

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Apr 19, 2024

Aspects of system modelling in Hardware/Software partitioning

Knudsen, Peter Voigt; Madsen, Jan

Published in:
Proceedings. Seventh IEEE International Workshop on Rapid System Prototyping

Link to article, DOI:
10.1109/IWRSP.1996.506721

Publication date:
1996

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Knudsen, P. V., & Madsen, J. (1996). Aspects of system modelling in Hardware/Software partitioning. In
Proceedings. Seventh IEEE International Workshop on Rapid System Prototyping (pp. 18-23). IEEE.
https://doi.org/10.1109/IWRSP.1996.506721

https://doi.org/10.1109/IWRSP.1996.506721
https://orbit.dtu.dk/en/publications/5a8dc193-e813-445e-983d-6f3b311ff3d9
https://doi.org/10.1109/IWRSP.1996.506721

Aspects of System Modelling in Hardware/Software Partitioning

Peter Voigt Knudsen and Jan Madsen
Department of Information Technology, Technical University of Denmark

pvke i t . d t U. dk , j an@i t . dt U. dk

Abstract

Thi s paper addresses fundamen ta l aspects of s y s t em
modelling and parti t ioning algorithms an the area of
Hardware/Software Codesign. Three basic sy s t em mod-
els for parti t ioning are presented and the consequences
of parti t ioning according t o each of these are analyzed.
T h e analysis shows the importance of making a clear
distinction between the model used for parti t ioning and
the model used fo r evaluation. It also illustrates the i m -
portance of having a realistic hardware model such tha t
hardware sharing can be taken in to account. Finally,
the importance of integrating scheduling and allocation
wi th parti t ioning i s demonstrated.

1 Introduction

Hardwarelsoftware partitioning is often viewed as
the synthesis of an architecture consisting of a single
CPU and a single dedicated hardware component (full
custom, FPGA, etc.) from an initial system specifica-
tion, e.g., [I].

The aim of this paper is to emphasize the impor-
tance of clearly defining and reporting the partition-
ing model assumed by a partitioning algorithm and to
demonstrate the kind of errors that may occur if the
results produced by a partitioning algorithm which as-
sumes a simplistic partitioning model are not evaluated
in accordance with a realistic implementation oriented
model. This will make it easier to evaluate particular
partitioning approaches and to compare strong sides
and weaknesses of different approaches.

Even though the single CPU, single ASIC architec-
ture is a special and limited example of a distributed
system, the architecture is relevant in many areas such
as DSP design, construction of embedded systems, soft-
ware execution acceleration and hardware emulation
and prototyping [8]. Further, it is the most com-
monly used target architecture for automatic hard-
warelsoftware partitioning approaches.

The hardware/software partitioning of a system
specification onto a single CPU, single ASIC architec-
ture has been investigated by a number of research
groups [l, 2, 3, 5, 6, 91 which have employed widely
different input languages (C, C", VHDL, etc.) and sys-
tem models, and have had different optimization goals
and constraints in mind. This makes it very difficult to
compare the approaches. The different approaches will
be described and discussed in section 3 and 4.

2 Modeling and Evaluation Aspects

In order to solve a problem by means of computer
tools, it is necessary to build a model of the real world
problem, i.e., to transform the problem from the phys-
ical domain into the model domain. In doing so, a
number of details are disregarded as to keep the model
simple, however, the main characteristics of the phys-
ical problem should still be present. When a suitable
model has been found, the problem is solved within the
model domain. Finally, the model domain result has
to be realized in the physical domain. In figure 1 this
is depicted for the partitioning problem.

Model Domain

Realization - - - -

Solution

Physical Domain

Figure 1: D o m a i n t rans format ions .

It is important to realize, that results which are opti-
mal within the model domain may not be optimal when
transformed to the physical domain. Clearly, it is im-
portant to model the real world as closely as possible
and it is equally important to always carry out a series
of tests in the real world domain when the performance
and quality of an algorithm is evaluated. However, ac-
tually implementing the partitioned system in order to
evaluate it is costly and time consuming, thus, it is im-
portant to be able to evaluate the different solutions
in the model domain, before selecting the one to be
implemented.

In general, the system model used by the partition-
ing algorithm may deviate from how the system is im-
plemented in reality. In the following, the phrase par-
t i t ioning model is used to denote the model used by
the partitioning algorithm, and the phrase realization
model is used to denote the model of the target archi-
tecture, i.e., the way in which a partition is assumed to
be implemented.

