
Wolfram Hardt, Bernd Kleinjohann
e-mail: {hardt,bernd}@c-lab.de

Cooperative Computing & Communication Laboratory
Siemens Nixdorf Informationssysteme AG & Universität-GH Paderborn
Fürstenallee 11, D-33 102 Paderborn, Germany

FLYSIG : Dataflow Oriented Delay-Insensitive Processor
for Rapid Prototyping of Signal Processing1

Abstract: As the one-chip integration of HW-modules de-
signed by different companies becomes more and more
popular reliability of a HW-design and evaluation of
the timing behavior during the prototype stage are ab-
solutely necessary. One way to guarantee reliability is
the use of robust design styles, e.g., delay-insensitivity.
For early timing evaluation two aspects must be consid-
ered: a) The timing needs to be proportional to technol-
ogy variations and b) the implemented architecture
should be identical for prototype and target. The first
can be met also by delay-insensitive implementation.
The latter one is the key point. A unified architecture is
needed for prototypingas well as implementation.
Our new approach to rapid prototyping of signal pro-
cessing tasks is based on a configurable, delay-insensi-
tive implemented processor called FLYSIG2. In essence,
the FLYSIG processor can be understood as a complex
FPGA where the CLBs are substituted by bit-serial op-
erators. In this paper the general concept is detailed
and first experimental results are given for demonstra-
tion of the main advantages: delay-insensitive design
style, direct correspondence between prototyping and
target architecture, high performance and reasonable
shortening of the design cycle.

1 Introduction
Rapid prototyping for automatically generated de-

signs as well as for manually developed designs has
found a lot of interest during the last years [21]. Most
approaches map the system’s gate-level netlist onto
field-programmable gate arrays (FPGAs) mainly due
to the reprogramability of the hardware function, that
is functionality is easy to change. But in many cases a
single FPGA‘s capacity is not sufficient to cover the
complete synthesized netlist and only by additional
netlist partitioning an implementation becomes possi-
ble [28]. Beside the computation overhead for this
partitioning I/O-restrictions must be met [13, 30]. Par-
titioning and I/O-routing are both highly dependent
on the FPGA type, the FPGA interconnections, and

1. The authors would like to acknowledge the support provided by Deut-
sche Forschungsgemeinschaft DFG, project SPP RP.

2. dataFLow oriented delaY-insensitiveSIGnal processing

the communication protocols. Some providers of mul-
tiple FPGA boards offer software for netlist partition-
ing and generation of communication structures [30,
13]. But these algorithms do not start from an abstract
gate-level netlist. The netlist must be mapped onto a
concrete gate-library known to the provider, e.g. the
LSI10K library [26] and is than automatically re-
mapped onto the multiple FPGA board (figure 1).

Figure 1: Design steps from gate-level netlist to (a)
single FPGA, (b) multiple FPGA board and (c)FL-
YSIG processor based implementations.

In other words, for rapid prototyping the gate-level
netlist is mapped to a dedicated FPGA architecture.
Thus elements of the netlist are directly decomposed
by elements of the FPGA architecture (figure 1 (a)) or
by elements of a standard gate library and these ele-
ments are decomposed by elements of the FPGA ar-
chitecture (figure 1 (b)). This double decomposition is
the reason for additional costs (number of gate cells,
interconnection). It points out that the advantages of
FPGA technology are paid by additional design tasks
and difficult to meet design restrictions.

We consider an entirely new approach to rapid pro-
totyping solving the mentioned above trials. The main
idea is to derive a prototyping architecture from a do-
main specific optimized target architecture. This ar-
chitecture is implemented as configurable processor
named FLYSIG-prototype processor. The FLYSIG must
be once provided as chip, i.e. a new prototyping chip.
figure 2 illustrates the comparison of our approach
with the described standard approaches.

gate-level
netlist

FPGA

FPGA

FPGA

FPGAFPGA

gate-level
netlist

gate-library

(a) (b)

operator-level
netlist

(c)

- 2 -

Figure 2: Rapid prototyping approaches: (a) syn-
chronous, FPGA based and (b) delay-insensitive
FLYSIG -prototype processor based.

