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Abstract. Modeling software systems is one of the most obvious uses of a formal specification language.
A software prototype, automatically generated from the specification, enables the developer to validate the
system in a real environment. However, real software systems are seldom developed from scratch, but
rather built using existing libraries. In this paper, we show how a program based on existing software
libraries is modeled in the Concurrent Object-Oriented Petri Net specification language, and how a
prototype code is generated from the specification. In particular, we study the interface between non-
determinist synchronous prototypes and determinist asynchronous software libraries. We take into
account, problems related with nonreversibility of actions and the transactional semantics of the specifica-
tion language that is kept in the prototypes. A convenient delayed execution mechanism is proposed for the
library linking part of the generated code.

Keywords: prototyping, non-determinism, Petri nets, external laboratory

1. Introduction

Previously, we have defined a method for the generation of executable code from our
formal specification language Concurrent Object-Oriented Petri Net (CO-OPN) [10],
[11]. The interface of the generated code was simple, modular (each component of the
specification language is a component of the target language), and sufficient for systems
encapsulated into a single object. In this paper, we shall present an extension of our
approach that enables a more subtle and fine-grain object-oriented form of interface,
and allows the integration of existing components (for instance, from libraries).

To achieve this goal, we shall insert models of the objects of these libraries into the
formal model of the system, and then generate the code for the whole new system.
The use of proxies to connect generated code with objects from libraries will ensure
the translation of the different execution paradigms. The execution model of the
generated code is close to the resolution [6] and has a transactional behavior, but this
is not the case for library components that support neither backtracking nor transac-
tions. Instead, we use information from the model in order to build a plan (sequence
of future method calls) that is guaranteed to work.

Our formal approach, called CO-OPNS, includes a coordination layer that has
been developed to deal with distributed architecture.

CO-OPN is an object-oriented modeling language, based on Algebraic Data Types
(ADT), Petri Nets, and Idealized Workers Idealized Manager (IWIM) coordination
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models [12]. Hence, CO-OPN concrete specifications are collections of ADT, class
and context (i.e., coordination) modules [10]. Syntactically, each module has the same
overall structure; it includes an interface section defining all elements accessible from
the outside, and a body section including the local aspects, private to the module.
Moreover, class and context modules have convenient graphical representations,
showing their underlying Petri Net model. Low-level mechanisms and other features
specifically dealing with object-orientation, such as subclassing and subtyping, are
out of the scope of this paper, and can be found in [2].

Our specification language allows to fully exploit features of object-oriented
libraries, such as dynamic aspects: object creation, destruction, and reference handling.

In Section 2 we introduce the example of a software system—software video
recorder—built on top of existing libraries. In Section 3, we briefly describe our
modeling language. In Section 4, we present the model of the system. In Section 5, the
concept of prototype is introduced and then the object-oriented interface of gener-
ated code is presented. Section 6 illustrates an application of our technique to the
Video Cassette Recorder (VCR) example. The last two sections contain some related
work and the conclusion.

2. Example: The VCR Program

We would like to model a software system that can play and record video. The main
component of our system is a VCR. The other components are cameras, cassettes,
and displays. In fact, they are not real equipment, but instead software abstractions
that incorporates data feeds, files, and windows.

We also choose not to build our system from scratch, but instead to use an existing
software library, namely Java Media Framework (JMF) [1]. This library provides a
way to display or record video files and feeds from video sources by configuring video
data flow controllers.

The components of JMF that we use are Processor, Data Source, Data Sink,
Media Locator, and Content Descriptor. We also use components from the Java
GUI libraries in order to display video on the screen.

A Media Locator object is a kind of Uniform Resources Location (URL) that
identifies the video data location. This may, for example, be a file or a live feed. Data
Source and Data Sink are constructed using a Media Locator. Data Source reads the
data from a location indicated by Media Locator. Data Sink writes data.

The heart of JMF is the Processor object. A Processor is always connected to a
Data Source. Processor transforms the data it receives from its Data Source either for
displaying or for recording video (Figure 1).

To record data we specify, using a Content Descriptor, the format in which the
Processor will encode its output. Later, a Processor configured with a Content
Descriptor will provide its output in the form of a new Data Source object. The
Data Sink is then created using the output of the Processor and a Media Descriptor.