Figure 2 shows two ways of evaluating a partitioning
algorithm within the model domain:

0-8186-7603-5/96 $5.00 0 1996 IEEE
18

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 14,2010 at 12:37:42 UTC from IEEE Xplore. Restrictions apply.

Modi!l Domain

Problem

Physiical Domain

Figure 2: Evaluating the parti t ioning result in the
model domain; I) .Evaluating according t o the parti-
t ioning model, 2) Ehaluating according t o the realiza-
t i o n model.

1. Evaluation according to the partitioning model.

2. Evaluation according to the realization model,

A reason for choosing a simple partitioning model
is that some partitioning algorithms can then solve the
constrained partitioning problem faster and/or more
elegantly. But, as this paper will emphasize, thle qual-
ity of the algorithm must be evaluated according to
the realization model which is actually chosen for im-
plementation in the physical domain.

3 Partitioning Models

In order to be able to partition a system, it has to
be divided into fragments, in the following called Basic
Scheduling Blocks or BSBs. The BSBs define the gran-
ularity of the Partitioning, and are the chunks (of code
which have to be mapped to software or hardw,are.

In this section we present three of the most com-
monly used partitioning models. Note that many other
and more advanced partitioning models than the ones
presented here can be thought of (models including
global communication, function calls, hardwaxe and
software processes executing in parallel, global opti-
mizations, etc.). The purpose of listing the following
partitioning models is, however, not to present a gen-
eral classification scheme for partitioning approaches
but rather to be able to reach some general conclusions
which will be valid no matter which model a particular
partitioning algorithm is based on.

The presented models are arranged by increasing
complexity and all models are based on a system spec-
ification which is represented as a sequence of I3SBs:

Definition 1 A sgistem specification,

s = (Bl,BZ,...,Bn)
i s a n ordered list of n BSBs, where B, denotes BSB

number i and BSBs are ordered according t o th(> = execu-
tion sequence.

It is assumed that all function calls have been flat-
tened prior to BSB extraction. Also, it is assun-ted that

BSBs execute under mutual exclusion, i.e., hardware
and software BSBs are not allowed to execute simulta-
neously.

Definition 2 A BSB, Bi, i s defined by the six-tuple,

Bi = (u,,i,t,,z,ah,i,th,i,ri, Wi)

where as,i and ts,i are the urea and execution t i m e of
Bi when placed in software, ah,i and th,i are the area
and execution t i m e of Bi when placed in hardware, ri
and wi are the read-set and write-set variables of Bi,
respectively.

The software area as,i, which indicates the software
object code size, is not considered in the following dis-
cussions (infinite software side capacity is assumed) and
is only included for completeness. It is assumed that
as, i , ts,i, ah,i and th, i are all fixed values calculated prior
to partitioning, i.e., each BSB has a fixed hardware
area ah,i and execution time th,i independent of which
other BSBs are implemented in hardware, and likewise
for the software implementation. In section 6 these as-
sumptions will be elaborated upon. We will use the
notation t (r i) and t (w;) to denote the communication
time needed to transfer the variables of the read-set and
write-set to/from Bi respectively. Area contributions
associated with communication primitives are ignored
in this paper.

Finally, let a partition be defined as,

Definition 3 A parti t ioning of a s y s t e m specifica-
t ion, S = (B1, B2,. . . , B,) i s a mapping P :
(B1 I B2, . . . , B,) -+ {SW, H W } .

Model I : Instantaneous Communication

The simplest possible model assumes instantaneous
communication, i.e., t (r i) = t (w i) = 0. Figure 3 shows
the initial all-software solution and a solution after par-
titioning.

HW

Figure 3: Partit ioning model wi th instantaneous com-
municat ion.

In this model each BSB, Bi, receives a constant (pos-
sibly negative) speedup1, si = ts , i - th,!, when imple-
mented in hardware, independent of which other BSBs

‘In this paper we will use the term “speedup” to denote the
time saved by moving functionality to hardware.

19

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 14,2010 at 12:37:42 UTC from IEEE Xplore. Restrictions apply.

are implemented in hardware. Hence, the total speedup
obtained by the partition may be defined as

Model 2: Sample Communication

A simple way of taking communication into account
is depicted in figure 4a.

(1: 84 a ~ a4 b

Figure 4: Partitioning model with simple communica-
tion model.

In this model, if a BSB is placed in hardware, its
read-set variables are always transferred from software
to hardware prior to execution of the BSB, and its
write-set variables are always transferred back to soft-
ware when it has finished its execution, regardless of
how other BSBs are placed. This model allows us to
associate a fixed hardware execution time, including
communication time, with each BSB. Hence, the to-
tal speedup obtained by the partition may be defined
as

B ; E H W

where t(7-i) and t(wi) are the communication times
needed to transfer the variables of the read-set and the
write-set to/from Bi .

