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Abstract

We present an example of a construction of an embedded
software system - a controller - from the formal specifica-
tion to executable code. The CO-OPN (Concurrent Object
Oriented Petri Net) formal specification language is used
Sfor modelling the controller and the associated hardware
system with the inherent limitation of its physical compo-
nents. CO-OPN formal language is based on coordinated
algebraic Petri nets. The CO-OPN model can be used to
verify some properties of the controller in the concrete
physical environment. This is achieved by constrained ani-
mation of the valid prototype produced by automatic code
generation. The possibility to incrementally refine the gen-
erated code can be used to obtain a more efficient imple-
mentation.

1 Introduction

Developing embedded reactive software systems needs
modelling tools that can capture the properties of the system
to develop as well as the structure of the interactions be-
tween the software and its environment.

In this paper, we present a formal framework for the de-
velopment of embedded systems from the modelling phase
to the implementation. The approach we propose has adopt-
ed the object-oriented paradigm as a structuring principle.
We have devised a general formalism which can express
both abstract and concrete aspects of systems. This ap-
proach is called Concurrent Object-Oriented Petri Nets
(CO-OPN)[3]([1].

An implementation can be automatically produced from
the abstract CO-OPN model. We shortly describe our code
generation techniques. Apart from the problem of produc-
ing programs that respect the abstract models and their par-
ticularities (non-determinism, atomicity of the events,
modularity induced by Object-Oriented structure,...), we
are particularly interested to match the usual programming
principles of the target language. For our purpose they will
be the Java notion of component architecture, the Java
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Beans model[10]. In order to cope with incremental refine-
ment of the automatically generated prototype [6], it is im-
portant to be able to interconnect the produced components
with other components or with standard libraries (for exam-
ple user interface libraries). This will be achieved by fulfili-
ing the rules of the component model of target language and
by transparently introducing the support for transactions
and non-determinism.

This paper presents three new aspects of CO-OPN re-
search. First, a modelling approach that includes both logi-
cal (software) and physical elements of the system in one
model. Second, the code generation techniques that maps
CO-OPN components to target language components.
Third, the implementation of an automatic code generator.

Our work lies under the context of executable specifica-
tions. Since CO-OPN formalism has formal semantics
based on logical programming and Petri Nets, various exist-
ing techniques of verification and validation can be applied.
This is the major advantage of our approach.

We will first briefly explain how to start from a diagram
establishing the interconnection of the application to the
outside world elements and how to produce, step by step, a
model that will be used to derive automatically a program.
An example of a drink dispenser will illustrate our ap-
proach. The complete specification and supporting tools
can be found at: http:/Iglwww.epfl.ch/Conform/Coopn-
Tools

The paper is organized as follows. In Section 2, we
present the drink dispenser and discuss the models that we
can produce using CO-OPN. In section 3, we present our
basic mapping method for generating OO code from CO-
OPN and discuss implementation problems. In section 4,
we discuss how to use the produced software for validation
and verification purposes.

2 Modelling with CO-OPN

CO-OPN is an object-oriented modelling language,
based on Algebraic Data Types (ADT), Petri nets, and
IWIM coordination models [S]. Hence, CO-OPN concrete
specifications are collections of ADT, class and context (i.e.



coordination) modules [9]. Syntactically, each module has
the same overall structure; it includes an interface section
defining all elements accessible from the outside, and a
body section including the local aspects private to the mod-
ule. Moreover, class and context modules have convenient
graphical representations which are used in this paper,
showing their underlying Petri net model. Low-level mech-
anisms and other features dealing specifically with object-
orientation, such as sub-classing and sub-typing, are out of
the scope of this paper, and can be found in [1] [3].

2.1 The Drinks Dispenser

In order to present a concrete example of modelling, we
chose to study a simple but non-trivial kind of reactive sys-
tem: a Drink Dispenser Machine (DDM) controller. The
aim of this study is to elaborate a CO-OPN specification of
the dispenser and to explain how to generate the controller
program. Moreover, we would like to validate and verify
properties of the DDM Controller by using a model includ-
ing hardware parts, and also to verify the DDM in the con-
text of human interaction. Therefore, our model has three

levels: Controller, Machine and Human Interaction (not de-

tailed here).

First of all, we will explain the steps that can lead to the
CO-OPN model of the DDM controller. In figure 1, the
reader can have a feeling how this machine usually works.
Firstly, the customer has to introduce coins in the machine
(1), then s/he has to select the desired drink (2) and finally
the dispenser supplies the drink via the bottom drawer (3).

Figure 1: The drinks dispenser machine
(real life view)

For such a system we are interested in a first approach
to determine the components and the various interactions
between them. The main concepts used to express the
structure and the behavior of the system are:

* a coordination model for describing the relations be-
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tween the system components,

* object orientation for the structure and content of the
system,

* causality relations for the dynamic aspects that must
be reflected with non-deterministic and concurrent
behaviors.

