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Abstract—We study effects of compilation and decompilation
to code clone detection in Java. Compilation/decompilation canon-
icalise syntactic changes made to source code and can be used as
source code normalisation. We used NiCad to detect clones before
and after decompilation in three open source software systems,
JUnit, JFreeChart, and Tomcat. We filtered and compared the
clones in the original and decompiled clone set and found that
1,201 clone pairs (78.7%) are common between the two sets
while 326 pairs (21.3%) are only in one of the sets. A manual
investigation identified 325 out of the 326 pairs as true clones.
The 252 original-only clone pairs contain a single false positive
while the 74 decompiled-only clone pairs are all true positives.
Many clones in the original source code that are detected only
after decompilation are type-3 clones that are difficult to detect
due to added or deleted statements, keywords, package names;
flipped if-else statements; or changed loops. We suggest to use
decompilation as normalisation to complement clone detection.
By combining clones found before and after decompilation, one
can achieve higher recall without losing precision.

I. Introduction

In this study, we aim to exploit compilation and decom-
pilation as a pre-proessing step for detecting clones in Java
programs. A study has shown that compilation/decompilation
can enhance performance of 30 code similarity analysers,
including clone detection tools [21]. This is because the process
of compilation and decompilation canonicalise differences
between source code files and can be considered as a code
normalisation technique. Similar work is detecting clones after
compilation within Jimple code [24], bytecode [4], [14], or
assembler code [7]. However, instead of doing clone detection
at an intermediate level such as bytecode, Jimple, or assembler
level, we use decompilation into Java source code to be able
to use any Java source code clone detector.

Detecting clones after compilation/decompilation has three
major benefits. First, code decompilation generates a second
set of source code that can be useful for manual investigation
of clones. In our study, we find that some clones discovered
after decompilation are interesting and sometimes can be used
as a recommendation for code refactoring. This insight cannot
be achieved by looking at clones at bytecode or assembler
code level. Second, it supports existing state-of-the-art clone
detection tools. Since decompiled code is Java source code, one
can choose any available Java clone detector. Third, performing
clone detection after decompilation can also be used in a case
that access to the source code is not available or restricted.

While using compilation/decompilation to augment clone
detection has shown promising results, the dataset used in the
previous study [21] was limited to 5 small Java programs. They

do not represent real environment in software systems with
hundreds, or thousands of source code files with third-party
APIs and dependencies among classes. This study1 performs
clone detection on three real-world software systems and
compares the results before and after decompilation. We resort
to the build mechanism provided in each project to handle
dependencies in the compilation process, and use a decompiler
to retrieve a decompiled versions from the class files. The
findings show that using compilation/decompilation to enhance
clone detection can be applied to real-world software systems.
Furthermore, there are clones that are challenging to detect for
clone detectors in the original code but can be discovered after
decompilation (see Figure 3 and Figure 4 for examples). This
opens a possibility of using decompilation to increase accuracy
of clone detectors.

This paper makes the following primary contributions:
1. A study of effects of compilation/decompilation to clone
detection: We demonstrate that using compilation/decompila-
tion as a pre-processing step of clone detection is feasible for
real-world Java projects. By combining clones found before
and after decompilation, one can achieve higher recall without
losing precision.
2. Providing insights to decompiled clones: Our manual
investigation shows that there are clones which can only be
discovered using compilation and decompilation. We summarise
their characteristics.
3. Clone oracle: 326 manually validated clone pairs can be
used as a clone oracle in future clone studies.

II. Experimental Design

The study aimed to answer the following research questions:
RQ1 (Clone agreement): How many clone pairs are mutually
agreed and reported by the same clone detector before and
after decompilation? How many clone pairs are exclusively
reported before and after decompilation?
RQ2 (Decompilation accuracy): How does compilation/de-
compilation affect precision and recall of clone detectors?
RQ3 (Characteristics of disjoint clones): What are the char-
acteristics of clones discovered only in the original source code
before decompilation? Similarly, what are the characteristics
of clones that can be detected only after decompilation?