Figure 4b illustrates the main problem of the simple
communication model. It is evident that there is an
unnecessary communication overhead associated with
the communication from B2 to B3 which results in an
implementation which is not optimal. However, in this
simple model where we have to be able to associate a
fixed hardware execution time with each BSB, that is
inevitable.

Model 3: Adjacent Block Communication

Considering figure 4b it would be better if Bz could
send its write set variables directly to B3 by storing
them in local hardware memory. This is the main idea
of model 3 and is depicted in figure 5a.

II- 84

a

Figure 5: Partitioning model with adjacent block com-
munication.

The adjacent block communication gives a more re-
alistic model of the partitioned system. However, it is
no longer possible to associate a fixed execution time
with each BSB, as the execution time now depends on
whether the previous and following blocks are placed in
hardware. I.e., each time a BSB is moved to hardware,
an analysis of the influence on the read/write sets has
to be performed. This also makes the calculation of
the speedup more difficult, as it now depends on the
sequence of BSBs placed in hardware and the commu-
nication through their effective read- and write-sets.

Figure 5b illustrates how the model can lead to a
better partitioning result than the previous models. B3
is a BSB which receives no speedup when transferred
to hardware. Within model 1 and 2 it will therefore
be placed in software. But within model 3 placing it
in hardware will result in a speedup as t,,2 and tr,4
disappear, so this may be done unless the area penalty
is too large compared with the speedup.

4 Partitioning Approaches

From the preceding discussions we may define two
constrained partitioning problems:

1. Optimize for speed with an area constraint.

2. Optimize for area with a speedup constraint
(which equals the total software execution time
minus an execution speed constraint).

Approaches Assuming Instantaneous Communica-
tion

The system model presented by Jantsch et al. [5]
corresponds to partition model 1 as communication is
ignored and BSBs cannot execute in parallel.

The presented results are model domain results
based on a realization model equal to model 1, i.e., no
attempts to evaluate according to a realistic realization
model have been made. Thus, the reported results may
be overly optimistic.

20

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 14,2010 at 12:37:42 UTC from IEEE Xplore. Restrictions apply.

Approaches Assuming Adjacent Block Communi-
cation

The COSYMA system by Henkel, Ernst et al. [1,
2, 41 uses a simulated annealing algorithm which indi-
rectly attempts to minimize hardware (as no explicit
hardware area costs are calculated) given several local
execution-time constraints. The algorithm accounts for
adjacent block communication optimization, so the sys-
tem model corresponds to partitioning model 31. The
results which are reported are physical domain results
measured on a system implementation which is also
based on model 3.

In [7] we present i5 dynamic programming algorithm
called PACE which takes adjacent block communi-
cation into account during partitioning. As for the
COSYMA system this approach assumes that hard-
ware and software BISBs cannot execute in parallel.

Other Approaches

Some approaches do not present their partitioning
model together with the presentation of the algorithm
and results. This makes it difficult to judge uplon the
quality of the algorithm. Vahid et al. [9] is an ex,zmple.

Other approaches use a partitioning model which
does not fit nicely into the simple models we have pre-
sented. For instance, Kalavade and Lee [6] and Gupta
and De Micheli [3] both present a partitioning approach
which uses a model that resembles partitioning model
3 but differs in that hardware and software BSEk may
execute in parallel. [31 presents physical domain evalu-
ations while [6] uses model domain evaluations.

5 Experiment,s with Different F’arti-
tioning and Evaluation Models

A series of experiments which demonstrate the ef-
fects of optimizing according to one model and eval-
uating according to another model have been carried
out in order to be able to discuss and compare the par-
titioning approaches presented in the previous section.
The sample application used for the experiments is a
VHDL behavioral description consisting of 372 lines
code. The VHDL program is translated into a con-
trol/dataflow graph (CDFG) and divided into a, num-
ber of BSBs. The CDFG contains 1043 vertices, 1143
edges, 8 loops (nested up to three levels) and lone if-
then-else construct.

For the experiments, software execution-time esti-
mates are based on a M68000 microprocesso~r, and
hardware execution- time estimates are obtained from
a global schedule of the CDFG onto an Actel ACT 3
FPGA.