The controller is a program that coordinates the activities
of DDM components: money box (MB), containers of
drinks (DC), LCD display, drink selection buttons (SB) and
“return coins” button (RB). The controller receives messag-
es from and sends commands to the equipment (figure 2).

iveDrink d . .
DC giveDrin Controller insertCoin ¢
selectDrink d takeCoins
SB ——» returnCoins
returnCoins .
RB ——mM addDrink d Sp
. -
LCD display m addContainer d
< price p

Figure 2: Protocol of Controller

When adding drinks the service person (SP) communi-
cates with the controller directly by notifying addDrink
and addContainer events.

The Money Box is composed with two different collec-
tors of coins: the first one keeps coins until the customer
chooses a drink or presses the “return” button, and the sec-
ond one receives coins for distributed drinks.

Drinks are stored in containers. Each container is associ-
ated with a kind of drink and a price. Initially, the DDM is
empty. The service person installs containers and adds
drinks to them.

The DDM equipment introduce some constraints: the
money box has limited capacity, the number of slots for DC
and the quantity of bottles in DC are also limited.

2.2 CO-OPN Coordination model

In this section the various concept of CO-OPN will be in-
troduced in the necessary order for the modelling of the
DDM. As we use a kind of top-down strategy for modelling,
we will first start by presenting the interface of the machine
given by the top-level coordination entity called Drinks-
Dispenser context.

A useful approach for building systems composed of
many computing entities is to use the high-level concept of
coordination programming [12]. The term coordination
theory refers to theories about how coordination can occur
in various kinds of systems. We state that coordination is
managing dependencies among activities.

Taking a step further in this direction, it appeared that



insertCoin__: coin selectDyink _ : drink

displayArrount — T oney

givelrink __: drink

Figure 3: The drinks dispenser machine model

coordination patterns are likely to be applied since the
beginning of the design phase of the software develop-
ment. This fact gave birth to the notion of coordination
development [5]. This process involves the use of specific
coordination models and languages, adapted to the specific
needs encountered during the design phase as expressed in
the drinks dispenser.

Due to their intrinsic nature, IWIM (Idealized Work-
ers, Idealized Managers) coordination models [13] are par-
ticularly well suited for the coordination of software
elements during the design phase [4]. The coordination
layer of CO-OPN [5] [3] [4] is a coordination language
based on a IWIM model, suited for the formal coordination
of object-oriented systems. CO-OPN context modules
define the coordination entities [11], while CO-OPN
classes (and objects) define the basic coordinated entities
of a system. CO-OPN allows one to cover the formal devel-
opment of concurrent software from the first formal speci-
fication up to the final distributed software architecture [1].

2.3 Coordination with Contexts

In figure 3 we can see the DrinksDispenser ma-
chine including the Controller context and a model
of the physical components PhysicalMoneyBox and
PhysicalDrinksContainers, with the input events
(or the provided services called methods - black rectangles)
and output events (or the required services called gates -
white rectangles).

The Controller context contains sub-components
that interact to provide the controller behavior. The control-
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ler sub-components are two objects which are instances of
the classes MoneyBox and CentralUnit as depicted in
figure 4. In this picture the oriented arcs between methods
or gates are used to define strong synchronization between
events. In CO-OPN, it means that the firing of synchronized
events is strongly synchronous and atomic. The synchroni-
zation of entities in a context is an oriented couple of syn-
chronization expressions of the form: synchro With

synchro.
selectixyink _: drink

)
 S—

reumMbrey  displayAmount _: moreytakeMoney - givelDxink _: drink

Figure 4: The static components instances inside
the Controller context

Synchronization expressions are built with the simulta-
neity, the sequence and the non-determinist operators. The
MoneyBox component is devoted to managing the money
of the dispenser. The CentralUnit component transmits
the requests to the specific drink container. The container
objects, each containing one kind of drink, are instantiated



by means of the addcontainer _ price _ method
that must be called before the add drink _ method. In
figure 3, we can observe that the physical components are
duplicated by logical components in the controller using si-
multaneous synchronization (circle with // inside). For in-
stance, the MoneyBox logical component is duplicated by
PhysicalMoneyBox and CentralUnit by Physi-
calDrinksContainers.Pushing a drink selection but-
ton sends the event selectDrink d to the controller. If
DDM contains a drink d and enough money then com-
mands takeMoney and giveDrink d are emitted, oth-
erwise nothing is done.

Let us explain how this behavior is defined by the Con-
troller context. In order to express this behavior we link
selectDrink d event to a synchronization::cu.dis-
tributeDrink d takeMoney giveDrink
d. The event selectDrink will complete with success if
and only if each of three sub-events are completed with suc-
cess. Controller internal event cu.distribute d will
check if there is a drink d in DDM and enough money in
moneyBox. If those preconditions are satisfied the system
will evolve by removing one drink d and moving the money
from intermediary collector to the permanent one. In the
case of success takeMoney. .giveDrink d events
will be emitted by controller to external connected equip-
ment (MB and DC).