1The results and manually validated clone pairs can be found at http:
//cragkhit.github.io/crjk-iwsc17.
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Fig. 1. The experimental framework

TABLE I
Software systems

System Version Original Decompiled
Files SLOC Files SLOC

JUnit 4.13 203 9,777 311 11,233
JFreeChart 1.5.0 644 96,711 669 85,251
Tomcat 9.0 1,688 241,924 2603 256,974

A. Experimental Framework

The framework of the study is depicted in Figure 1. Given
a software system, we remove comments and apply pretty-
printing to the source code. The system is then compiled and
decompiled to generate another version of the software. A clone
detector is applied to both versions. This process generates
two clone reports: one for the original code, and another one
for the decompiled code. We are interested in method-level
clones in this study so the clone report contains file names,
starting lines and ending lines of cloned method pairs. Since
starting and ending line of the clones in the decompiled clone
report are different from the original report, we cannot compare
decompiled clones to original clones directly. Thus, we build a
mapping tool to map starting and ending lines of decompiled
clones to their respective locations in the original code and
generate another version of the report, decompiled-and-mapped
clone report. We compare the original and decompiled-and-
mapped clone report to find common and disjoint clone pairs.
Finally, we manually look at the disjoint pairs to check if they
are true clones.

B. Software Systems

We select the latest versions (obtained on 19 November 2016)
of three well-known Java open source systems for this study:
JUnit v.4.13, JFreeChart v.1.5.0, and Apache Tomcat v.9.0 from
GitHub. The size2 of three systems are varied as listed in Table I.
Tomcat is the largest project in the set having approximately
240K SLOC. It is 2.5 times bigger than JFreeChart and 25
times bigger than JUnit. We are only interested in Java source
code but not test code so we remove all testing class files
before the analysis.

C. Tools

1) Compiler and Decompiler: We use the standard javac as a
compiler and an open-source tool procyon [19] as a decompiler.
Procyon has advantages over other Java decompilers for its
ability to handle declaration of enum, String, switch statements,

2The size is measured in terms of SLOC (excluding comments and blank
lines) by cloc tool (https://github.com/AlDanial/cloc)

TABLE II
NiCad’s configurations

Config. Parameters
Type-1 UPI=0.0, renaming=none
Type-2 UPI=0.0, renaming=consistent
Type-3 UPI=0.3, renaming=consistent
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Fig. 2. The process of mapping decompiled clones to their original locations

anonymous and named local classes, annotations, and method
references.

2) Clone Detector and its Configurations: We select the
well-known NiCad tool as a clone detector for this study.
NiCad has been used extensively in several clone research
studies [21], [23], [25], [27]. It can detect clones at method
level which suitably supports our clones mapping algorithm.
Additional benefit of using NiCad is its ability to detect and
categorise clones into type-1, type-2, and type-3 by choosing
from its pre-defined configuration files. We select three sets
of parameter configurations for NiCad as listed in Table II.
The default configuration (UPI=0.3, renaming=none) does not
conform to any clone type and is also subsumed by the type-3
configuration so we do not include it in this study. Our method
allows other method-level clone detectors such as DECKARD,
or SourcererCC to be used if required. However, in this study,
we focus more on the effects of decompilation to different
clone types rather than comparing different tools and detection
approaches.

3) Clone Mapping Tool: In a normal clone detection activity,
one runs a clone detection tool against a software system or
multiple software systems and consults a clone report to locate
clones in the software. In this study we have not only an
original software system but also another decompiled version
of the software. We implemented a clone mapping tool that
automatically processes decompiled clone pairs and maps them
back to their original locations. The tool offers several benefits.
With the clone mapper, we can compare clones before and
after decompilation just by using line numbers. Moreover, after
mapping, one can directly incorporate decompiled clones into
their original results since their locations are consistent with
the original code. Finally, the generated clone report conforms
to the format of NiCad clone report and can be analysed
by other clone evaluation frameworks based on clone lines
(e.g. Bellon’s [2], BigCloneBench [26], EvaClone [27]) in the
same way as the original.



