
Archive ouverte UNIGE
https://archive-ouverte.unige.ch

Chapitre d'actes 1998 Published version Open Access

This is the published version of the publication, made available in accordance with the publisher’s policy.

Testing prototypes validity to enhance code reuse

Buchs, Didier; Diagne, Alioune; Kordon, Fabrice

How to cite

BUCHS, Didier, DIAGNE, Alioune, KORDON, Fabrice. Testing prototypes validity to enhance code

reuse. In: Proceedings Ninth International Workshop on Rapid System Prototyping. Leuven (Belgium).

[s.l.] : IEEE Comput. Soc, 1998. p. 6–12. doi: 10.1109/IWRSP.1998.676661

This publication URL: https://archive-ouverte.unige.ch//unige:121380

Publication DOI: 10.1109/IWRSP.1998.676661

© This document is protected by copyright. Please refer to copyright holder(s) for terms of use.

https://archive-ouverte.unige.ch
https://archive-ouverte.unige.ch//unige:121380
https://doi.org/10.1109/IWRSP.1998.676661

Testing Prototypes Validity to Enhance Code Reuse

+

Didier Buchs

†

, Alioune Diagne

*

 & Fabrice Kordon

*

,

E-mail:

Didier.Buchs@di.epfl.ch, Alioune.Diagne@lip6.fr, Fabrice.Kordon@lip6.fr

*
LIP6, Université P. & M. Curie,

4 place Jussieu ,75252 Paris - France

†
Swiss Federal Institute of Technology

1015 Lausanne - Switzerland

1. Introduction

The complexity of distributed systems is a problem
when designers want to evaluate their safety and liveness.
So their expected properties (basic ones like deadlock free-
ness or domain dependent ones) must be known and veri-
fied during the specification of the solution and traced to
the implementation by means of tests.

Formal description techniques like Petri nets are a poten-
tial solution to this problem. Structuration rules and/or as-
sociation with structured representations compensate for
their lack of structuration

[3, 10, 2]

. They have also been
proved to be valuable basis for testing

[1]

. In the remainder
of the paper, we consider Petri nets associated with object-
oriented concepts for specification and an object-oriented
layout for implementation.

Often, distributed systems are built by integration of
existing components with newly developed ones. Actually,
it is valuable to handle the integration of external pieces of
software in the specification and testing activities. Howe-
ver, it is difficult to validate them formally unless doing re-
verse-engineering (which is a heavy procedure).

Components of a distributed system can be formally des-
cribed by the following characteristics :

1)

what they guarantee to other components i.e. what
are their local

properties

,

2)

what they require from the other components i.e.
what are their

expectations

,

3)

the means (methods or operations) by which correct
interactions with the environment are handled, i.e.
the

internals

.
These internals do not need to be known for reused com-

ponents at the specification phase. The behavior of such
elements can be abstracted through their expectations and
properties to enable verification of the system

[5]

. For ins-
tance, one kind of expectation we consider is the sequences
of operation invocations that can be safely and reliably sup-
ported by the external pieces of software. Properties and ex-
pectations define a "formal signature" for the components.
Code may then be derived from newly developed compo-
nents and integrated with existing parts. Such an approach
raises two questions :

1)

are stated properties and expectations of all the com-

ponents verified at the different stages of the life-
cycle? This enforces traceability of a component
from specification downto implementation,

2)

what happens when stated properties and expecta-
tions are not verified? It is a robustness criteria for
the component (see section 2.).

Formal verification and tuned tests generation provide
an answer to question (1) above. Then, we may not care
about question (2) if the system structurally avoids such un-
verified expectations (e.g. closed system built once for all).
However, the reuse of an external part may not meet all its
expectations. The behavior of a component in case of ex-
pectation violation needs therefore to be known. It comes
along as a characterization that can be attached to the com-
ponent as well as the test cases for its evaluation.

