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Abstract

The development of software for safety critical, embed-
ded computer systems has been widely addressed in litera-
ture. Nevertheless, there does not currently exist any sin-
gle environment which provides adequate support forall of
the following: static analysis, system simulation, anima-
tion and visualization, specification reuse, and refinement
(from high-level requirements to implementation). In this
paper, we present an overview of such an environment that
is currently under development at the University of Min-
nesota concentrating on the prototyping capabilities and re-
finement model.

1. Introduction

Prototyping languages, where successful, have typically
occupied a niche. For example, Visual Basic has been
highly successful in the development of user interface and
database applications. When considering a possible proto-
typing method for safety critical systems the following cri-
teria must be met:

• The language should support methods to assure the
correctness of the system.

• A prototype of the system should be available early in
the development life cycle.

In an embedded system, the software’s correctness can-
not be determined without considering its intended operat-
ing environment. In these systems, the software must in-
teract with a variety of analog and digital components and
be able to detect and recover from error conditions in the
environment. In addition, the software is often subject to
rigorous safety and performance constraints. These issues
make validation and verification of software specifications
for embedded systems particularly difficult.

Assurance that such software possesses desired proper-
ties can be achieved through (1) manual inspections, (2) for-
mal verification of the desired properties, or (3) simulation
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and testing of the specification. To achieve the high level
of confidence in the correctness required in many of to-
day’s critical embedded systems, all three approaches must
be used in concert.

In this paper, we focus on simulation and testing of the
specification. Specifically, we describe how to integrate the
advantages of readable formal specifications with the power
of traditional rapid prototyping while avoiding many of the
pitfalls of both. We call this approachspecification-based
prototyping.

The capability to dynamically analyze, or execute, the
description of a software system early in a project has many
advantages. Dynamic analysis helps stake holders to eval-
uate and address poorly understood aspects of a design,
improves communication between the different parties in-
volved in development, allows empirical evaluation of de-
sign alternatives, and is one of the more feasible ways of
validating a system.

This paper discusses theNIMBUS environment created at
the University of Minnesota.NIMBUS, among other things,
allows the analyst to start with a high-level specification of
the system expressed in RSML (Requirements State Ma-
chine Language) and refine that model through the devel-
opment cycle: adding models of the components in the en-
vironment, the process itself, even the actual hardware.

In theNIMBUS environment, we can use the formal, ex-
ecutable specification as the prototype. By using the speci-
fication as the prototype, most of the problems that plague
traditional code-based prototyping disappear. First, the for-
mal specification will always be consistent with the behav-
ior (excluding real-time response) of the prototype and it is
by definition updated as the prototypes evolve. Second, and
perhaps more importantly, at any time the dynamic evalua-
tion of the prototype can be augmented with formal analysis
of the specification.

An overview of theNIMBUS environment concentrating
on how it is used in prototyping is presented in this paper.
Section 2 presents some background, as well as the goals
of the NIMBUS environment. Next, in Section 3, we dis-
cuss related work. In Section 4, there is an overview of
RSML and theNIMBUS environment itself. Section 5 dis-
cusses prototyping and model refinement withNIMBUS and
the refinement model. Finally, Section 6 concludes.



2. Background

To fully specify, evaluate, and understand the software
components of a system, essential information about the
components interacting with the software must also be cap-
tured [6, 12, 13, 16]. Thus, a software requirements speci-
fication must include descriptions of the required software
behavior as well as essential assumptions about the environ-
ment in which the software will operate.

Lutz found that a number of serious problems can result
from incorrect environmental assumptions [21, 22]. Often,
these problems involve misunderstandings about how the
hardware operates, incompatibilities in the timing between
the sending and receiving interfaces, failure to detect and
respond to inputs outside the normal operating regime, and
failure to prevent undesirable outputs from being generated
[13, 21, 23]. These investigations indicated that to accu-
rately evaluate a proposed software system it should be pos-
sible to execute a prototype of the software in the context of
its embedding environment early in the development cycle.