The overview of the clone mapping process is shown
in Figure 2. The tool works at method level. The clone
mapping algorithm relies on fully-qualified class name, method
name, and its parameters as matching criteria. The clone
mapper tool starts by extracting a set M of all methods
and constructors from a software system under analysis. A
method x is stored as a vector mx containing a method name,
vector p of parameters, starting line, ending line, and fully-
qualified class name: mx = [name, p, start, end,FQClassName].
Then, the tool reads a decompiled clone report and extract
all decompiled clone pairs (DCP). Each DCP contains two
decompiled methods DCP(dmx, dmy) reported as clones to
each other. Clone mapper iterates over all decompiled clone
pairs and tries to match each decompiled method to every
original method in M based on name, p, and FQClassName
by string matching. For example, as illustrated in Figure 2,
a decompiled clone pair DCP1(dm1, dm2), finds matches
between dm1 and m1 and between dm2 and m2. Then, the
clone mapper creates a decompiled-and-mapped clone pair
DCP*1((dm1, dm2), (m1,m2)) containing the clone pair with
locations in both decompiled and original source code. If
there is no match, that means the matching method does not
exist in the original source code and solely generated by the
decompiler (e.g. default constructors). The tool ignores such
unmatched methods and all its respective clone pairs. After
all decompiled clone pairs are processed, the clone mapper
generates a decompiled-and-mapped clone report from the set
of DCP*. The decompiled-and-mapped clone report is used
along with the original clone report to find common and disjoint
clone pairs.

D. Common and Disjoint Clone Pairs

Using the original and decompiled-and-mapped clone report,
we extract two sets of clone pairs: Corig and Cdecomp. We find
clone pairs that are common between them by performing a
set intersection. We call clone pairs in the intersection common
clone pairs (Ccommon).

Ccommon = Corig ∩Cdecomp

Clone pairs that can only be found in the original (Corig-only)
and decompiled set (Cdecomp-only) are results of subtraction by
the common clone pairs. We call them disjoint clone pairs.

Corig-only = Corig −Ccommon

Cdecomp-only = Cdecomp −Ccommon

We mainly focus on disjoint clone pairs for manual investi-
gation. This approach gives us clones that are detected only
before and after decompilation. By focusing on the disjoint
clone pairs, we can reduce the number of clones that need to
be manually investigated dramatically and are able to study
them in more details.

E. Clone Filtering

Before looking at the clones, we filter the clone pairs using
regular expressions to capture and remove clone pairs that are
equals(), hashCode(), getters, setters, and duplicated methods

generated by the decompiler. We prune them because they
are not very interesting to look at. The equals(), hashCode(),
getter and setter clone pairs are similar boiler-plate code. The
duplicated methods are inner-class methods which are by-
products from compilation/decompilation process. They must
be removed since they do not exist in the original code.

III. Results and Discussion

We perform an experiment on an iMac running macOS
10.12.1 with 2.7 GHz Intel Core i5 and 8 GB of RAM. The
answers to the three research questions are discussed below.

RQ1: Clone Agreement

We answer RQ1 by running NiCad against the three software
systems twice, before and after decompilation, and studying the
clones. NiCad is configured using three different configurations:
type-1, type-2 with consistent renaming, and type-3 with
consistent renaming (i.e. using NiCad’s configuration file
type1.cfg, type2c.cfg, and type3-2c.cfg accordingly). NiCad
provides blind and consistent renaming options. We choose
the stricter consistent renaming so that we can reduce the
number of false positives. Then, we use the clone mapper
to map decompiled clones back to their original counterparts.
Finally, we compute an intersection of clone pairs between the
original (Corig) and decompiled (Cdecomp) set to find common
and disjoint clone pairs. The same approach of finding common
and disjoint clones before manual analysis has been also done
by Kononenko et al. [14].

The number of clone pairs in common, orig-only, and
decomp-only set before and after filtering are displayed in
Table III. The set of clone pairs after filtering is denoted as Cf.
The clones are divided by clone types from type-1 to type-3.
The numbers are mutually exclusive. For example, type-2 clone
pairs are pairs that are found using type-2 configurations and
not reported in type-1 pairs. Similarly, the number of type-3
clone pairs are the ones not reported in type-1 and type-2.

The findings from the three systems are discussed below.
1) JUnit: The system contains no type-1 clone. After

filtering, we find 6 type-2 and 3 type-3 clone pairs and all
of them are identically reported from both before and after
decompilation. We do not find any disjoint clone pairs. So, we
do not continue the manual investigation for JUnit.

2) JFreeChart: The followings are numbers after filtering.
For type-1 clones, we find 33 (89.2%) common, 1 (2.7%)
orig-only, and 3 (8.1%) decomp-only pairs. For type-2, there
are 159 (83.2%) common, 15 (7.9%) orig-only, and 17 (8.9%)
decomp-only clone pairs. For type-3, there are 155 (67.4%)
common, 48 (20.9%) orig-only, and 27 (11.7%) decomp-only
pairs.