This paper proposes to use structured formal specifica-
tions to generate a reasonable set of tests that evaluate be-
havior of software components in order to get an answer to
both questions.

First, we identifies key problems in our testing approach
before a description of the context of our study. Then, we
present our solution and apply it to a small example before
a short conclusion.

2. Key Problems

In this paper, we consider the verification, validation and
tests for distributed systems where newly developed com-
ponents are integrated with existing ones. A specification of
a system is valid if all the components are able to guarantee
their properties while handling the interactions with their
environment as long as their expectations are met. This
means that

"nothing bad would happen in the system"

and

"everything good and expected will eventually happen"

whenever the environment respects the expectations. It is
the nominal behavior. Once these expectations are no lon-
ger met, the system or its components have two possible
behaviors :

1)

detect that the expectations have been violated and
raise some exception. This means that it is

robust

against illegal behavior from the environment,

2)

go out of the nominal behavior so that

"something
bad happened"

 or

"some expected other thing never
happens"

.
For existing components, we require an external descrip-

tion basically consisting of :

+ This work has been jointly performed during an exchange between the
Swiss Federal Institute of Technology in Lausanne and the Université
P. & M. Curie.

• how to use the available primitives i.e. what are the
sequences allowed (expectations),

• what are the guarantee when using these primitives
according to the expectations (properties).
No information at all is provided about the way primiti-

ves are implemented, as explained in the next section. The
supplied information is valuable to check if the component
is properly manipulated by other components of the system

[12]

.
This is necessary to take into consideration importation

of software components that are already implemented. The
external description (what it does and how to use it) of a
component is basically an automata that can be expressed
using Petri nets.

Figure 1 describes the behavior of a simple filesystem
component which can run either in read-only or write-only
mode. This component offers six operations (open, create,
read, write and close) for which a possible correct execu-
tion is described by the following :

(create && (write)* || open && ((read)*||(write)*))
&& (close||delete)

1

The number of initial tokens in place

c_desc

 corres-
ponds to the available file descriptors in the system (i.e. the
maximum number of files to be opened).

Figure 1 :

External description of the simple filesystem
component by means of a Petri net.

A specification like the one of Figure 1 allows a system
designer to state the way a component runs. Such prerequi-
sites must be respected by any element that use the specifi-
cation component through its implementation. We call
those

expectations

 of the system. We note

Exp

 a set of such
expectations. It means that a client must satisfy the fol-
lowing relation:

client

 |=

Exp

(1)

&& stands for sequence and || for alternative.

open

create

delete

close
write

[m=W]

read
[m=R]

o_desc
open_dsc

c_desc
F_DSC

<f_dsc.ALL>

<f>

<f> <f,u,W>

<f,u,m>

<f,u,m><f>

<f,u,m><f>

<f,u,m>

<f,u,m>

<f,u,m>

<f,u,m>

Class
f_dsc is 1..64;
usr is 1..100;
mode is [R,W];
Domain
open_dsc is <f_dsc,usr,mode>;

Var
m in mode;
f in f_dsc;
u in usr;

Based on such a description, we can state

properties

 of
the system. In the example of Figure 1, properties are "

no
more than 64 files can be simultaneously opened

" or "

it is
impossible to read in a write-only opened file and vice-ver-
sa

". We note

Prop

 the set of properties attached to a com-
ponent.

In the example of Figure 1, what happens if an applica-
tion opens more than 64 files ? or if it writes in a file that is
not yet opened ? In those cases, the component should si-
gnal an improper use exactly when the problem occurs. It
means that the component also remain at least safe and pe-
rhaps reliable when :

client

 |=/

Exp

If

Prop

U

 Exp

 can be formally verified using a forma-
lism like Petri nets, automatic generation of tests are useful
to check if the corresponding implementation also has simi-
lar characteristics. Evaluation of

client

|

≠

Exp

enforces to
specifically verify unexpected behaviors. Here, automatic
generation of tests is also valuable to know how the compo-
nent implementation behaves when its requirements are
violated.