In an ongoing project, we have developed a requirements
engineering environment, calledNIMBUS, that allows us to
evaluate an RSML specification while interacting with (1)
RSML models of the assumed environment, (2) software
simulations of the environment, or (3) the physical environ-
ment itself. When starting to developNIMBUS, we iden-
tified the following fundamental properties such an envi-
ronment must posses. First, it must support the execution
of the specification while interacting with accurate models
of the components in the surrounding environment, be that
an RSML specifications, numerical simulations, statistical
models, or physical hardware. Second, the environment
must allow an analyst to easily modify and interchange the
models of the components. Third, as the specification is
being refined to a design and finally production code, there
should not be any large conceptual leaps in the way in which
the control software communicates with the environment.

We found that our initial RSML tool-set fell short of
these goals. In addition, no currently available environment
met the goals. Therefore, we have refined our specification
language to better support the definition of inter-component
communication and we have expanded our environment to
support rapid prototyping of embedded systems.

3. Related work

Currently, early execution of a proposed software sys-
tem is realized through either executable specifications or
prototyping.

3.1. Executable specification languages

An executable specification language is a formally well
defined, very high-level programming language. Languages
such as PAISLey [24], ASLAN [3], and REFINE [1] are in-
tended to replace requirements specifications, design spec-
ifications, and, in some instances, implementation code.
Thus, most executable specification languages are intended
to play many roles in the software development process. Ex-
ecutable specification languages have achieved some suc-
cess and have been applied to industrial size projects. Many

languages have elaborate tool-sets and support refinement
of a high level specification into more detailed design de-
scriptions or implementation code.

Nevertheless, current executable specifications lan-
guages have several drawbacks. Most importantly, the syn-
tax and semantics are close to traditional programming lan-
guages. Therefore, currently they do not provide the level of
abstraction and readability required of a notation if it is go-
ing to be usable as a requirements specification language.
Several case studies have reported that current executable
specification languages are difficult to use and are not suit-
able for requirements modeling. Furthermore, no currently
available language provides support for high level specifi-
cation of the interfaces governing the interaction between
embedded software and the environment.

Notable exceptions to the languages discussed above are
a collection of state-based notations. Languages such as
Statecharts [7, 8], SCR (Software Cost Reduction) [11, 12],
and the RSML [16], are very-high level and provide excel-
lent support for inspections since they are relatively easy to
use and understand for all stake holders involved in a speci-
fication effort. In addition, these languages allow automated
verification of properties such as completeness and consis-
tency [10, 11], and efforts are underway to model check
state-based specifications of large software systems [2, 4].

3.2. Rapid prototyping

In software engineering, there are two main approaches
to prototyping. One approach is to develop a draft imple-
mentation – a throw away or rapid prototype – in an attempt
to learn more about the requirements on the software, throw
the prototype away, and then develop production quality
code based on the experiences from the prototyping effort.
The other approach is to develop a high quality system from
the start – evolutionary prototyping – and then evolve the
prototype over time. Unfortunately, there are problems with
both approaches.

The most common problem with throw away prototyp-
ing is managerial, many projects start developing a throw
away prototype that is later, in a futile attempt to save time,
evolved and delivered as a production system. This misuse
of a throw-away prototype inevitably leads to unstructured
and difficult to maintain systems.

Dedicated prototyping languages have been developed to
support evolutionary prototyping. These languages simplify
the prototyping effort by supporting execution of partial
models and providing default behavior for under-specified
parts of the software. Although prototyping languages have
achieved some initial success, it is not clear that they pro-
vide significant advantages over traditional high-level pro-
gramming languages. Evolutionary prototyping often lead
to unstructured and difficult to maintain systems. Further-
more, incremental changes to the prototype may not be cap-
tured in the requirements specification and design docu-
mentation which leads to inconsistent documentation and
a maintenance nightmare.

Software prototypes have been successfully used for cer-
tain classes of systems, for example, human-machine inter-
faces and information systems. However, their success in
embedded systems development has been limited.



Notable examples of work in prototyping include
PSDL [14, 20] and Rapide [19, 18]. PSDL is based on hav-
ing a reusable library of Ada modules which can be used
to animate the prototype. Nevertheless, it seems that this
approach would preclude execution until a fairly detailed
specification was developed. Rapide is a useful prototyping
system, but it does not have as much flexibility to integrate
as easily with other tools as we desired.