The target-architecture itself is specialized to the
application domain of fixed digital signal processing
algorithms. It is a well known strategy to adapted the
design methods to a specific application domain. Dif-
ferent approaches for partitioning and synthesis as
well as for target architectures have been proposed,
e.g., for control oriented designs [4, 1], data flow ori-
ented designs [14, 3], and real time constrained de-
signs [20, 27]. We applied this principle of
specialization to prototyping, i.e., the prototyping-ar-
chitecture is specialized in respect of the target-archi-
tecture. This idea brought us to the FLYSIG-approach.
The main advantages are:

• the elimination of all design tasks related to FP-
GA-prototyping from the design flow. This short-
ens the design cycle drastically. The additionally
introduced design step which derives the FLYSIG-
target form the FLYSIG-prototype is an easy to au-
tomate task of much lower complexity.

• the delay-insensitive design style used for the FLY-
SIG-processor. The well known gains of delay-in-
sensitive designs are the elimination of the clock
signal, power savings, and a very robust modulari-
zation. Delay-insensitivity is of major importance
for rapid prototyping because timing analysis on
the prototype basis within a complex environment
is essential for reliable system validation and short
time to market periods. We have examined the
synthesis of delay-insensitive modules [16] and
found that the timing behavior of such modules
can be analyzed in an early design stage, that is the
technology impact can be approximated quite
well.

• the high performance achieved by the FLYSIG-pro-
cessor, i.e., sampling rates of 50 MHz and more.

This paper is structured as followed. We present the
FLYSIG-processor concept in chapter 3 and illustrate
the benefits by the fifths order elliptic filter example in
chapter 4. Final conclusions are given in chapter 5.
First of all some background information is provided
(chapter 2).

2 Related work
Research in synchronous design methods has taken

place for several decades. A good summary is given in
[17]. Basic concepts of asynchronous circuit design
are presented e.g. in [15]. A lot of effort has been in-
vested in data protocols and data encoding.

In [12] a true-single-phase protocol has been pre-
sented. The two-phase protocol is used by [7] and also
the design of the asynchronous version of the ARM
processor called AMULET1 [29] is based on the two-
phase protocol. In a later version, the AMULET3 pro-
cessor, the four phase protocol has been used [8] be-
cause conversion from two-phase protocol to four-
phase protocol is rather costly.

Several data encoding styles are known. Dual-rail
encoding provides two single data lines, one for the
logic true value and one for the logic false value of a
one bit data item. This encoding is rather complex but
there are no problems because of hazards [7]. Recent-
ly, a combination of single-rail and dual-rail data en-
coding has been suggested [18]. One approach to
reduce the number of data lines necessary for dual-rail
encoding is bundled data encoding [22]. To a set of
data bits, called bundle, a pair of acknowledge/request
bits is added for indication of valid data. Thus the
overhead for the bundle is eliminated but the delay of
the control lines must be adapted to the delay of the
data lines [23]. This limited selection of references
shows that a variety of encoding styles and communi-
cation protocols have been developed and are used for
circuits of reasonable complexity.

Beside data encoding and communication proto-
cols design methodologies have gained a lot of inter-
est. An overview is given in [11]. In 1989 Sutherland
presented the concept of micropipelines [25] which
has found a lot of interest worldwide. Many investiga-
tions have been based on this concept [19, 9, 5, 6, 2].
The concept of multi-ring structures introduced by
Staunstrup [24] uses no delay elements but suffer by
the complexity of the generated circuits. The perfor-
mance of multi-ring structures is highly influenced by
the availability of data items and free places ready to
hand data items on. Free places are commonly called
bubbles [10].

In the presented approach, we use the dual-rail data
encoding style and the four phase data protocol. We
adapted the concept of multi-ring structures and
solved the circuit complexity problem by our own ef-

specification

synthesis

gate-level
netlist

FPGA
ASICprototype

(a)

specification

synthesis

operator-level
netlist

ASIC

ASIC

(b)

prototype

synchronous design style delay-insensitive
design style

- 3 -

ficiently implemented operator library based on the
technology described in [16]. Bubbles are integrated
in a fixed manner into the operators. Additional bub-
bles are inserted in between the operators during the
design process. The operators are the essential part of
the FLYSIG-processor architecture, which is described
in the next chapter in some detail.

3 The FLYSIG -processor architecture
The FLYSIG-processor architecture allows the effi-

cient implementation of periodic, a priori fixed algo-
rithms. Such algorithms are common practice in
digital signal processing, and in real-time controller
components, e.g., for reactive robotic systems. All al-
gorithms are also constrained by high sampling rates
which are determined by rather complex environ-
ments. In this section the architecture itself and the
adaptation to prototyping are presented.