It is quite easy, based on a behavior specification like the
one of Figure 1, to generate many primitive invocation se-
quences that either respect or violate expectations regarding
a software component. However, it is of interest to obtain a
reasonably sized benchmark which ensures a good covera-
ge of potential problems. Hereafter are some valid and in-
valid sequences for illustration.

client

 |=

<open><read><close>
client

 |=/

<read><open><close>

Under the hypothesis that the environment sticks to the
expectations of a component, this one (noted

server

 hereaf-
ter) should support the expectations and guarantee its
properties :

server

|-

Exp

and

 server

|=

(Exp

⇒

 Prop)

The first equation means that the specification of the
component is compliant with its expectations and the se-
cond one means that under these expectations, it guarantees
its properties.

3. Context of the Study

The work presented in this paper relies on the MARS
methodology

[7]

. MARS is a multi-formalism approach de-
signed to offer a suitable representation for each description
stage (from conception to verification and prototyping) of a
distributed system.

3.1. Overview of the MARS Methodology

The MARS methodology proposes a frame to specify,
evaluate and implement distributed applications : it defines
a track that leads a system designer from the

conceptual
description

 (specification) to the

operational description

(implementation) from which programs are automatically
generated.

The conceptual level is dedicated to the explicit defini-

tion and verification of safety and liveness properties. The
operational level is more likely dedicated to implicit pro-
perties addressing the optimization and automatic produc-
tion of the generated prototype.

Figure 2 illustrates steps of the MARS methodology. It
relies on three formalisms :

• Well-formed Petri nets

[4]

 fit all the formal needs. It is a
potential target used to verify and compute properties of
the system model;

• OF-Class (Object Formalism Class)

[5]

 provides a con-
ceptual description of the system. It contains informa-
tion about the association of components, the way they
behave and how they should be used. It may be trans-
formed into a formal description;

• H-COSTAM (Hierarchical COmmunicating STAte
Machine Model)

[9]

 allows the designer to deal with
operational aspects of his system. Such a description
may be derived from the conceptual description by
addition of information. It can also be transformed into
a formal description and enables code generation.

Figure 2 :

Overview of the MARS methodology.

Three operations between these representations are cha-
racterized:

• Two transformations from respectively OF-Class into
Petri nets (Tv in Figure 2) and H-COSTAM into Petri
nets (To in Figure 2) enable the link with the formal
representation. These transformations are different
while they do preserve discrete properties. The result is
a Petri net that express either functional relations (to
extract conceptual properties of the system) or an ope-
rational description (to extract implementation charac-
teristics). Transformation Tv aims to provide
information about the safety and liveness of the system
while transformation To focuses on the computation of
characteristics for optimization purpose;

• Elicitation of the system is the transformation of a con-
ceptual description into an operational one (E in
Figure 2). This step should not be automatic like the
two other ones. It should be performed once when the
system attains a satisfactory level of confidence whith
respect to expected properties. It can be considered as a
list of questions that gradually clarify all the points of
the implementation.

• Code generation is performed from the operational des-

Conceptual
description
(OF-Class)

Operational
description

 (H-COSTAM)

E

Executable
prototype

Formal description
(Petri nets)

Tv

To

From OO requirements

Gp

Test
sets

Gt

External
components

O

cription (Gp in Figure 2). It may compute and use ope-
rational properties to optimize code generation. In the
context of distributed systems, this operation must pro-
duce both a compilable program and a location propo-
sal. In our methodology, a prototype is made of parts
generated from the operational description plus

external
components

 that correspond to already existing pieces
of software.
In MARS, any component description must identifiy its

internal behavior (how it evolves) and its external descrip-
tion (how it must be used). For components modeled and
evaluated at the conceptual level, the two descriptions are
required. Only the external description has to be provided
for external components.

3.2. External Description of a Software
Component

External description of a component is described at the
conceptual level while its verification is performed at this
stage of the methodology.