In summary, no current approach provides satisfactory
means for evaluating the behavior of embedded systems
early during system development. Executable specifica-
tion languages are not suitable as high-level requirements
specification languages for embedded systems and they do
not provide adequate support to specify system-level inter-
component communication. Prototyping is applied too late
in the life-cycle and often leads to unstructured and difficult
to maintain systems.

4. RSML and the NIMBUS environment

RSML was developed as a requirements specification
language specifically for embedded systems and is based
on David Harel’s Statecharts [7]. One of the main de-
sign goals of RSML was readability and understandability
by non computer professionals such as users, engineers in
the application domain, managers, and representatives from
regulatory agencies [16].

In this paper, we present a very high level overview of
RSML; thus, RSML may appear very similar to Statecharts.
However, RSML differs from Statecharts in a number of
critical ways, for example, states in RSML are akin to states
in a finite state machine whereas states in Statecharts are
typically used to control activities. A more detailed presen-
tation of the semantics of RSML can be found in [16, 10].

4.1. Introduction to RSML

An RSML specification consists of a collection ofstates,
transitions, variables, interfaces, functions, macros, and
constants.

Statesare organized in a hierarchical fashion as in Stat-
echarts. RSML includes three different types of states –
compoundstates,parallel states, andatomicstates. Atomic
states are analogous to those in traditional finite state ma-
chines. Parallel states are used to represent the inherently
parallel or concurrent parts of the system being modeled.
Finally, compound states are used both to hide the detail of
certain parts of the state machine so as to make the result-
ing model easier to comprehend and to encapsulate certain
behaviors in the machine.

The state hierarchy modeling a simple railroad crossing
could be represented as in Figure 1. This representation in-
cludes all three types of states.Train Crossingis a parallel
state with five direct children. All of these are compound
states most which happen to contain only atomic states (Up,
Off, etc.).

Transitionsin RSML control the way in which the state
machine can move from one state to another. A transi-
tion consists of a source state, a destination state, a trigger
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Figure 1. Train Crossing State Machine

event, a guarding condition, and a set of action events that
is produced when the transition is taken. In order to take an
RSML transition, the following must be true: (1) the source
state must be currently active, (2) the trigger event must oc-
cur while the source state is active, and (3) when the trigger
event occurs, the guarding condition must evaluate to true.
If all of these conditions are satisfied then the destination
state will become active, the source state will become inac-
tive, and the action events will be produced.

Variablesin the specification allow the analyst to record
the values reported by various external sensors (in the case
of input variable) and provide a place to capture the values
of the outputs of the system prior to sending them out in a
message (in the case of output variables).

To further increase the readability of the specification,
the Irvine Group introduced many other syntactic conven-
tions in RSML. For example, they allow expressions used in
the predicates to be defined as simple case-statementfunc-
tionsand familiar and frequently used conditions to be de-
fined asmacros. Also, guarding conditions are expressed
in a tabular DNF (disjunctive normal form) notation called
AND /OR tables.

4.2. Inter-component communication

There should be a clear distinction between the inputs
to a component, the outputs from a component, and the in-
ternal state of the component. Every data item entering and
leaving a component is defined by the input and output vari-
ables. The state machine can use both input and output vari-
ables when defining the transitions between the states in the
state machine. However, the input variables represent direct
input to the component and can only be set when receiving
the information from the environment. The output variables
can be set by the state machine and presented to the envi-
ronment through output interfaces.

RSML supports rigorous specification and analysis of
system level inter-component communication [9]. Com-
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munication in the framework occurs through simple mes-
sages consisting of a number of numeric or enumerated type
fields. Components in the system are connected via chan-
nels. Each component can have any number of incoming
and/or outgoing channels, each of which uses one of two
possible communication mechanisms:

• Send-Receivecommunication where the message is
transported across the channel with no buffering and
causes an interrupt on the receiving side, and

• Publish-Read communication where the published
message persists on the channel and is available at any
time to the reader.

The formality of the specification allows us to automat-
ically verify a specification for a number of simple safety
and liveness constraints. For a more detailed description of
the communication definitions and analysis procedures, the
interested reader is referred to [9].