Alternatively, we may omit specifying a Content Descriptor, and later ask the
Processor to give us the Renderer (a Java GUI component in which the video will be
shown).
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Figure 1. Two configurations of processor. ML: media locator, CD: content descriptor.

Processor has three successive states. It is created in the Configured state. In this
state, the processor is already connected to a Data Source and has recognized the
format of input data; the Processor may be provided with a Content Descriptor
object. It is then moved to the Realized state, in which an output Data Source, or
Renderer, becomes available. Finally, it can be started and begin to process the video
feed. This behavior will be modeled in the CO-OPN formalism, the data flow being
omitted (the actual flow of video data); this is a useful abstraction, which keeps all the
interesting properties of the libraries for validation and verification of the global
system.

For our VCR program, we will use Media Descriptor to implement the camera and
the cassette, and a GUI Window to implement the monitor. A VCR object will accept
inputs/outputs in the form of cassettes, cameras, monitors, and control events such as
play, record, and stop.

3. CO-OPN Specification Language

The CO-OPN specification language features three kinds of modeling entities:
abstract algebraic data types (ADT), classes, and contexts. Contexts are coordination
entities, they coordinate activities among classes; the example of this paper does not
use them. ADT and classes are presented below.

3.1. ADT Modules

CO-OPN ADT modules define data types by means of algebraic specifications. Each
module introduces one or more sorts (i.e., names of data types), along with gen-
erators and operations on those sorts. The properties of the operations are given in
the body of the module, by means of positive conditional equational axioms. Opera-
tions are partial deterministic functions.

One simple example of ADT from our specification is MediaLocator (Figure 2). In
order to simplify the specification, the exact identification of the media location is not
modeled, but only the type of the resource. The ADT module declares one sort
mediaLocator and two gemerators renderer and storage. This ADT defines no
operations.
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ADT MediaLocator;
Interface
Sort medialocator;
Generators
renderer : -> medialocator;
storage : -> mediaLocator;
End MediaLocator;

Figure 2. ADT MediaLocator.

ADT Cassette;
Interface

Use MediaLocator;

Sort cassette;

Generator cassette _ : medialocator -> cassette;
End Cassette;

Figure 3. ADT Cassette.

ADT Booleans;
Interface
Sort boolean;
Generator true,false : -> boolean;
Operation
_and _: boolean, boolean -> boolean;

Axioms
X and true = X;
X and false = false;

Where
X: boolean; End Booleans

Figure 4. ADT Booleans.

The Cassette ADT is another example (Figure 3). Thanks to its generator, a value
of this sort encapsulates a MediaLocator.

A slightly more sophisticated example of ADT is given by the CO-OPN standard
library module Booleans (Figure 4).

Any kind of data structure could be modeled in this language with a high level of
abstraction and a clear declarative style. Even if we have a declarative approach,
most of the usual data structures can be animated using rewriting techniques (essen-
tially, rewrite systems are obtained by orienting the equations). This is the main
principle used for the code generation supported by our tools.
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Class Example;
Interface
Type example;
Method stop;
Body
Places recording _: jmf_
Axioms
stop With mc.stop : recording k7, jmf mc -> jmf mc;

End Example;

stop (method)
.

stop (event)

mc (pre and post)

mc.stop
) (synchro) O
recording _ (place) jmf _ (place)

Class Example

Figure 5. Textual and graphical representation of an Example Class.
3.2.  Classes

CO-OPN classes are described by means of modular algebraic Petri Nets with
particular parameterized external transitions that are called methods of the class.
As usual, instances of classes are called objects. Objects are instantiated by using one
of user-defined creation methods, or a predefined method Create.