It is expressed using a structured language that declares

operations

, organizes them into

services

 and provides a

usage pattern

 for each service.
An operation is a procedure (with its input and output

parameters) that appears to be atomic from a user’s point of
view. A service is a way to classify operations and logically
group them. Services may share operations. The usage ma-
nual of a service defines how operations in the service
should be operated.

The small file manager component (presented in
Section 2.) contains five operations that are distributed over
two services :

•

read-only

 groups operations

open

,

read

,

close

,

delete

and has

open

&&(

read

)*&&(

close||delete

) for usage
manual

•

write-only

 groups operations

create

,

write

,

close

,

delete

 and has

 create

&&(

write

)*&&(

close||delete

) for
usage manual.
The Petri net of Figure 1 is derived from such a specifi-

cation. It is useful to define a behavioral signature of the
software component. It can be used as well to generate tes-
ting sequences.

3.3. Introducing Testing Techniques in MARS

We introduce testing techniques in order to evaluate
both validity and robustness of software components issued
from formal specifications. This concerns :

• External components to check if they correspond to
their external description;

• Newly developed components to verify that implemen-
tation choices introduced during the elicitation proce-
dure (E in Figure 2) have not altered their robustness.
The extension of the MARS method we describe in this

paper corresponds to the gray part Figure 2. Sets of tests are
generated (Gt in Figure 2) from the formal description of

selected components and applied (O in Figure 2) on the cor-
responding software implementation. As we will explain in
Section 4., we mainly exploit the information contained in
the external description of components.

3.4. Theoretical Grounds on Testing

In the following sections, we will shortly describe the
theory of the test selection techniques for object oriented
software. Interested readers can find more information on
those techniques in

[1]

 and

[11]

.
Functional testing is an approach to find errors in a pro-

gram by verifying its functionalities, without analyzing the
details of its code, but by using the specification of the sys-
tem only. The goal is to find cases where a program does
not satisfy its specification. It can be summarized as the
equation:

(

P

 |=/

O

T

⇔

P |=/ SP)
i.e. that the test set T applied on a program P will reveal

that the program P does not implement correctly the speci-
fication SP. (This observation is performed through the
help of an oracle, formally denoted by |=O). Of course, the
goal in selecting T is to uncover the cases where the pro-
gram does not satisfy the tests, and thus reveal errors with
respect to the specification.

Test selection is based on the knowledge of the proper-
ties of the specification language, which must be theoreti-
cally well founded. Usually, specification languages have a
notion of formula representing properties that all desired
implementations satisfy. Tests can be expressed using a
common language, however it is not necessary to have the
same language to express both specification properties and
tests. The most interesting solution is to have a specifica-
tion language well adapted to the expression of properties
from an user point of view, and another language to descri-
be test cases that can be easily applied to an oracle, as long
as there is a full agreement between these two languages.

3.4.1. The Theory of Testing

The theory of testing is elaborated on specifications
Spec, programs Prog and tests Test, and on adequate
compatible satisfaction relationships between programs
and specifications, |= , and between programs and tests, |=O.
This is defined by the following equation:

(P |=O TSP ⇔ P |= SP).
The equivalence relationship ⇔ is satisfied when the

test set TSP is pertinent, i.e. valid (any incorrect program is
discarded) and unbiased (it rejects no correct program). Of
course, the exhaustive test set is pertinent.

However, a pertinent test set TSP can only be used to test
a program P if TSP has a "reasonable" finite size. Limiting
the size of a test sets is performed by sampling. In our theo-
ry, sampling is performed by applying hypotheses on the
program P, making assumptions that the program react in
the same way for some inputs.

Assuming that hypotheses H have been made on the pro-

gram P, the following formula has to be verified for any se-
lected test sets TSP,H:

(P satisfies H) => (P |=O TSP ⇔ P |= SP).