The constructs needed to rigorously define interfaces are
an integral part of RSML. Thus, two RSML specifications
can be connected and communicate with each other with no
additional effort (assuming the interfaces between compo-
nents are compatible). If an analyst wants to connect an-
other tool, a software simulation, or possibly physical com-
ponents to an RSML specification, we provide a small col-
lection of classes one can use as a wrapper around the com-
ponent that is to be integrated. Naturally, to achieve a full
closed-loop simulation of a proposed system, a model of the
physical process can be added as a separate component and
used to connect the sensor and actuator models. These ideas
are illustrated in Figure 2.

TheNIMBUS environment rests upon a foundation build
with COM (Component Object Model), Microsoft’s stan-
dard for executable, reusable components. In order to add
the capability to communicate inNIMBUS to any applica-
tion that supports COM, all that is necessary is to register
theNIMBUS dynamic link library on the system (a one time
operation) and simply use the COM library to instantiate

and initialize that application’s end of the channel. In the
RSML simulator, this process is automatically done given a
valid RSML specification. For any other application, it can
be done with only a few lines of code.

5. Prototyping in NIMBUS

Specification-based prototyping allows an iterative ap-
proach to building a formal specification. Initial versions
of the specification can focus on the desired control be-
havior and ignore complicating details, such as sensor or
actuator failures. The specification can be evaluated in an
equally simplified environment containing failure free sen-
sors and actuators. As the understanding of the system and
its environment deepens, both the specification and the en-
vironmental models will be refined. The following para-
graphs outline the activities that occur as the models are
constructed and refined.

Prepare a high-level model. Initially, the objective of the
analyst should be to clearly define the boundaries and high-
level requirements of the proposed system. Thus, the model
constructed should be in terms of environmental monitored
and controlled variables. The focus is on the normal oper-
ating regime of the software controller and how to handle
failures in the environment. This allows analysts and other
stake-holders to get a clear idea of the primary function of
the system, the primary exceptional conditions, and which
system components interact with the software.

The interfaces defined in the specification serve to de-
fine the boundaries of the system and enumerate with which
components the software will communicate. Initial def-
inition of the interfaces are simplistic representations of
the values that are to be input to the software controller.
Some failure handling should be introduced into the sys-
tem. The analysts and stake-holders should carefully con-
sider the constraints of the system. Which failures in the



environment should the system handle? Which failure con-
ditions are beyond the scope of the specification?

Interfaces for the external components are defined so that
failure signals are an input to the RSML specification; that
is, the RSML specification does not detect failures at this
point, rather, it gets that information from a non-realistic,
simplified version of the “environment.” This allows the
analyst to focus on how the software should respond to error
conditions rather than how these conditions are detected.
Input at this stage is most likely from text files or interactive
user input.

Note that, even at this early stage of system specification,
an executable prototype is available (provided by the RSML
simulator). In this fashion, the analysts and stake-holders
can actively evaluate and test the high-level requirements of
the system early in the development cycle.

Model environmental assumptions. Specifications of
each component in the environment are constructed, for ex-
ample, models of the sensors and actuators. These mod-
els are simplified versions of each component, most likely
written in RSML. The models focus on the normal operat-
ing modes of the components, but include outputs for error
conditions as well.

RSML specifications of the components are useful when
evaluating, for example, the controller’s response to single
and multiple component failures. The RSML component
models can be forced into their various fail states to sim-
ulate failures in the environment. In addition, developing
a detailed RSML model of the components will enrich the
developer’s understanding of the system. However, since
RSML models are discrete and deterministic, they are not
suitable for modeling some system components.

Refine the environmental models. Software simulations
can offer a more accurate and/or desirable model of some
components by allowing a more flexible expression of their
functionality. For example, some system components are
inherently continuous or require complex algorithmic de-
scriptions not supported by RSML. Thus, representations of
the components can be statistical models, numerical mod-
els, pre-recorded data from the actual system, etc. With the
NIMBUS framework, integrating such software simulations
to model the components in the environment involves little
additional effort.

To fully evaluate the control behavior of a proposed sys-
tem, the controller will be connected to detailed models of
the sensors and actuators, and these models will be con-
nected to a simulation of the process being controlled. Such
an arrangement allows the analyst to perform longer-term
evaluations of the control behavior without developing the
actual code for the controller.