The behavior of transitions is defined by so-called behavioral axioms, similar to the
axioms in an ADT. A method call results in an external transitions synchronization,
similar to the fusion of transitions technique. The axioms have the following syntax
(see Figure 5, for an example of corresponding graphical representation of axiom):

Cond = eventname With synchro: pre — post

In which the terms have the following meaning:
e Cond is a set of equational conditions—the guard.
e cventname is the name of a method with the algebraic term parameters.

e synchro is the synchronization expression defining the policy of transactional
interaction of this event with other events. Synchronization expressions are
the CO-OPN equivalent of method calls. The dot notation is used to access
events of specific objects. Synchronization expressions can be combined
using the synchronization operators: the sequence, the simultaneity, and, the
nondeterminism.
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e Pre and Post are the usual Petri Net flow relations determining what is con-
sumed and what is produced in the object state places.

The state of a CO-OPN object is stored in places, which are really named multisets of
algebraic terms, object references, or tuples of them.

CO-OPN provides tools for the management of graphical and textual representa-
tions. Figure 5 shows the partial class. description net corresponding to a simple class
Example in textual form; the equivalent graphical description (the Petri Net, plus
additional information concerning the interface) is also depicted in Figure 5.

4. CO-OPN Model of VCR Program

When the overall architecture of the system is well understood, one question remains
open: which elements do we have to include in the model? There are two options:
model only the controller or model both the controller and the library.

In order to be able to perform real validations of the system, we choose the second
option, but with some limitation for the libraries. We model, using ADT and Classes,
the desired behavior of the VCR program and the simplified behavior of a subset of
JMF, presented later.

4.1. Controller Model

Parameterized inputs of the VCR class are listed in Figure 6 and the CO-OPN model
of the behavior of the VCR is shown in Figure 7.

Cassette and Camera are two ADTs which encapsulate a Medial.ocator. Monitor
is a Class with an interface composed of two methods: show _: component and hide.
In fact Monitor models a window with a GUI component inside.

VCR is created (creation method init) in the “empty” state (represented by an
anonymous token @ in place empty_). Init also creates a new MediaCenter object
by synchronizing with its default creation method Create. MediaCenter is stored in
the place jmf_. VCR provides methods to connect/disconnect Cassette, camera,
and monitor and also places to store them. Methods play and record move VCR
from an inactive to an active state. The play method, for example, takes monitor,
cassette, and a MediaCenter as preconditions from the corresponding places. It
next initializes and starts the MediaCenter in a sequence of three synchronizations.

insert _ : cassette; connect _ : monitor;
play; connect _ : camera;
record; disconnect monitor;
stop; disconnect camera,

Figure 6. Simplified interface of VCR (in CO-OPN notation underscores denote places for parameters).
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connect :cam disconnect camera

insert :cassette

init connect_:monitor disconnect

333

—[ ]
] [ ]
connect cam insert k7 empty connect mon
cam cam mon| mon
k7 mc.Create
camera -
monitor _
--mc.addOutput ml2 me.addInput ml -
(camera ml1) -mc.addInput ml1 mc.addVisualOutput mon - mon|
i me.start me.start -
l cassette ml2 (cassette ml) > :
ecord
record 7 stopped _ play play
(cassette ml2)| (cassette ml)
recording _ i stop jmf_ stop' playing
VCR f.me.stop me.stop
i

Figure 7. Behavior of VCR expressed as a CO-OPN network.

Creation: build _: dataSource;
Methods: start; output _ : dataSource;

stop; close; configure _ : content;

Figure 8. Interface of a processor.

The record method proceeds analogously. Note that those two methods extract the
MediaLocator from the higher-level abstractions, cassette and camera.

4.2. JMF Model

There is also a model of JMF. This model is composed of classes: Processor,
DataSink, DataSource, Component, and ADTs: Content and MediaLocator.
These entities model a simplified abstraction of JMF, including dynamic aspects.
For example, dynamic creation of a new DataSource by a Processor in response to
a getDataOutput request is modeled. The interface of the Processor is presented in
Figure 8 and the CO-OPN class in Figure 9.

The possible states of Processor are described by the ADT ProcessorStates.
The state is explicitly stored in place state. The methods of the Processor
class move the processor from one state to another accordingly to the documented
behavior of real JMF object. The method realize creates a DataSource or a
GUI Component depending on the contents of the place format_. Methods
dataOutput_ and visualComponent_ give access to one of the possible outputs.