3.4.2. Practicable Test Context and Hypotheses

Thus, the test selection problem is reduced to applying
hypotheses to a program until a test set of reasonable size
can be selected. For that purpose, we build a test context,
called practicable because it can be effectively applied to
the oracle: Given a specification SP, a practicable test con-
text (H, T)O is defined by a set of hypotheses H on a pro-
gram under test P, a test set T of "reasonable" finite size and
an oracle O defined for each element of T.

The selection of a pertinent test set T of "reasonable"
size is made by successive refinements of a possibly not
practicable initial test context (H0, T0)O which has a perti-
nent test set T0 (but not of "reasonable" size), until obtai-
ning a practicable test context (H, T)O:

(H0, T0)O ≤ ... (Hi, Ti)O ≤ (Hj, Tj)O ... ≤ (H, T)O.

Figure 3 : Iterative refinement of the test context
At each step, the preorder refinement context (Hi, Ti)O ≤

(Hj, Tj)O is such that:
• The hypotheses Hj are stronger than the hypotheses Hi ,

Hj => Hi.
• The test set Tj is included in the test set Ti
• If P satisfies Hj then (Hj, Tj)O detects no more errors

than (Hi, Ti)O

• If P satisfies Hj then (Hj, Tj)O detects as many errors
than (Hi, Ti)O

Therefore, if Ti is pertinent then Tj is pertinent.
Since the exhaustive test set is pertinent, we can use it

for the initial context T0.

4. Proposal and Example

Our proposal integrates testing techniques in the MARS
methodology according to the objectives identified in
Section 3.3. In this section, we describe the mechanisms of
our technique and then apply them to the small example
presented Section 3.1.

4.1. Testing Behaviors and Properties in OF-Class

4.1.1. Expressing Tests with HML Formulae

For the specification language, the tests can be ex-
pressed with the HML Logic introduced by Hennessy-Mil-
ner [8]. HML formulae built using the operators Next

Hi

H

H0

...

T0

T
i

...

T

Hj T
j

... ... Reduction
of the test

Application
of

 sethypotheses

(<_>), And (̂), Not (¬), T (always true constant), and the
events Event (SP) of the specification SP ∈ Spec, are noted
HMLSP. An advantage of this approach is to have an obser-
vational description of the valid implementation through
the tests. A test is a formula which is valid, invalid or raise
an exception (failure). It must be experimented in the pro-
gram (i.e. a correct implementation behaves similarly to the
specifications and detects usage problems).

An elementary test for a program under test P ∈ Prog
and a specification SP ∈ Spec can be defined as a couple
<Formula, Result> where:

• Formula ∈ HMLSP : (ground) temporal logic formula.
• Result ∈ {true, false, failure}: value showing whether

the expected result of the evaluation of Formula (from a
given initial state) is true, false or generates a compo-
nent failure.
A test <Formula, Result> is successful if Result reflects

the validity of Formula in the labeled transition system mo-
deling the expected behavior of P. In all other cases, a test
<Formula, Result> is a fail. It is important to note that the
test definition will allow the test procedure to verify that a
non-acceptable scenario cannot be produced by the pro-
gram (for instance, to read in a file that is not opened). For
tests expressed using HMLSP, we can define the exhaustive
test set ExhaustSP, Ho ⊆ Test such that:

ExhaustSP, Ho = {<Formula, Result> ∈ HMLSP × {true,
false, failure} | (SP |= Formula and Result = true) or (SP |≠
Formula and no exception are raised and Result = false) or
(SP |≠ Formula and an exception is raised and Result =
failure)}.

4.1.2. Test Selection

From a practical point of view, the reduction process is
implemented as a selection process: to each reduction hy-
pothesis on the program corresponds a constraint on the test
set. Indeed, the exhaustive test set can be defined as a cou-
ple < f, r > where f is a HMLSP formula with variables uni-
versally quantified. The aim of the test selection becomes
the reduction of the level of abstraction of f by constraining
the instantiation of its variables. The various techniques
that can be applied could not be described here, they can be
found in [1] and [11].