3) Tomcat: After filtering, we find 20 (46.5%) common, 22
(51.2%) orig-only, and 1 (2.3%) decomp-only clone pairs in
type-1. For type-2, there are 217 (88.6%) common, 25 (10.2%)
orig-only, 3 (1.2%) decomp-only clone pairs. Lastly, for type-3,
there are 608 (78.8%) common, 141 (18.3%) orig-only, 23
(2.9%) decomp-only pairs.



For RQ1, we find that, after filtering irrelevant clone
pairs, the clone pairs before and after decompilation are
mostly similar for all three clone types. In JUnit, 100%
of clone pairs are identically reported before and after
decompilation. In JFreeChart and Tomcat, common clone
pairs account for 67.4% to 89.2%, and 45.5% to 88.6%
respectively. Nevertheless, we still find a significant number
of disjoint clones for all three clone types which means
there are clones that can avoid the detection before and
after decompilation. The number of decomp-only clone
pairs in JFreeChart and Tomcat keep increasing from type-
1 to type-3. This demonstrates that compilation/decompi-
lation is useful in discovering clones with changes (type-2
and type-3). However, it can only marginally improve the
detection of type-1 clones since they are already handled
by NiCad pretty-printing.

RQ2: Decompilation Accuracy
We manually investigate 326 clone pairs (252 from Cforig-only

and 74 from Cfdecomp-only) in JFreeChart and Tomcat. The first
author takes a role of an investigator. The investigator looked at
the clones in the two sets and classified them as either true or
false positive. For each clone pair, he checked them both in the
original and decompiled version. However, the classification is
only based on the original code. He also note the details of the
clones before and after decompilation and the reason of why
they are reported in only a single set. The manual investigation
results are shown in Table IV. We can see that every clone
pair, both in the original and decompiled set, is classified as
true positive except for a single one in JFreeChart orig-only
type-3 clones.

Considering the number of clones and true positive pairs in
both Cforig-only and Cfdecomp-only set, we can see that NiCad offers
perfect precision almost in every setting. However, in terms
of recall, NiCad misses a considerable amount of clone pairs
that are reported only in the original or decompiled version.

JFreeChart: There are 47 true clone pairs from Cfdecomp-only
that are not found in the original version. On the contrary, there
are 63 true clone pairs from Cforig-only that are not reported in
the decompiled version.

Tomcat: There are 27 true clone pairs from Cfdecomp-only that
are discovered after decompilation. On the other hand, 188
true clone pairs in Cforig-only are missing after decompilation.

To answer RQ2, we find that original and decompiled
source code do not have perfect clone recall. However, one
can complement the original clone results by incorporating
clones after decompilation. From the manual investigation,
we find that all decompiled clone pairs are true positives.
Combining two clone sets will increase recall of the tool
without losing precision.

RQ3: Characteristics of Disjoint Clones
The manual investigation reveals 7 characteristics of disjoint

clones from JFreeChart and Tomcat. The details of disjoint
clone characteristics are described in Table V. Three character-
istics are found from clones in Cforig-only and four are found
from clones in Cfdecomp-only.

Cforig-only: The majority of the clone pairs here do not have
their counterparts after decompilation due to effects of the
decompilation process. The most common characteristic is
smaller clone size after decompilation. 169 pairs of the original
clones are smaller after decompilation. They are smaller than
the 10-line minimum clone size of NiCad and hence not
reported (making them appear only in the original set). The
second characteristic is that clones become more different
after decompilation (38 pairs). For example, two methods in
the original source code containing a string constant with
the same variable name but different values. The variables
are declared outside of the clone region thus they form an
identical type-1 clone pair. After decompilation, the constant
variables have been replaced by the actual value of string
literals. This makes decompiled code no longer an identical
clone pair. Another characteristic, observed from 5 clone pairs,
is a decrease of similarity due to smaller clone size after
decompilation. In some cases, a type-3 clone pair with added
lines gets smaller after decompilation. The added lines are
preserved while other statements are compressed or removed.
Thus, the decompiled clone pair has a lower similarity value.
The remaining 41 disjoint pairs do not have any noticeable
characteristics (categorised as Unknown).