The investigated partitioning problem is to optimize
for speed with a hardware area constraint. A Knapsack
algorithm is used to solve the partitioning problem for
partitioning models 1 and 2. To solve the partitioning
problem for partitioning model 3 the PACE [7] algo-
rithm is used. For all tests, a fixed datapath (alloca-
tion area of 1148 is assumed and the area of hardware

BSBs is the estimated area of their hardware controller
based on an Actel ACT 3 FPGA. Each logic/sequential
module in the FPGA is assigned the area 1. Memory
mapped 1/0 is assumed for hardware/software com-
munication. Partitioning is performed for a sequence
of available hardware areas ranging from 1000 to 2000
in steps of 20.

In the following figures, the names of the individual
graphs have the form “Az:Ey”. This means that the
graph shows the result of employing a partitioning algo-
rithm which optimizes according to partitioning model
z and evaluating the resulting partition according to
realization model y (the models are numbered as in
section 3). Only model domain evaluations have been
carried out.

Figure 6: Partitioning and evaluation according to the
same model.

Figure 6 illustrates the results of partitioning and
evaluating according to the same model. As discussed
in section 4 this is how most approaches are presented
and related to each other.

For chip areas less that the allocated area for the
datapath, no speedup is obtained as no control area
is available. As soon as control area is available, the
A1:El approach starts to move BSBs to hardware. For
the approaches taking communication into account,
moving BSBs to hardware is not beneficial until the
total area reaches around 1370. It can be seen that
as the chip area increases, more and more BSBs are
moved to hardware, thus, for large chip areas there
is less communication between hardware and software,
hence the A3:E3 and A1:El approaches become com-
parable. Also, it is clear that the A2:E2 approach does
not move as many BSBs to hardware as the two other
approaches. This is mainly due to the fact that many
of the BSBs have a communication overhead which is
larger than the speedup they induce.

Just comparing the curves of figure 6 may lead to the
conclusion that A1:El is the best approach. However,
taking the partitions of figure 6 and just evaluating
them according to the most realistic model (model 3)
results in the curves shown in figure 7.

The first thing that is noted is, that even though
the A1:El approach of figure 6 “thinks” it is achieving
a large speedup for areas in the range 1200 to 1700,

21

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 14,2010 at 12:37:42 UTC from IEEE Xplore. Restrictions apply.

Figure 7: Comparison of the results obtained by opti-
miz ing according t o each of the three parti t ioning mod-
els and implement ing according to the m o s t realistic re-
alization model 3 which optimizes adjacent block com-
municat ion .

it is actually producing worse than the all-software so-
lution (the A1:E3 curve). Thus, using a partitioning
approach which assumes instantaneous communication
when evaluated, as in [5], the reported results may be
wrong; in the experiments performed in our paper the
approach was wrong by a factor of 2. It should also
be noted that as the A1:El approach assumes instan-
taneous communication, it may, by pure chance, select
BSBs which actually give a good partitioning, however,
this will not be decidable.

6 Hardware Modeling and its Relation
to Partitioning

In order to have realistic hardware area estimates it
is important to also have a realistic hardware model. In
the preceding discussion it was presumed that the hard-
ware area of BSBs remained fixed independent of the
Partitioning. The hardware area of a BSB (B,) may be
viewed as containing two parts; a datapath area (adp,,)
in which all computation (and storage) is performed,
and a control unit area (acu,%) which controls the exe-
cution of the datapath, i.e., ah,% = acu,z + adp,z.

There is a strong relationship between the amount
(and type) of allocated hardware resources in the data-
path (a d p , %) and the hardware execution time, as more
hardware resources allows for exploiting the inherent
parallelism of the application. When an allocation has
been selected, the execution time of a BSB is found by
scheduling the operations in the BSB. The scheduling
will also determine the area of the control unit (acu,z).

Now, a fixed hardware area (ah,,) of a BSB (B2) can
be obtained in one of the following ways.

1. Hardware resources are allocated and scheduled
separately for each BSB before partitioning. The

total hardware area may be expressed as

ah = acu,i + adp,;

In this way hardware sharing among BSBs is not
considered.

2. Global allocation of hardware resources and indi-
vidual scheduling of the BSBs is performed before
partitioning. The fixed hardware area ah,i of the
individual BSBs is then the area of their corre-
sponding hardware controller plus the increase in
multiplexer and interconnect area’. The available
area for BSBs is equal to the total hardware area
minus the area of the allocated hardware resources.
In this case the total hardware area of a single BSB
may be expressed as

B ; € H W B i E H W

B ; € H W

In the next section we will demonstrate the impor-
tance of being able to consider scheduling and alloca-
tion during partitioning. As the first approach is clearly
inefficient, we will only consider the second method.

7 Experiments With Different Alloca-
tions

A series of experiments to demonstrate the effect of
having different allocations (and thus different sched-
ules) have been carried out.