3.1 Overview
Figure 3 illustrates the dataflow within the FLYSIG-

processor which is build out of the three depicted
components. In addition interconnection to the envi-
ronment is provided.

Figure 3: Dataflow within the FLYSIG -processor.

The FLYSIG-processor is initialized by the configu-
ration and status-control component. The memory
and routing component is interconnected with the op-
eration component to a cyclic structure. Within this
structure the multi-ring concept is embedded. Fur-
thermore, this ring-structure is open, that is, addition-
al FLYSIG-processors can be adapted. Thus processor
networks can be build easily.

3.2 Processor concept
The application which is to be implemented by the

FLYSIG-processor is specified by its control/data flow
graph. Each operation is represented by a node in the
data flow graph. By operation scheduling each data-
flow node is assigned to an operator of the operation
component of the FLYSIG-processor. Then the inter-
connection task, known from synchronous design
must be performed. For the FLYSIG-prototype version
this means to initialize the routing component. For the
target-version the chosen routing configuration is
hardwired. In figure 4 some details are shown:

(a) The configuration and status-control compo-
nent allows the comfortable configuration of the
FLYSIG-processor. The scheduling information is
fed into the local memory (registers) and into the
routing component for initial operand and result
forwarding. In addition the initial operands are
stored into the memory. All information can be
provided by a configuration host before execution.

(b) The memory and routing componenthandles
the operands and the computation results. A data
item in the memory is referred to as token, thus it
is not distinguished if it is an operand or a result.
The tokens flow from the memory into the opera-
tion component via the token evaluation. This
block determines if a memory cell contains a valid
token.

Figure 4: Concept of the FLYSIG -processor with (a)
the configuration and status component, (b) the
memory and routing component and (c) the opera-
tion component.

 In this case the routing block directs the token to
the corresponding operator. Each token consists of
the operation id (identifying the operation), a val-
id-flag segment (indication the availability of op-
erands) and a guard-flag segment (determining
where the result values are needed).

(c) Theoperation componentimplements the opera-
tors for all possible computations. In the proto-
type-version a large set of operators is provided in
order to support as many different algorithms as
good as possible. Operators read the tokens from
memory or from previous involved operators.
Thus, operator pipelining is possible. Because of
the bit-serial implementation style this leads to
deep pipelines with very few hazards and thus to
high throughput rates. The computation results are
written into the local registers or directly to the
registers of a further FLYSIG-processor. This is an

configuration and status-control
component

memory and routing
component

operation component

I/O port

D/A-A/D-Port

operation distributor

local memory

gu
ar

d
ev

al
ua

tio
n

to
ke

n
ev

al
ua

tio
n

ro
ut

in
g

schedulingdatascheduling

.

configuration & status control

 .
 .

operation

(a)

(b)

(c)

PCI-bus

PCI-bus D/A -A/D converter

- 4 -

important feature which allows to distribute the
implementation of a single algorithm over several
FLYSIG-processors. Also prototype-versions may
be connected with target-versions which are al-
ready available. This is of high practical impor-
tance because a stepwise migration from the
prototype environment to the target implementa-
tion becomes feasible.

3.3 Prototyping
The prototype version of the FLYSIG-processor dif-

fers from the target version only by the implementa-
tion of the routing component and the complexity of
the operation component. Because the concept of the
FLYSIG-prototype version has been derived form the
target version the operator concept and the dataflow
remains unchanged. Just the hardwired scheduling
implementation is exchanged by a configurable one.
This allows the mapping of several different algo-
rithms onto the same FLYSIG-prototype processor. In
this context a configurable scheduling can be imple-
mented by simple associatively controlled crossbar
switches. Furthermore, in the FLYSIG-prototype pro-
cessor a set of operators is provided with most com-
mon operators. This operator set is only restricted by
the design size. Once an algorithm has been mapped
onto the prototype version and hardware-in-the-loop
simulation has been successful the FLYSIG-target pro-
cessor can be derived from the prototype version eas-
ily by eliminating all unused operators and replacing
the configurable scheduling by a hardwired imple-
mentation. This eliminations and replacements can be
performed automatically.

3.4 Operators
The FLYSIG’s operation component provides opera-

tors with control, storage elements and arithmetic
functionality.