Evaluate the human-machine interface. Many control
systems contain a human operator in some control or super-
visory position. The interface between this human and the
control software has a critical impact on not only the usabil-
ity and acceptance of the system, but also on the safety of
the system [15]. Many mishaps and accidents are attributed
to operator error [17]. Even with a well-defined interface, if
the operator’s conceptual model of the control software and

the system does not match the actual behavior of the soft-
ware, a situation known as mode confusion may arise [17].
In this situation, the software is performing some control
action while the operator believes the software is perform-
ing some other action. The result may be that the operator
takes actions that nullify the software’s control or, in the
worst case, that bring the system into a hazardous state.

Even in very early stages of system development, the
NIMBUS environment provides the means to easily evalu-
ate different interface designs as well as evaluation for the
potential of mode confusion. WithNIMBUS, the interface
can be viewed as merely another component of the system.
It could be represented through a software simulation (for
example, an interface mockup written with Visual Basic or
some other interface builder) or even a hardware mockup of
the interface.

Hardware in the loop simulation. Unfortunately, it can
be the case that the models of the system components which
were developed contain erroneous assumptions. Thus, con-
necting to a hardware system that obeys the physical laws
governing the actual system is invaluable. For example, re-
searchers in the field of robotics have found time and again
that there is no substitute for experimentation with actual
robots, as opposed to robot simulations. We believe that the
same is true for safety critical systems. In addition, to eval-
uate the fault tolerance and error recovery capabilities of a
system design,NIMBUS allows the analyst to easily inject
simulated software malfunctions into the physical system.

Naturally, it may the case that using the actual system
for prototyping is infeasible. For instance, the actual sys-
tem may be unavailable or using it might be too dangerous.
In that case, a scaled down version of the hardware system
which nevertheless preserves the physics of the real hard-
ware would provide similar benefits.

Amortize the investment. Naturally, there is quite a high
cost associated with developing the sensor and actuator
models as well as the model of the physical process. This,
however, is a cost that can be amortized over many projects
in the application domain. In addition, it is possible that
detailed modeling of the components isalreadybeing done
within the organization. Our architecture virtually assures
that connecting an RSML simulation to a specification
or simulation created with any other tool is quite simple.
Therefore, the effective cost of developing the models is
again spread across several projects.

These activities, done in concert, provide a powerful and
flexible means of constructing embedded systems.

6. Conclusion

In this paper, we have presented an approach to require-
ments specification and evaluation that integrates the advan-
tages associated with a readable formal requirements spec-
ification and the power of rapid prototyping, while at the
same time eliminates many of the current drawbacks with
rapid prototyping. The approach uses a state-based require-
ments specification language (RSML) to model the required



behavior of the software. We have developed an environ-
ment in which the requirements specification can be exe-
cuted. In this flexible framework, software requirements
expressed in RSML can interact with either (1) high-level
RSML models of the components in the environment, (2)
software simulations of the components (at varying levels
of refinement), or (3) the actual physical components in the
target system (hardware in the loop simulation).

Our approach to requirements execution and system sim-
ulation has many advantages over previous approaches sug-
gested for embedded systems. First, RSML is a readable
and easy to understand requirements specification language.
This simplicity allows the customers to be intimately in-
volved in the specification and development of the software,
whereas currently they are often only involved in the eval-
uation of the executions and simulations. Second, the ca-
pability to simulate the system as a whole enables early dy-
namic evaluation of system level properties such as safety,
robustness, and fault tolerance. Third, the executable re-
quirements specification is used as a high-level prototype of
the proposed software. The dynamic behavior of the system
can be evaluated through execution and simulation. Once
this behavior is deemed satisfactory, the resulting formal re-
quirements specification is guaranteed to be consistent with
the behavior of the prototype, and the requirements can be
used as a basis for development of the production system.
The guaranteed consistency between the prototype and the
requirements specification eliminates the problems of in-
consistent documentation commonly associated with pro-
totyping [5].

We are currently investigating specification-based proto-
typing further. We are gathering experience from the use
of NIMBUS and we are developing guidelines and a process
for how to effectively take advantage of the opportunities
presented with this type of environment.
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