Before explaining the components, we will quickly give
an outline of the way values can be defined in CO-OPN, us-
ing algebraic data types.

2.4 - ADT Modules

CO-OPN ADT modules define data types by means of
algebraic specifications. Each module describes one or
more sorts (i.e. names of data types), along with generators
and operations on these sorts. The properties of the opera-
tions are given in the body of the module, by means of pos-
itive conditional equational axioms. For instance, figure 5
describes the ADTs defining two sorts, coin and drink,
defined by several generators and one operation, value _
Having the ADT, it is possible to describe the dynamic
components of a CO-OPN specification: the classes.

2.5 Class Modules

In this subsection we will show more detail on the class-
es that compose the DrinksDispenser system, and us-
ing this example explain the main elements of a CO-OPN
model. '

CO-OPN classes are described by means of modular al-
gebraic Petri nets with particular parameterized external
transitions which are the methods of the class. The behavior
of transitions are defined by so-called behavioral axioms,
similar to the axioms in an ADT. A method call is achieved
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ADT Drink;
Interface
Sort drink;
Generators
Ice Tea , Soda , Beer ,
End Drink;

Whisky : -> drink;

ADT Coins;
Interface
Use Money;
Sort coin;
Generators
5¢ ,10c ,20c ,50c :
1f ,2f ,5f -> coin;
Operation
value _
Body
Axioms
(value 5c) = 5;
(value 20c) = 20;
(value 50c) = ((2*(value 20c))+(value 10c));
(value 1f) (2* (value 50c));
(value 2f) (2* (value 1f));
End Coins;

-> coin;

: coin -> money;

(value 10c) = 10;

Figure 5: The Drink and Coin ADTs

by synchronizing external transitions, according to the fu-
sion of transitions technique. The axioms have the follow-
ing shape:

Cond => eventname With synchro pre -> post

in which the terms have the following meaning:

* Cond is a set of equational conditions, similar to a
guard;
eventname is the name of a method with the alge-
braic term parameters;
synchro is the synchronization expression defining
the policy of transactional interaction of this event
with other events, the dot notation is used to express
events of specific objects and the synchronization op-
erators are sequence, simultaneity and non-determin-
ism.
Pre and Post are the usual Petri net flow relation
determining what it is consumed and what it is pro-
duced in the object state places.

CO-OPN provides tools for the management of graphi-
cal and textual representations.

In figure 6 the DrinksContainer class provides
methods to modify, in different ways, the state representa-
tion of the drink container. For instance, the method ad-
dDrink is fireable if a init was performed assigning to
the drink container the kind of drinks that can be kept in this
container (place kind).




Figure 6: The Drinks Container class graphical
description

A corresponding class PhysicalDrinksContain-
ers (figure 7) is used to model the physical components of
the dispenser. In our example the main difference of this
class with respect to the controller class is the introduction
of a limit in the number of loadable drinks. This will con-
strain the behavior of the whole model to a finite number of
states. We consider that it is a natural way to take into ac-
count the physical limitation without over constraining the
controiler model.

enpty __container slots

Figure 7: The PhysicalDrinksContainer class
graphical description

In figure 8, the reader can see the textual description of
the centralUnit Petri net. The axiom ax1 illustrates
complex properties that can be abstractly modelled using
our formalism. The variable c represents a reference to con-
tainer objects and is used to select one of the created con-
tainers. In ax1 axiom the selected container will be the one
that has the required kind of drink given by the variable d.
The selection is made by the method that succeeds only
when the kinds of drink match. As CO-OPN has logic based
semantics, unbounded variable ¢ (i.e. a variable that can be
assigned to any of the tokens found in container place)
is constrained by the firability of dispenseDrink d
method of DrinksContainer. It means that ¢ will be
the object on which the method is firable. This example also
illustrates the transactional semantics of CO-OPN (all-or
nothing policy of synchronization) expressed in the
(this.takeMoney p).. (c.dispenseDrink d)
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synchronization that can succeed if and only if both meth-
ods sequentially succeed.