334 CHACHKOV AND BUCHS

createConfigured_:dataSource close
createConfiguredds
CONFIGURED

stop

CONFIGURED

l outputFormat ¢

oytputFdrmat_:content

NUL start

ONFIGURED
A 4
<& c NULL . comp
. (c=NULL) N\ >
replize o NULL " realize  visual_
format_
output_ ds.Create comp.Create comp
ds
dataOutput ds Processor visualComponent comp
dataOutput_:dataSource visualComponent_:component

Figure 9. Behavior of processor expressed as CO-OPN network.

addInput _ : mediaLocator; start;
addOutput _ : mediaLocator; stop;
addVisualOutput _ : monitor;

Figure 10. Interface of MediaCenter class.
4.3. JMF and VCR Interconnection by Means of MediaCenter

Finally, to connect these two parts, we define a class, named MediaCenter (Figure 10),
which is a kind of manager of JMF. VCR uses MediaCenter to implement its
functionality.

The working scheme of MediaCenter is quite simple and independent of the
desired operation (play a cassette, record the video from external source or other).
All possible operations are abstracted by the method start. This method creates
different configurations of JMF in function of inputs and outputs submitted to
MediaCenter. If there is no configuration that fit submitted inputs/outputs this
method fails.

Method start has a nondeterministic definition: it tries to find a configura-
tion that matches submitted inputs and outputs (Figure 11). For example, if the
input is a Medialocator that points to a file and the output is a Monitor, then the
MediaCenter will create, configure, and put to work a chain of JMF components
that play a video from a file. More concretely, a DataSource will be created and then
used to create a Processor. The Processor will first be asked to produce a video
output and then moved to Realized state. The video display (Renderer in JMF
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start With start With
dsrc.build (mll) .. dsrcl.build (mll) ..
p.createConfigured p.createConfigured
(dsrc) .. (dsrcl) ..
p.realize .. p.outputFormat (AVI)
p.visualComponent .-
(comp) . p.realize ..
mon . show (comp) . . p.dataOutput (dsrc2) ..
p.start:: dsk.build(dsrc2, ml2)
input mll, monitor mon dsk.open
. dsk.start ..
monitor mon, P start ::
processor p; input mll, output ml2
->
processor p, dsink dsk;

Figure 11. Definition of the start method.

terms) will be acquired from the realized Processor and passed as argument to the
show method of Monitor. Finally, the chain will be started by a call to the start
method of the Processor. The definition of start is based on many choices but its
behavior is mostly from an external point of view deterministic. The crucial point is
that it is not easy to eliminate the exploration of the possibilities expressed in the
behavioral definition when methods are evaluated.

5. Prototypes

We define a prototype as a program generated automatically from a formal specifica-
tion. Such a specification is expressed in a high-level specification language with
formally defined semantics, in our case CO-OPN [10]. The prototype must fit the
semantics defined by the specification, and this can be done in multiple ways. For
example, one specification can be translated to various programming languages,
adopt diverse execution models, or use different algorithms. For one specification
there are a large number of prototypes to investigate. In this paper, variations in the
interface between generated code and the rest of the system are of particular interest.

We have defined a systematic approach [3], [4] to produce a Java prototype from a
CO-OPN specification. We now extend this approach to fit real object-oriented
systems in a better way. In our improved approach, the main characteristics of the
generated prototype remain unchanged; we only add new features to the interface
between generated code and external objects that have to be (re) used.

5.1. Characteristics of Generated Prototype

Independently of its interface, we generate the prototype code with the characteristics
that follow.

The generated prototype preserves the object structure of a CO-OPN specification.
A class or a context in a CO-OPN specification is always translated to a class in the
target OO language.
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While the CO-OPN classes are defined using Petri Nets, generated classes are
always reactive. Indeed, the stabilization semantics of CO-OPN [2] corresponds
better to reactive then to active objects.

The methods of a CO-OPN class (its inputs) are mapped to the methods of the
generated class. The gates (outputs) of a CO-OPN class correspond to callbacks
provided by the generated class. When generating Java code, we use the standard
notion of JavaBean event [5] to represent those callbacks.

CO-OPN specifications allow nondeterminism and transactions. For this reason,
the execution model of generated code is close to resolution [6]. This implies the use
of a backtracking mechanism, like in Prolog, in order to compute the results of an
invocation. This aspect differentiates automatically generated code principles to
manually generated code in which choice points can be coded more cleverly by
introducing design choices.