3.4.1 Control operators
For control of delay-insensitive multi-ring based

architectures several operators have been presented
by Staunstrup [24] including asymmetric switches,
join, and fork operators. We extended this set of con-
trol operators by select operators which allow the
communication between different rings. The block
symbol and the register-transfer level netlist of the
read-select operator are presented in figure 5.

The RSELECT operator is controlled by the dia-
mond input which determines from which input the
data is read. The opposite behavior is realized by the
WSELET operator reading form the only input and
writing to the indicated output. Both operators are es-
sential to implement control flow.

Figure 5: a) Block symbol and (b) RT-netlist of read-
select operator.

3.4.2 Storage elements
Three basic register types are needed. All are de-

rived from an uninitialized minimal register. In addi-
tion a 0-initialized register and a 1-initialized register
is needed.These basic register elements can be queued
to shift registers. Is is important that for each data bit
within the shift register an extra empty basic register
element should be provided thus optimal throughput
can be reached.

3.4.3 Fixpoint arithmetic operators
Operators for fixpoint arithmetic can be construct-

ed out of c-gates and synchronousOR gates. Such cir-
cuits can be generated by standard two level synthesis
technics whereby theAND-plane is substituted by a c-
gate plane [24]. This design style is called DIMS1 and
leads to a mixture of synchronous and asynchronous
gate-level components and employs large numbers of
c-gates.

Figure 6: Add-operator: (a) DIMS and (b) complete
dual-rail implementation.

We build operators based on dual-rail compatible
implementation of logic gates. This eliminates the
large number of c-gates and ensures a completely
time invariant design. In figure 6 both implementa-
tions are compared. The complexity of a c-gate (cir-
cle) and a dual-railAND-gate is comparable.

By this bit-serial add-operator and several basic
register elements a complete bit-serial full-adder can
be constructed. The RT-level netlist is given in
figure 7.

1. Delay/InsensitiveM in-termSynthesis

(a) (b)

RSELECT
True False

A B

S

Y

C

C

C

C

A BS

Y

C

C

C

ack

EX EX

OR& &

nor

nor

nor

nor

(a) (b)

- 5 -

Figure 7: Complete bit-serial full-adder netlist.

The modularity is quite obvious and because of the
dual-rail data encoding delay-insensitivity is main-
tained on each hierarchy level. By this operator imple-
mentation style further operators are implemented
and simulated on RT-level. Simulation is based on a
VHDL behavioral description of each basic entity.
Detailed timing data from transistor-netlist simulation
is used within the RT-level VHDL descriptions which
allows very fast realistic evaluation of timing.

3.4.4 Optimization
The implementation style for FLYSIG-operators al-

lows high optimizations for the implementation of op-
eration queues. For illustration, we consider the
computation for the termx’= a + x + x + x. A straight
forward implementation is shown in figure 8 (a).
Three full-adders and three basic registers are allocat-
ed.

Figure 8: (a) Straight forward and (b) optimized im-
plementation of the term x’=a+x+x+x

A much cheaper solution with exactly the same
functionality is given in figure 8 (b). Only two full-
adders and two basic register elements are needed,
whereby one register element has been initialized.
This inserted data item implements a shift operator
with very low costs.

4 Example
For demonstration of the FLYSIG-processor’s con-

cept and benefits we present an example. It is taken
from the well known high level synthesis benchmark
suit. The fifths order elliptic filter requires reasonable
computation performance and is simple enough for

demonstration. From this filter smaller subcompo-
nents have been derived for detailed case studies.

All filter benchmarks have been mapped onto the
FLYSIG-prototype processor. Based on this prototype
timing evaluation has been performed. As a first step
we have implemented a VHDL environment for sim-
ulation of the FLYSIG-prototype processor. This in-
cludes VHDL descriptions of all gate-level cells,
operational units and complete operators. The timing
characteristics of a the used gate level cells have been
obtained from analog simulation of the transistor
netlists and where imported in the VHDL implemen-
tations. Based on this two level simulation realistic
timing and functional evaluation can be performed
very quickly. All simulations up to several thousand
ns execution time of the FLYSIG-processor could be
performed within some cpu seconds which is negligi-
ble few compared to other approaches e.g., based on
petri-net simulation or single transition graph simula-
tion.