Cfdecomp-only: most of the clone pairs are challenging type-2
and type-3 clones for NiCad. There are 19 clone pairs that in
the original code contain added/deleted statements, extra type
castings (e.g. (CategoryAxis)this.domainAxes.get(index)
vs. this.rangeAxes.get(index)), or package names in front
of class names (e.g. Map.Entry vs. Entry). The added/deleted
statements lower clone similarity while extra type casts and
package names affect type-1 and type-2 detection. These
inconsistencies are standardised and the clone pairs are more
similar after decompilation. Moreover, we observe 15 clone
pairs having different if-else statements similar to the example
depicted in Figure 3. The method findDomainBounds() and
findRangeBounds() form a type-3 clone pair with flipped
but equivalent if-else conditions. These if-else statements
are canonicalised by the decompilation process and become
identical. Interestingly, this type-3 clone pair can be discovered
using even stricter type-2 configurations after decompilation.
There are 4 type-3 clone pairs with different loops, for
and while. An example is shown in Figure 4. They turn
almost identical after decompilation by having only for loops.
Lastly, we found 2 clone pairs residing in inner classes.
They are missing from the original clone set possibly due to
complications in parsing. Compilation/decompilation extracts
inner classes out as separated files so they can be easily detected.
There are 35 pairs only found after decompilation but without
any observable characteristic (categorised as Unknown).

For RQ3, we derive 7 characteristics of disjoint clones
that make them discoverable only before and after de-
compilation. We observe that majority of clones reported
only in the original set is because of smaller size after
decompilation. The decompiled clones are still clones but
they are two small too be reported. On the contrary, the
characteristics of clone pairs only found by decompilation



TABLE III
Systems and clones found categorised by clone types. The numbers are clone pairs found only in a particular clone type (non-subsuming). C denotes “clone pairs”

and Cf denotes “filtered clone pairs”.

System Clone type |Ccommon | |Corig-only | |Cdecomp-only | |Cfcommon | % |Cforig-only | % |Cfdecomp-only | %

JUnit
Type-1 0 0 11 0 0.0 0 0.0 0 0.0
Type-2 6 0 0 6 100.0 0 0.0 0 0.0
Type-3 4 0 0 3 100.0 0 0.0 0 0.0

JFreeChart
Type-1 43 1 10 33 89.2 1 2.7 3 8.1
Type-2 535 42 40 159 83.2 15 7.9 17 8.9
Type-3 25604 12006 1885 155 67.4 48 20.9 27 11.7

Tomcat
Type-1 24 27 254 20 46.5 22 51.2 1 2.3
Type-2 270 34 7 217 88.6 25 10.2 3 1.2
Type-3 790 161 121 608 78.8 141 18.3 23 2.9

Total 27276 12271 2328 1201 78.7 252 16.5 74 4.8

TABLE IV
Manual investigation results of clone pair candidates reported in Cforig-only

and Cfdecomp-only

System Type Cforig-only Cfdecomp-only
Cand. TP Cand. TP

JFreeChart

Type-1 1 1 3 3
Type-2 15 15 17 17
Type-3 48 47 27 27
Sum 64 63 47 47

Tomcat

Type-1 22 22 1 1
Type-2 25 25 3 3
Type-3 141 141 23 23
Sum 188 188 27 27

involve type-2 and type-3 clones with strong modifications
at syntactic level. After compilation/decompilation, the
modifications are canonicalised.

IV. Threats to Validity

The three chosen software systems for our experiment might
not be representatives of all Java software projects and the
results might not be generalised. We are aware of the effects of
configurations to the tools’ performance, so we tuned NiCad
using multiple pre-defined configurations. At the same time,
they are configurations that conform to the definitions of type-
1, type-2, and type-3 clones. Nevertheless, we only selected
subsets of all possible NiCad configurations. Lastly, there is
only a single clone detection tool and decompiler chosen. They
might not represent other clone detectors and decompilers.

V. RelatedWork

Clone detection is an active research topic in software
engineering for several decades. Locating duplicated pieces
of code provide several insights into software systems. It has
applications such as software plagiarism detection [18], source
code provenance [6], and software licensing conflicts [9].