Let us explain this a little more with an example: suppose we have a method called
start that nondeterministically chooses between two actions: play and record.
When we execute start we do not know which action to choose, so we choose one
arbitrarily. Suppose that we choose the wrong one (that will later fail), say play, and
then continue the execution. At some moment the execution reaches a failure. As we
have made arbitrary choices, we have to reconsider them. So we go back in the
execution path, canceling their effects (undo), up to the last choice point. So we get
back to start, undo the effect of play, and look for alternatives. As the record
action has not been tried yet we redo the method start by executing record, then
continue the execution and finally reach success.

To implement this undo-redo mechanism, the prototype objects have to keep
some information about executed actions. Moreover, there is another meta-
operation called “commit” which notifies objects that there is no more need to keep
this information. Commit is invoked when some global execution reaches a success.
Commit is propagated to all objects that participated in the execution. The effect
of commit is that the system assumes its new state. No undo is possible anymore.

As we shall see, this undo-redo mechanism is an obstacle to the connection
between the generated code and existing software libraries or other external systems
because this computational behavior is not that of imperative languages.

More concretely, if we already start reading the video stream of a pay TV channel
because it is one possible behavior of the system, and if we discover lately that this
behavior cannot be executed in the system environment the provider will charge the
user. In this case, from a commercial point of view, reading streams is a nonreversible
action and cannot be undone.

5.2. Simple Interface

Our first approach was to generate the prototype as a single black box object that
accepts some inputs and produces some output signals. From the programmer’s
point of view, such prototype is a single Java object.

This kind of prototype fits the case where the system is encapsulated into a
single object, for example, in a controller software for some physical equipment [3].
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In CO-OPN this kind of system is often represented by a single top-level context
encapsulating other objects and sub-contexts.

In the case of systems composed of multiple objects, some of which already exist in
the real world and others of which appear only in the model, a prototype with a
unique interface is useless.

For example, let us examine the model of the VCR program. This program manip-
ulates objects from an existing library: it creates them and calls their methods. For
instance, to see the video on the screen, the DataSource, DataSync, and Processor
objects from JMF library should be instantiated and used by the generated code.

Furthermore, in order to model the JMF behavior, modeled library objects should
interact between them. For example, Processor creates a Data Source or a Renderer
object. Clearly, a simple interface does not suffice for the prototype of the VCR
system.

5.3. Object-Oriented Interface

Before explaining our technique we formulate two important adequacy assumptions
on library objects and their models.

e First, the library objects that we use are deterministic and, supposedly, behave
exactly as defined in the model. This can be checked using other techniques,
such as the test selection techniques we already developed [13].

e Second, the model is complete enough (not depending on real objects during
execution choices), so that we do not need to interact with the real objects when
executing the prototype.

The prototype of a library object acts as a proxy. It first participates in the
execution without interaction with the library object and collects the trace of required
actions, and then, if success is reached, invokes the corresponding actions of a real
object. If the execution of the prototype fails then there is no interaction with the real
object.

To implement this behavior, prototypes of library objects are divided into three
parts (Figure 12). The first part, that we will call “pure prototype,” is essentially the
kind of code that is generated for any CO-OPN class. This code implements the Petri
Net defined in the model and the backtracking mechanism. The difference is in the
implementation of the commit meta-operation. The second part, called proxy, plays
the role of an interpreter between the generated code and the library object. The
proxy has the same interface as the pure prototype. The last part is the real object.

The interaction between the prototype and the real object is delayed. All back-
tracking actions are executed only on the “pure prototype” part of the generated
code. Consequently, we do not need any undo-redo mechanism on real objects.

Let us take a closer look at the execution of the commit operation. It is important
to note that our commit is composed of multiple actions. Each action corresponds to
one method execution. These actions are executed in the same order as the methods
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Pure Proxy Real
f Proto f > Library
Object

g g >g

Figure 12. Prototype of a library object.

were. The method names and arguments are collected by the commit (it is in fact a
sequential program that is collected). The commit operation calls the same methods
with the same arguments in the same order on the proxy. Then, the proxy transforms
the call and interacts with real objects.