Considering the timing characteristics, the circuit’s
latency and throughput are important. We have both
examined for the FLYSIG-implementations of the filter
applications of table 1. Latency is determined by the
longest operational path within the circuit. In addition
the number of registers is important because registers
are used to implement bubbles. Thus higher latency
values are found for the same filter-functionality im-
plemented with fewer registers. Of course, this is a
performance/size trade-off. The determined latency
values are depicted in figure 9. But throughput is of
much higher importance because latency can be re-
garded as system setup time. In figure 10 the best
throughputs for all examined filter applications are
shown which are reached by an optimal number of
bubble registers.

+

C

e e

e e

e e

e e

0 e

e

0 0 0 0

e

e

a x

0e

0 0 0 0

(a) (b)

example # operations# registers
#feedback

 cycles

elliptic_filter 26 8 8

filter_ab 1 3 3 3

filter_ab 2 3 2 3

filter_ab 3 3 1 3

filter_abc_1 6 3 3

filter_abc_2 6 2 3

filter_abc_3 6 1 3

filter_abcd_1 9 3 3

filter_abcd_2 9 2 3

filter_abcd_3 9 1 3

Table 1. Characteristics of filter benchmarks

- 6 -

Figure 9: Latency of filter applications implemented
by FLYSIG -operators.

All filters show the same throughput rate although
the number of operations differ. This is due to the
deeply pipelined operators and the delay-insensitive
design style. The throughput is only restricted by the
operator’s throughput which is rather high because of
the efficient implementation of the dual-rail gates.

Figure 10: Throughput of filter applications imple-
mented by FLYSIG -operators.

5 Conclusion
In this paper we presented a new methodology for

rapid prototyping of cyclic signal processing applica-
tions. The FLYSIG processor was developed for proto-
typing. From the FLYSIG-prototype implementation
the Flysig-target can be derived easily. It has been
shown on simulation base that this prototyping meth-
odology provides very fast prototype environments
wherein hardware-in-the-loop simulation is possible.

Further investigations will include the extension of
the operator library by floating-point operators as well
as by trigonomic operators. The automation of all de-
sign tasks specialized to the FLYSIG- processor is also
under development.

References
[1] R.A. Bergamaschi, D. Lobo, and A. Kuehlmann. Control optimi-

zation in High-Level Synthesis using Behavioral Don’t Cares. In
Proc. of the 29th DAC, pages 657–661. ACM/IEEE, 1992.

[2] Kees van Berkel and Arjan Bink. Single-track handshaking sig-
naling with application to micropipelines and handshake circuits.
In Proc. International Symposium on Advanced Research in
Asynchronous Circuits and Systems, pages 122–133. IEEE Com-
puter Society Press, March 1996.

[3] J.C. Bier. DSP Processors and Cores: The Optios Multiply. InIn-
tegrated System Design, pages 56 – 67, June 1995.

[4] K. Buchenrieder and C. Veith. A Prototyping Environment for
Control-Oriented HW/SW Systems useing State-Charts, Activi-
ty-Charts, and FPGAs. InProc. of the EDAC. IEEE, 1994.

[5] Chih-Ming Chang and Shih-Lien Lu. Performance issues on mi-
cropipelines.IEEE Technical Committee on Computer Architec-
ture Newsletter, October 1995.

[6] Paul Day and J. Viv Woods. Investigation into micropipeline
latch design styles.IEEE Transactions on VLSI Systems,

3(2):264–272, June 1995.
[7] Mark Dean, Ted Williams, and David Dill. Efficient self-timing

with level-encoded 2-phase dual-rail (LEDR). In Carlo H.
S’equin, editor,Advanced Research in VLSI: Proceedings of the
1991 UC Santa Cruz Conference, pages 55–70. MIT Press, 1991.

[8] S. B. Furber, P. Day, J. D. Garside, N. C. Paver, and S. Temple.
AMULET2e. In C. Muller-Schloer, F. Geerinckx, B. Stanford-
Smith, and R. van Riet, editors,Embedded Microprocessor Sys-
tems, September 1996. Proceedings of EMSYS’96 - OMI Sixth
Annual Conference.

[9] S. B. Furber and O. A. Petlin. Scan testing of micropipelines. In
Proc. IEEE VLSI Test Symposium, pages 296–301, May 1995.

[10] Mark R. Greenstreet and Kenneth Steiglitz. Bubbles can make
self-timed pipelines fast.Journal of VLSI Signal Processing,
2(3):139–148, November 1990.