Several clone detection tools for source code and binary
code have been introduced by the research community. Many
of them are based on string comparison techniques such as
Longest Common Subsequence (LCS) found in NiCad [22].
Many tools transform source code into an intermediate repre-
sentation such as tokens and apply similarity measurement on
them (e.g. SourcererCC [23], CCFinder [12], CP-Miner [16],

iClones [10]). Structural similarity of clones can be discovered
by comparing AST as found in CloneDR [1] and Deckard [11]
or by using program dependence graphs [13], [15].

Code normalisation enhance similarity measurement of
two code fragments by modifying their layouts, identifiers,
statements into a standard format or by changing the code
into other representations. For example, a normalisation is
done by transforming code into an intermediate representation
like token streams [12] or abstract syntax trees [1], [11].
NiCad [22] uses TXL with pretty printing as part of the
normalisation process. Ragkhitwetsagul et al. [21] shows that
compilation/decompilation can also be considered as a kind of
code normalisation.

Decompilation converts a program from low-level to high-
level language. It is normally used to recovered source code
from compiled software artefacts such as bytecode or binary
code. There are several studies on decompilation techniques
for various languages [3], [5], [8], [17], [20]. Decompilers are
useful when source code of a software system is absent or
inaccessible. On the other hand, it can be maliciously used
to create a cloned or plagiarised program by decompiling an
original app, making alterations, and repackaging it. Chen et
al. [4] find 13.51% of applications from five different Android
markets are clones created by decompiling original apps and
repackaging them into new apps.

There have been a few studies similar to ours by trying to
detect clones after compilation. Chen et al. [4] located clones
in Android apps based on dex files extracted from Android
APKs. Davis and Godfrey [7] convert Java and C/C++ code
into assembler code and detect clones using longest common
subsequence string matching augmented by hillclimbing search
for flexible matching. Kononenko et al. [14] similarly find
clones in Java after compilation by adapting CCFinderX to be
compatible with bytecode sequences and manually investigate
disjoint clone pairs. Selim et al. [24] enhance Simian and
CCFinderX by transforming Java code into Jimple code and
located clones at that level. Their technique helps the tools to
detect more type-3 clones and handle gapped clones. Our study
detect clones at source code level using the current state-of-the-
art code clone detection tool after applying a two-step process
of compilation and decompilation. This approach provides
opportunities to compare and study clones before and after



/* original code */ /* original code */
@Override @Override
public Range findDomainBounds(XYDataset dataset) { public Range findRangeBounds(XYDataset dataset) {
if (dataset==null) { if (dataset!=null) {
return null; Range r=DatasetUtilities.findRangeBounds(dataset,false);

} if (r==null) {
Range r=DatasetUtilities.findDomainBounds(dataset,false); return null;
if (r==null) { } else {
return null; return new Range(r.getLowerBound()+this.yOffset,

} r.getUpperBound()+this.blockHeight+this.yOffset);
return new Range (r.getLowerBound()+this.xOffset, }

r.getUpperBound()+this.blockWidth+this.xOffset); } else {
} return null;

}
}

/* decompiled code */ /* decompiled code */
@Override @Override
public Range findDomainBounds(final XYDataset dataset) public Range findRangeBounds(final XYDataset dataset)
{ {
if (dataset==null ) { if (dataset==null) {
return null; return null;

} }
final Range r=DatasetUtilities.findDomainBounds final Range r=DatasetUtilities.findRangeBounds

(dataset,false); (dataset,false);
if (r==null) { if (r==null) {
return null; return null;

} }
return new Range(r.getLowerBound()+this.xOffset, return new Range(r.getLowerBound()+this.yOffset,
r.getUpperBound()+this.blockWidth+this.xOffset); r.getUpperBound()+this.blockHeight+this.yOffset);

} }

Fig. 3. Example of type-3 clones in findDomainBounds() and findRangeBounds() that can be detected with type-2 configuration after decompilation

/* original code */ /* original code */
public void clearDomainMarkers() { public void clearRangeMarkers() {
if (this.backgroundRangeMarkers!=null) { if (this.backgroundRangeMarkers!=null) {
Set<Integer> keys=this.backgroundRangeMarkers.keySet(); Set keys=this.backgroundRangeMarkers.keySet();
for (Integer key:keys) { Iterator iterator = keys.iterator();
clearRangeMarkers (key); while (iterator.hasNext()) {