One important point is that not all invocations are repeated on the proxy. Inter-
actions between library objects are not repeated. We suppose that library objects
themselves perform these interactions. Only the invocations coming from pure model
(nonlibrary) parts of the system are repeated.

The proxy class is generated as skeleton. The user has to program by hand the
interaction with real objects. In fact, there are a number of interactions that are easy
to program by hand, but complex or near to impossible to program automatically.
Examples are interactions with asynchronous code, and determination of the data-
flow (see Section 6.1 for more examples).

The disadvantage of this approach is that the user should have knowledge of the
target programming language and should understand the details of the execution
model of the prototype. Fully automating the generation of these proxies is future
work and needs additional information that should be provided (for instance,
the directions of dataflow) in order to realize this generation. Alternatively, this
drawback can be avoided by building libraries of models and corresponding
proxy objects.

6. The Prototype of VCR
6.1. Structure

For each CO-OPN class that corresponds to a JMF object, the code is generated as
described in Section 5.3. For example, for the CO-OPN class Processor presented in
Section 3, two Java classes are generated: Processor and ProcessorProxy.
Processor has a reference to ProcessorProxy. In turn, the latter has a reference
on the real processor: javax.media.Processor.

As said previously, Processor and ProcessorProxy present the same interface,
i.e., java counterparts of CO-OPN methods createConfigured, realize, start,
etc. The Processor class implements the Petri Net from the CO-OPN specification.
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ProcessorProxy is generated with empty methods. The user completes the definition
of ProcessorProxy by filling methods with code.

The simplest methods are stop, start, and close. They simply forward the
request to the library object (proc is the reference on javax.media.Processor
object):

public void start(){

proc.start();

The realize method is more complex. For real objects it is asynchronous: it
immediately returns, before the Processor moves to Realized state. Later, an
event is sent to notify that the work is done. Calling some methods before the
notification may lead to error. On the other hand, the prototype has synchronous
semantics, i.e., when the call terminates all work must be done. To connect those two
paradigms the method realize waits for the actual end of the processing:

public void realize(){
proc.realize();

waitForState(Processor.Realized);

6.2. Transforming Prototype Parameters into Real Parameters

Methods with parameters need another adaptation. First, parameter data types of a
prototype method are also prototypes. We have to extract real objects from those
prototypes and pass them as arguments of a real method.

Second, CO-OPN does not define the dataflow of parameters, but Java does. For
example, the real Processor has two methods:

void setContentDescriptor(ContentDescriptor)

ContentDescriptor getContentDescriptor() .

In the model one method suffices: contentDescriptor _. The direction of the data-
flow is determined at runtime. When interacting with the real object we have to
choose the appropriate method: set or get.

public content contentDescriptor_( content argl){
if (... parameter argl is “in’’ ...)
proc.setContentDescriptor (
argl.getContentDescriptor()) ;
else // parameter argl is ‘“‘out”’
argl.setContentDescriptor(
proc.getContentDescriptor()) ;

return argl;}



340 CHACHKOV AND BUCHS

This procedure mimics the unification mechanism, where prototype objects are
logical variables and real objects are possible values. The unification mechanism is
one of the natural techniques used for the operational interpretation of CO-OPN
models in our tools.

6.3. Initialization Method

Finally, the most complicated code belongs to the initialization method: create-
Configured_. In fact, the real Processor having no such operation, the
model abstracts two consecutive steps: the creation of a processor with a given
Data Source, and then it moves it to the CONFIGURED state. The creation is not
achieved by a constructor of the Processor class, but by a static factory method
of another class (javax.media.Manager). Moreover, the configure() method is
asynchronous.

6.4. Example of Execution Semantics
Let us examine the execution of the following sequence:

VCR.insert k7(ml1) ..
VCR.connect mon
VCR.play

The execution of these three operations should open a window and play a video
inside. VCR, mon, and m11 have already been created and initialized (Figure 13). For
instance, mon references (via a proxy) a javax.swing. JFrame object and m11 points
to a valid javax.media.Medialocator.