[11] Scott Hauck. Asynchronous design methodologies: An over-
view. Technical Report TR 93-05-07, Department of Computer
Science and Engineering, University of Washington, Seattle,
1993.

[12] Hong-Yi Huang, Kuo-Hsing Cheng, et. al. Low-voltage low-
power CMOS true-single-phase clocking scheme with locally
asynchronous logic circuits. InProc. International Symposium
on Circuits and Systems, pages 1572–1575, 1995.

[13] Quickturn Systems Inc.Emulation System User’s Guide, release
4.4 edition, 1993.

[14] Aswaree Kalavade and Edward A. Lee. Hardware-Software
Codesign Methodology for DSP Applications.IEEE Design &
Test of Computers, pages 16–28, September 1993.

[15] M. Kishinevsky, Lavagno L., and Vanbekbergen P. Tutorial: The
Systematic Design of Asynchronous Circuits. Technical report,
Proc. of the ICCAD, 1995.

[16] B. Kleinjohann.Synthese von zeitinvarianten Hardware Mod-
ulen. PhD thesis, University of Paderborn, 1994. Dissertation.

[17] Luciano Lavagno and Alberto Sangiovanni-Vincentelli.Algo-
rithms for Synthesis and Testing of Asynchronous Circuits. Klu-
wer Academic Publishers, 1993.

[18] Gensoh Matsubara and Nobuhiro Ide. A low power zero-over-
head self-timed division and square root unit combining a single-
rail static circuit with a dual-rail dynamic circuit. InProc. Inter-
national Symposium on Advanced Research in Asynchronous
Circuits and Systems. IEEE Computer Society Press, April 1997.

[19] R. Mehra and J. D. Garside. A cache line fill circuit for a mi-
cropipelined, asynchronous microprocessor.IEEE Technical
Committee on Computer Architecture Newsletter, October 1995.

[20] A. Moitra and M. Joseph. Implementing real-time systems by
transformation. In H. Zedan, editor,In Real-time Systems: Theo-
ry and Applications. North Holland, 1990.

[21] S. Note, P. van Lierop, and van Ginderdeuren. Rapid Prototyping
of DSP systems: requirements and solutions. InSixth IEEE Inter-
national Workshop on Rapid System Prototyping, pages 88–96,
Chapel Hill, North Carolina, USA, June 1995.

[22] Ad Peeters and Kees van Berkel. Single-rail handshake circuits.
In Asynchronous Design Methodologies, pages 53–62. IEEE
Computer Society Press, May 1995.

[23] Per Torstein Røine. Building fast bundled data circuits with a
specialized standard cell library. InProc. International Sympo-
sium on Advanced Research in Asynchronous Circuits and Sys-
tems, pages 134–143, November 1994.

[24] Jens Sparsø, Jørgen Staunstrup, and Michael Dantzer-Sørensen.
Design of delay insensitive circuits using multi-ring structures. In
Proc. EURO-DAC, pages 15–20, Hamburg, Germany, 1992.

[25] Ivan E. Sutherland. MICROPIPELINES.Communications of the
ACM, 32:720–738, June 1989.

[26] Synopsys, Inc., Mountain View, CA.VHDL Design Compiler
(tm) Manual, 3.3a edition, 1995.

[27] J. Vanhoof, K.V. Rompaey, I. Bolsens, G. Goosens, and
H. De Man.High-Level Synthesis for Real-Time Digital Signal
Processing. Kluwer Academic Publishers, Boston/Dordrecht/
London, 1993.

[28] M. Wendling and W. Rosenstiel. A Hardware Environment for
Prototyping and Partitioning Based on Multiple FPGAs. InProc.
of the EDAC, pages 77–82, Grenoble, France, 1994. IEEE.

[29] J. V. Woods, P. Day, S. B. Furber, J. D. Garside, N. C. Paver,
and S. Temple. AMULET1: An asynchronous ARM processor.
IEEE Transactions on Computers, 46(4):385–398, April 1997.

[30] Zycad Corporation, Inc., USA.Concept Silicon Software (tm)
Manual, 6.0 edition, 1994.

No1 No2 No3 elliptic
0

10

20

30

40

50

60

70

No1 No2 No3 elliptic

filter_ab

filter_abc

filter_abcd

ns
latency

filter_ab filter_abc filter_abcd filter
0

1

2

3

4

5

filter_ab filter_abc filter_abcd filter

1
throughput

ns