4.1.3. Operational Test Selection

The concrete implementation of the test selection can be
performed by means of a logic programming engine if a
complete axiomatization of the specification language can
be given in Horn clauses. In the test selection tool, a modi-
fied resolution mechanism based on random choice of the
resolvant clause is used.

4.1.4. The Oracle

Once a test set has been selected, its elements are execu-
ted on the program under test. Then the results collected
from this execution are analyzed. It is the role of the oracle

to perform the analysis, i.e. to decide the success or the
failure of the test set.

The oracle O is a partial decision predicate of a formula
in a program P. The problem is that the oracle is not always
able to compare all the necessary elements to determine the
success or the failure of a test; these elements are said to be
non-observable. This problem is solved using the oracle hy-
potheses HO which are part of the possible hypotheses and
collect all power limiting constraints imposed by its imple-
mentation.

The failure result (see Section 4.1.1.) has been elabora-
ted to detect a component failure during execution time. At
the oracle level, it corresponds to no response : the compo-
nent is out and can event not answer to signal a problem. At
the specification level, we consider its a deadlock state (i.e.
without successor).

4.1.5. The Incremental Test Selection Process

We use the structure of the dependencies among classes
to determine a test selection process in which the whole
specification is tested class by class. In case of mutual de-
pendencies, a linearization is proposed in order to determi-
ne sequence of test application. Previously tested classes
require less care, so stronger hypothesis can be considered
while the class of interest need weaker hypothesis.

4.2. Example

Let us come back to the filesystem example sketched in
Section 2. which models a basic file system six operations
(create, open, read, write close and delete). Hereafter, we
provide a partial description expressed using our specifica-
tion model : OF-Class.

Expectations are stated in the interface by means of of-
fered services. They allow to define coherent viewpoints on
the component involving just the appropriate part of the
operations. For instances the readers offered service define
the behavior allowed for components accessing the file in
read-only mode. This enables the definition of clients clas-
ses and thus the use of a component in discrete contexts wi-
thout facing its whole complexity.

In this simple file system, we have two kinds of proof
obligations :

1) basic properties like reliability for servers. The com-
ponent must ensure that each request to one of its
operations is eventually followed by a result

2) the second one is domain-dependent. The numbers of
file-descriptors should always be less than 64.

The properties depicted in (1) are implicit and always
verified. They ensure the correctness of the specification.
The reader can refer to [6] for more information about such
implicit basic properties and the specification model in ge-
neral. The properties in (2) are explicitly stated in the spe-
cification and verified.

filesystem ISA OFCLASS 2

DECLARATION {
type f_dsc is 1..64;

 }
MACRO-LEVEL

EXPORTS {
service readers

operations {
f_dsc : open (char name);
char : read (f_dsc fd);
void : close (f_dsc fd);

}
manual {
open && (read)* && (close || delete)}

#definition of service writers (omitted)
}

MICRO-LEVEL
RESOURCES {

#local resources declaration (omitted);
}
INSTANCES {

inst1 ;
}
OPERATIONS {

 # here are defined a part of the internals
 # i.e. the algorithms for the operations

void : close (f_dsc fd)
{

actions to close the file (omitted)
}

}
ENSURES { # invariant to be respected

Alw(card(files)+card(opened_files)=64)
}

ENDOFCLASS

4.2.1. Structural Constraints

As said before, test selection consists in applying suc-
cessive constraints in order to implement strategies inten-
ded to implement hypothesis on the programs under test.
For our example we are going to illustrate the possible tests
that can be selected for the filesystem class. We will first
use general hypothesis not related to the example and then
instanciate them to it.