First, the sequence is evaluated by the pure prototype part of generated code. The
execution finds a sequence of interactions that leads to success. At this stage, the
execution does not yet interact with real library objects.

After that, commit is executed. As seen previously, the commit operation will
follow the path of execution in order to validate the results of each call. If we just
keep the interactions that have to be repeated, we obtain the following simplified

‘ mll ‘H‘Cassettck—' VCR

Figure 13. Before the execution of VCR.play. White rectangles: generated classes, gray rectangles: objects
from Java libraries.
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mll Cassette‘<—{ VCR H mon
v v
[ve] [
v
‘ dsrc ‘4—{ p H comp

Figure 14. After the execution of VCR play.
sequence of method invocations:

dsrc.build (ml1)
p.createConfigured (dsrc)
p.realize ..
p-visualComponent (comp) ..
mon . show (comp)

p.start

In CO-OPN, methods are synchronous; this means that each invocation has to be
completed before the next invocation starts. It is important to note that the above
expression does not contain interactions between library objects or pure specification
objects.

In this expression dsrc, m11, p, mon, and comp are variables. Only the mon (moni-
tor) and m11 (media locator of the input) variables have a value before the execution,
the others being empty. The variables receive values during the execution of the
sequence. In fact, in CO-OPN, the expression dscr.build, where dsrc is a variable
of type DataSource and build is a creation method, stands for the creation of a new
object and assignment of a reference to dsrc.

At commit time, all these operations have already been executed on the prototype
objects and the variables have received their values (Figure 14). Nevertheless, real
objects have not yet been created (except for the Monitor and the Medialocator).
The execution of commit repeats those operations on real objects, including creation.

For example, the result of commit of p.createConfigured(dsrc) is:

1. Extract the real part from dsrc, i.e., the object of type javax.media.
DataSource.

2. Create, as described in Section 6.1, a new javax.media.Processor using the
DataSource.

3. Store a reference onto the javax.media.Processor in the appropriate vari-
able of ProcessorProxy object.

By continuing in the same way, we obtain the creation, connection, configuring,
and starting of a chain of the JMF components (gray part of Figure 15). Then a
window appears on the screen and the video is played inside.
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Figure 15. After execution of commit.

7. Related Work

The usefulness of executable specifications for rapid prototyping and validation of
systems is widely accepted [14], [15]. Nevertheless, rapid prototyping is often seen as a
kind of animation. In our work, we push the executable specification to interact with
real systems. By the way, it is also possible to use generated code for animation or
other validation-related tasks.

The execution of specifications in the domain of Petri Nets is widely used because
of the latter’s simple operational semantics (e.g., see [16]). Even if CO-OPN is
partially based on Petri Nets there is an additional complexity in operational evalua-
tion due to the algebraic aspects and the transactional semantics of synchronizations.

Interfacing Prolog with procedural languages also needs similar concepts in order
to deal with backtracking by means of iterators or using always-succeeding clauses.

Delayed execution was studied and used in domains such as fault tolerance or
database systems. In [7] a taxonomy of fault-tolerance techniques applied to non-
program objects is given (for instance, external physical objects that cannot be
undone). Delayed execution plays an important role in these techniques. In particu-
lar, it makes it possible to combine undo-redo techniques and nonreversible opera-
tions of external objects. Interestingly, authors use ADT to model the behavior of the
external objects (operation being deterministic). Our approach is similar, although
we use delayed execution for different purposes. Moreover, our modeling language is
more expressive than classical ADT description languages.

Another similar technique is planning [8]. In fact, we use a model of external
library objects to generate a correct plan and then we execute it on real objects.
Modern planning techniques, like Model Based Planning [9], may help extend our
approach to nondeterministic external objects.

8. Conclusions

In this paper we have shown how to combine formal specifications with existing
software libraries. Due to the expressivity of our specification language, our auto-
matically generated prototype code has nonstandard execution model (nondetermin-
istic, transactional, synchronous). This aspect prevents the simple linking between
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existing sequential code and prototype. Instead, we use object proxies combined with
delayed execution.

Our plans are to extend our techniques to handle nondeterminist external objects.
We would also like to investigate the possibility of semiautomatic generation of
proxies.
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