.1 Simulation Settings
	7.2 Simulation Results
	7.2.1 The Effect of Selected Class
	7.2.2 The Effect of Missing Information

	8 Conclusions and Future Work
	Appendix A Preliminaries
	Appendix B Proof Of Theorem 7
	Appendix C Proof Of Theorem 10
	Appendix D Running Example of `39`42`"613A``45`47`"603ASA