Hypothesis: If a test <f, r> is successful for all instances
of f having a number of events equal to a bound k, then it is
successful for all possible instances of f. The number of
events is computed recursively with the function nb-events
as follows:

Thus the constraint C ∈ CONSTRAINTSP, X is the predica-
te: nb-events (f) = k

Strategy: The strategy used to solve the former cons-
traint C generates all the HMLSP, XS formulae with a number
of events equal to k, without redundancy. With this strate-
gy, only skeletons are generated and nothing is imposed by
the specification. Later, free variables are supposed to be
instantiated to events based on environment’s operations.
For instance, the constraint nb-events (f) = 2 produces the
four following tests:

T0: <(not <V0> T) and (not <V1> T),result>
T1: <(not <V0> T) and (<V1> T), result>
T2: <(<V0> T) and (<V1> T), result>
T3: <<V0> <V1> T, result>
where the variables V0 and V1 are of type event.

(2) Lines beginning with a # are comments

4.2.2. Event Based Constraints

Another way to reduce the size of the test sets is to cons-
train the number of occurrences of a given operation in each
test.

Hypothesis: If a test <f, r> is successful for all instances
of f having a number of occurrences of a given operation m
equal to a bound k, then it is successful for all possible ins-
tances of f.

The number of occurrences of a given operation m is re-
cursively computed with the function

nb-occurrences: HMLSP, XS × Operations → IN,
which is defined like the function nb-events.

The constraint C ∈ ConstraintSP, X is the predicate nb-oc-
currences (f, m) = k.

Strategy: The strategy used to solve the former cons-
traint C generates all the HMLSP, XS formulae with a number
of events based on the operation m equal to k. For example,
let us consider a filesystem fl on which we assume:

nb-occurrences (f, open) = 1 (one occurrence of open)
which leads to this kind of tests :

T:<<f 1 fl.open(<str>)><c 1 fl.read(<f 2>)>
<c2 fl.read(<f 3>)>T, result>

where variables str is a string, variables c1 and c2 charac-
ters and variables f1, f2 and f3 file descriptors.

Free variables should be instanciated in order to produce
the finite set of applicable tests. Uniformity hypothesis can
be used for that goal, producing for instance :

T:<<2 fl.open("xxx")><c 1 fl.read(<3>)>
<c2 fl.read(<4>)>T, result>

This test is obviously unsatisfied (it means that result
should be false). Selecting tests in this way lead to bad co-
verage of the different specification cases.

4.2.3. Subdomain Decomposition

A better way to proceed is to first decompose the diffe-
rent tests by performing a so called sub-domain decompo-
sition leading to two cases:

• satisfiable test
T: <<f 1 fl.open(<str>)> <c 1 fl.read(<f 1>)>
<c2 fl.read(<f 1>)>T, true>

• exception case due to the fact that we are testing expec-
tations
T: <<f 1 fl.open(<str>)> <c 1 fl.read(<f 2>)>
<c2 fl.read(<f 2>)>T, false>
with f1 ≠ f2

The next step is to apply the previously mentioned uni-
formity hypothesis for correctly instantiating variables.

4.2.4. Other Hypothesis

More hypotheses can be imagined from the above pre-
sented one. It must be noted that they are designed to reflect
the usual test practices. Interested reader can consult [11]
which explains a set of interesting hypotheses as well as
how to implement them by a suitable logic programming

engine.

4.2.5. Testing Expectations and Properties

The idea of differentiating expectation and properties is
taken into account by having discrete interpretations of the
unsatisfiable formulae (satisfiable formulae are interpreted
in the same way for both kinds of specifications):

• Expectations must produce exceptions when applied
(result = false)

• Properties must produce unsatisfiable behavior (result
= false).
For instance, another kind of test can be derived from

properties :
T:<<f 1 fl.open(<str 1>)> f 2 fl.open(<str 2>)>

..f 65 fl.open(<str 65>)>T, false>
Where the following constraint is verified : ∀ i, j

∈ [1..65] with i≠j, fi ≠ fj. This test checks that the filesystem
component rejects the opening of more than 64 files at a ti-
me.

In both cases (expectations or properties), it is expected
to the component to signal a bad usage through the oracle.
If it does not (failure detected by the oracle), we consider it
has crashed and thus, is not reliable.