} Integer key=(Integer) iterator.next();
this.backgroundRangeMarkers.clear(); clearRangeMarkers (key.intValue());

} }
if (this.foregroundRangeMarkers!=null) { this.backgroundRangeMarkers.clear();
Set<Integer> keys=this.foregroundRangeMarkers.keySet(); }
for (Integer key:keys) { if (this.foregroundRangeMarkers!=null) {
clearRangeMarkers(key); Set keys=this.foregroundRangeMarkers.keySet();

} Iterator iterator=keys.iterator();
this.foregroundRangeMarkers.clear(); while (iterator.hasNext()) {

} Integer key=(Integer)iterator.next();
fireChangeEvent(); clearRangeMarkers(key.intValue());

} }
this.foregroundRangeMarkers.clear();

}
fireChangeEvent();

}

/* decompiled code */ /* decompiled code */
public void clearDomainMarkers() { public void clearRangeMarkers() {
if (this.backgroundDomainMarkers!=null) { if (this.backgroundRangeMarkers!=null) {
final Set<Integer> keys=this.backgroundDomainMarkers final Set keys=this.backgroundRangeMarkers

.keySet(); .keySet();
for (final Integer key:keys) { for (final Integer key:keys) {
this.clearDomainMarkers(key); this.clearRangeMarkers(key);

} }
this.backgroundDomainMarkers.clear(); this.backgroundRangeMarkers.clear();

} }
if (this.foregroundDomainMarkers!=null) { if (this.foregroundRangeMarkers!=null) {
final Set<Integer> keys=this.foregroundDomainMarkers final Set keys=this.foregroundRangeMarkers

.keySet(); .keySet();
for (final Integer key:keys) { for (final Integer key:keys) {
this.clearDomainMarkers(key); this.clearRangeMarkers(key);

} }
this.foregroundDomainMarkers.clear(); this.foregroundRangeMarkers.clear();

} }
this.fireChangeEvent(); this.fireChangeEvent();

} }

Fig. 4. Example of type-3 clones with different loops in clearDomainMarkers() and clearRangeMarkers() that can be detected after decompilation



TABLE V
Characteristics of disjoint clones reported in Cforig-only and Cfdecomp-only

Clone set Why are they not reported in another set? JFreeChart Tomcat TotalT1 T2 T3 T1 T2 T3

Cforig-only

Too small after decompilation 1 9 32 1 6 120 169
Too different after decompilation 0 6 11 21 0 0 38
Smaller after decompilation causing higher dissimilarity 0 0 0 0 0 5 5
Unknown 0 0 5 0 19 16 40

Cfdecomp-only

Having added/deleted statements, type casts, package names 3 5 8 2 0 1 19
Having different if-else statements 0 12 3 0 0 0 15
Using different loops (for vs. while) 0 0 4 0 0 0 4
Inner-class methods 0 0 0 0 0 2 2
Unknown 0 0 12 0 3 20 35

decompilation which provide several useful insights. In various
cases, we find that decompiled clones are more compact and
concise than the original code.

VI. Conclusions

Compilation/decompilation can be considered as a code
normalisation method. It canonicalises several syntactic changes
made to Java source code. We study compilation and decom-
pilation as a pre-processing step for clone detection in three
open source software systems. A clone mapping tool is utilised
to map decompiled clone pairs back to their original locations.
After the mapping, we compare and find common and disjoint
clones before and after decompilation. The findings show that
78.7% of the clones are agreed before and after decompilation.
By looking manually at 326 disjoint clone pairs (21.3%), we
find that they are all true clone pairs except one. Hence, clone
detection has perfect recall neither in the original nor in the
decompiled version.

We summarise 7 characteristics of disjoint clones. More than
half (67%) of the pairs in original-only set are pairs that become
too small after decompilation. On the other hand, clones in
the decompiled-only set are type-2 and type-3 pairs containing
different statements, if-else statements, or loops. Some of
them are discovered using even stricter type-2 configurations.

We plan to expand the study to a larger scale which covers
more clone detectors, compilers, and software systems. Another
direction is to compare Java bytecode and Android’s Dalvik
Executable format (dex). We can use a dex decompiler such
as Androguard [8] to decompile dex to source code.

Lastly, we suggest to use decompilation as a complementary
method to clone detection. We find that combining clones from
before and after decompilation can increase recall without
sacrificing precision.
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