Class CentralUnit;

Interface
Use Drink, Money;
Type centralUnit;
Gate takeMoney _ : money;
Methods
distribute _ : drink;
addContainer _ price _ : drink money;
addDrink _ : drink;
Body
Use DrinksContainer;
Place
container _ price _ : dc money;
Axioms
axl:this = self => distribute d With

(this.takeMoney p).. (c.dispenseDrink 4)::
container ¢ price p -> container c¢ price p;
ax2:addContainer d price p With
c.init d:: -> container c price p;
ax3:addDrink d With ¢ . addDrink d::
contalner ¢ price p -> container ¢ price p;

Where
this : centralUnit; p : money;
c : dec; d : drink;

End CentralUnit;

Figure 8: The CentralUnit class textual descrip-
tion

3 Translation of CO-OPN to program-
ming languages

The code generation process takes a CO-OPN specifica-
tion as a parameter and produces a set of Java classes. The
object structure of a CO-OPN specification is preserved by
the generated code. One of our primary goals was to find a
“natural” mapping between CO-OPN and Java. In such a
mapping of standard CO-OPN features, constructs like
methods or gates are associated to standard Java features,
methods or events respectively. As a result, the interface
part of a generated Java component is similar to the inter-
face of the corresponding CO-OPN component, and it is
also easy to understand/use by a human programmer or de-
velopment tool. Some powerful aspects of CO-OPN, such
as atomic concurrent synchronizations or non-determinism,
do not have a direct equivalent in Java, consequently they
are non-trivial to implement. These aspects are, as much as
possible, hidden in private parts of the generated code.

We will continue by presenting the list of main problems
solved in the code generator.

* Implementation of ADT using rewrite system [8] as
explained in [7]. The structure of the generated code




allows one to replace parts of it by user code.

* Implementation of Classes and Contexts following
the JavaBean structure [10] that provide a unified
view of methods and gates. Nevertheless, additional
features such as transactional support and non-deter-
minism are managed by generated code.

Now we will give more insight in the complex process of
generating Java classes and list the main concepts that are
used:

* Transaction Support. The operational interpretation
of CO-OPN synchronizations is based on the nested
transactions principle [2]. Specific algorithms and
data structures implement commit and abort opera-
tions.

Non-determinism. Methods of CO-OPN classes may
be non-deterministic in data and control dimensions.
Data non-determinism occurs when a precondition
takes values from places. It is possible that many dif-
ferent values match the precondition requirements.
The choice from matching values is non-determinis-
tic. Control non-determinism occurs when more that
one method’s axiom can apply in the given system

state. Non-determinism is implemented in prolog--

like fashion, nested transactions are used to undo
changes of system state and code rewriting to imple-
ment the prolog “redo” primitive.

Resource Sharing. In CO-OPN, concurrent synchro-
nizations can share the same resources. A specific
data structure that collaborates with the transaction
mechanism has been devised to implement the rules
of resource sharing.

Concurrent Synchronizations. CO-OPN defines three
kinds of concurrent synchronizations: sequence, si-
multaneity and non-determinism. The structure of the
nested transaction tree follows the structure of the
synchronization tree.

4 How to use the models

As explained before the purpose of modelling is not only
to produce the controller, but also to be able to study the be-
havior of the machine that will be produced.

Now we will present two possibilities of using the code
generator on the CO-OPN models.

First one is the validation of controller in “real” environ-
ment. The goal of validation is to insure that the controller
can work with real systems. Clearly, the best way to test the
software is by installing the controller program on the real
drink distributor. Our less expensive approach is to use
LEGO RCX [14] or similar system. In this approach a sim-
plified hardware model of DDM is built with LEGO. The
generated program is installed on a PC connected with the
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LEGO RCX computer via an infrared port. To avoid limita-
tions of RCX system, a part of the interface of DDM runs
on the PC. The resulting system can be used for demonstra-
tion purposes and to show its feasibility.

The second possibility is the use of code generation tech-
niques to observe and verify properties of the whole DDM
system without building it. As explained before, the DDM
model contains a part that describes the constraints and the
limitations introduced by the physical components. Instead
of generating only a controller, we generate the code for the
whole model for simulation purposes. This code can be ex-
ecuted to verify useful properties of the model. A tool (fig-
ure 9) exists that enables the user to execute CO-OPN
synchronizations on generated code and watch for execu-
tion results.

Figure 9: “Interpretor” tool

An example of a useful property for DDM could be: “If
there is enough money in MB and enough drinks then the
selectDrink request must always succeed”. This prop-
erty is then expressed as CO-OPN synchronization and sub-
mitted to generated code. The result can then be observed
and eventual wrong behavior detected. As the state space of
the DDM model is finite (because of limitations introduced
by physical model) a quasi-exhaustive test of such a proper-
ty is also possible.

5 Future Work and Conclusions

In this paper, we presented an attractive methodology for
modelling embedded systems. Embedded software is mod-
elled together with controlled equipment. In our opinion
this is a technique that can be used for co-design.

We also propose a technique for automatically trans-
forming a formal specification of a system into executable
code. This technique was validated on a number of exam-
ples, including the drinks dispenser case study. We plan to
continue the development of generation techniques to better
suit the purposes of embedded software.

Generated code is also used for validation and verifica-
tion of the model. We intend to develop this research direc-
tion in order to integrate test techniques.
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