5. Conclusion

In this paper, we have proposed to enrich MARS, a Petri
net based design and prototyping methodology for distribu-
ted systems. The enrichment introduces a way to evaluate
the correspondence between specifications and generated
prototypes. One of our goals is to check their robustness.
Robust software components should be able to detect inap-
propriate use by other components and signal it.

To do so, we use the external description of components
that describe their external behavior and express it using the
OF-Class formalism. In this formalism, users may express
a usage protocol by means of atomic operations (called ex-
pectations). They may also express properties on the sys-
tem’s components.

Test patterns are generated using an appropriate forma-
lism (HML logic) and exploit various hypotheses corres-
ponding to users’ testing procedure. We generate tests sets
for both nominal behavior of components and violation of
their expectations.

6. References

[1] S. Barbey, D. Buchs, and C. Péraire, "A Theory of
Specification-based Testing for Object-Oriented
Software", In Proceedings of EDCC2, LNCS 1150,
pages 303-320, Taormina, Italy, Oct. 1996.

[2] O. Biberstein, D. Buchs, and N. Guelfi, "Object-
oriented nets with algebraic specifications: The CO-
OPN/2 formalism", In G. Agha and F. De Cindio, edi-
tors, Advances in Petri Nets on Object-Orientation,
volume to appear of Lecture Notes in Computer
Science. Springer-Verlag, 1997.

[3] P. Buchholz, "Hierarchical High Level Petri Nets for
Complex System Analysis", Proceedings of the 15th
International Conference on Application and Theory
of Petri Nets (LNCS, spinger Verlag), Zaragoza,
Spain, June 1994, LNCS vol. 815 PP. 119-138.

[4] G. Chiola, C. Dutheillet, G. Franceschini & S. Had-
dad, "On Well-Formed Colored Nets and their Sym-
bolic Reachability Graph", High Level Petri Nets.
Theory and Application. Edited by K. Jensen
G.Rozenberg, Springer Verlag 1991

[5] A. Diagne & P. Estraillier, "Formal Specification and
Design of Distributed Systems", International Works-
hop FMOODS’96, Paris, Mars 1996

[6] A. Diagne & P. Estraillier, "A Component-based Fra-
mework for for the Specification, Verification and
Validation of Open Distributed Systems", Technical
Report of the LIP6 Laboratory #1997/037.

[7] A.Diagne & F.Kordon, "From Formal Specification to
Optimized Implementation of Distributed Systems : A
Multi-Formalism Approach", Technical Report of the
LIP6 Laboratory #97/039, December 1997.

[8] M. Hennessy & R. Milner, "Algebraic laws for non-
determinism and concurrency", Journal of the ACM,
32(1):137-161, January 1985.

[9] F. Kordon & W. El Kaim, "H-COSTAM : a Hierarchi-
cal Communicating State-machine Model for Generic
Prototyping", Proceedings of the 6th International
Workshop on Rapid System Prototyping, N. Kano-
poulos Ed, IEEE comp. Soc. Press 95CS8078, pp
131-138, Triangle Park Institute, June 1995

[10] C.A. Lakos, "From Colored Petri Nets to Object Petri
Nets", Proceedings of the 16th International Confer-
ence on Application and Theory of Petri Nets (LNCS,
spinger Verlag), Torino, Italy, June 1995, LNCS vol.
935, PP 278-297

[11] C. Péraire, S. Barbey, and D. Buchs, "Test Selection
for Object-Oriented Software Based on Formal Speci-
fication", In Proceedings of PROCOMET98, N.Y,
USA, 8-12 June. 1998.

[12] J. Sa, J. A. Keane & B. C. Warboys, "Software Pro-
cess in a Concurrent, Formally-based Framework", In
Proceedings of the IEEE International Conference on
Systems, Man and Cybernetics, Beijing, China, Octo-
ber 1996, pages 1580-1585