5MX40

0
4W 6m 8W 1Ma 1200 14W 16W 1SW 2 M a

Total ohmema

Figure 8: Part i t ions with three dif ferent allocations.

Figure 8 shows the results of partitioning the sample
application of section 5 with the PACE algorithm using
the three allocations A, B and C, listed in table 1.

Both partitioning and evaluation is done according
to model 3, i.e., taking adjacent block communication
into account, hence figure 8 shows A 3 3 3 curves.

interconnect areas are not considered.
ZFor the results presented in this paper, the multiplexer and

22

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 14,2010 at 12:37:42 UTC from IEEE Xplore. Restrictions apply.

[D a t a p a t h allocations I

=-
Table 1: Modules and corresponding area for each of
the three allocations.

Hardware modules used for the allocation exper in lent1

Table 2: Area and execut ion-t ime est imates for hard-
ware modules and operations.

Table 2 summarizes the characteristics of the most
important of the allocated hardware modules. All fig-
ures are estimates based on the Actel ACT 3 FPGA,
and have been used to calculate the allocation areas
shown in table 1.

As figure 8 ShoW:j, widely different results are ob-
tained for given available areas, and a specific alloca-
tion which is optimal for all areas cannot be found.

Number of combinatorial mullinters (mul-comb)

Figure 9: Controller/datapath area trade-offs when par-
t i t ioning under a hardware area constraint.

Figure 9 illustrates this controller/datapath area
trade-off when partitioning under hardware area con-
straints. The figure shows the all-hardware execution
times for three different allocations, containing 1, 2 and
3 combinatorial multipliers respectively, and the corre-
sponding obtained slpeedup. Going from 1 to 2 multi-
pliers results in a significant speedup which would be
expected as the all-hardware execution time is almost
halved. However, the expected speedup when adding
an extra multiplier (reducing the all-hardware id 3xecu-
tion time further) is not seen, instead the speedup is
reduced to around the same level as for a single multi-
plier. The reason for this is of course that 3 multipliers
allocate a large fraction of the available hardware area,

leaving only a small area for the controller, and hence
only a few BSBs can be moved to hardware.

8 Conclusion

Three basic partitioning models have been analyzed
and discussed in relation to how they have been used
by various research groups. We have shown the impor-
tance of making a clear distinction between partition-
ing models and evaluation models, i.e., the importance
of making a realistic evaluation of results produced by
algorithms operating on simple models. Thus, a clear
distinction between partitioning model and realization
model is a key issue for obtaining a basis for comparing
different approaches.

Finally, we have shown the importance of integrating
allocation and scheduling with partitioning and that
this is particular important when partitioning under
hardware area constraints, such as for FPGAs.

Acknowledgments

This work is supported by the Danish Technical Re-
search Council under the "Codesign" program.

References
R. Ernst, J. Henkel, and T. Benner. Hardware/software
co-synthesis of microcontrollers. Design and Test of
Computers, pages 64-75, December 1992.
Rolf Ernst, Wei Ye, Thomas Benner, and Jorg Henkel.
Fast timing analysis for hardware/software co-design.
In ICCD '93, 1993.
Rajesh K. Gupta and Giovanni De Micheli. System syn-
thesis via hardware-software co-design. Technical Re-
port CSL-TR-92-548, Computer Systems Laboratory,
Stanford University, October 1992.
D. Herrmann, J. Henkel, and R. Ernst. An approach
to the adaptation of estimated cost parameters in the
cosyma system. In CODES '94, 1994.
Axel Jantsch, Peeter Ellervee, Johnny Oberg, Ahmed
Hermani, and Hannu Tenhunen. Hardware/software
partitioning and minimizing memory interface traffic.
In EURO-DAC '94, 1994.
Asawaree Kalavade and Edward A. Lee. A global
criticality/local phase driven algorithm for the con-
strained hardware/software partitioning problem. In
Codes/CASHE'94, pages 42-48, September 1994.
Peter V. Knudsen and Jan Madsen. PACE: A dy-
namic programming algorithm for hardware/software
partitioning. In Codes/CASHE'96, March 1996.
Giovanni De Micheli. Computer-aided hardware-
software codesign. IEEE Micro, 14(4):10-16, August
1994.
Frank Vahid, Jie Gong, and Daniel D. Gajski. A binary-
constraint search algorithm for minimizing hardware
during hardware/software Partitioning. In EURO-DAC
'94, pages 214-219, 1994.

23

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 14,2010 at 12:37:42 UTC from IEEE Xplore. Restrictions apply.

