
A Picture Is Worth a Thousand Words:
Code Clone Detection Based on Image Similarity

Chaiyong Ragkhitwetsagul, Jens Krinke
CREST, University College London

London, UK

Bruno Marnette
Prodo.ai

London, UK

Abstract—This paper introduces a new code clone detection
technique based on image similarity. The technique captures
visual perception of code seen by humans in an IDE by applying
syntax highlighting and images conversion on raw source code
text. We compared two similarity measures, Jaccard and earth
mover’s distance (EMD) for our image-based code clone detection
technique. Jaccard similarity offered better detection perfor-
mance than EMD. The F1 score of our technique on detecting
Java clones with pervasive code modifications is comparable
to five well-known code clone detectors: CCFinderX, Deckard,
iClones, NiCad, and Simian. A Gaussian blur filter is chosen as a
normalisation technique for type-2 and type-3 clones. We found
that blurring code images before similarity computation resulted
in higher precision and recall. The detection performance after
including the blur filter increased by 1 to 6 percent. The manual
investigation of clone pairs in three software systems revealed that
our technique, while it missed some of the true clones, could also
detect additional true clone pairs missed by NiCad.

I. INTRODUCTION

In this study, we aim to explore a new way of detecting code
clones based on their image similarity. Code clone detection
techniques in research mainly involve analysing source code
text directly [5], [20], or its derivative abstract representation,
such as tokens [17], [22], [9], [4], abstract syntax trees [2],
[8], or graphs [12], [11]. Nevertheless, the first impression
programmers face when looking at source code in IDE during
development are visual images of code. To manually look for
clones in their software projects, one roughly scans the code
by looking for similar shape and layout of two source code
fragments. Once a similar piece of code is found visually, one
can perform a more fine-grained checking of the source code
text, its syntax, or its behaviours. We follow that intuition of
using visual similarity between source code images to look for
clones. By representing a source code fragment as an image,
the code consists of pixels (i.e. dots) encoding colour, grey-
scale or RGB values.

Performing code similarity computation based on images
has two major benefits. First, it is the finest-grained level
of matching which captures similarity based on distribution
of pixels in source code images. Two cloned code fragments
will have the majority of their code pixels aligned, and vice
versa. A code clone detector that compares source code text
needs to perform identifier renaming in order to detect type-2
clones [20]. In our approach, although data types or identifiers
are renamed, they can still be partially matched at pixel
level. We found that our technique is capable of detecting

type-1, type-2 and some type-3 clones. Second, comparing
code based on their images opens a whole new area of code
normalisation. Instead of renaming variables or converting
source code text into tokens to normalise the effects of code
modifications, we can adopt techniques from image processing
and computer vision and normalise their image representation
instead. For example, in this paper, we exploit the scale-space
representation techniques [10], [13] which compares images
on different structural levels by applying image blurring filters.
The findings show that normalising code images using a
Gaussian blur filter can improve clone detection performance
by 1 to 6 percent. Third, by representing source code with
images, it lays a foundation to deep learning techniques, which
are well-established in the area of computer vision, to classify
images of code fragments as cloned or non-cloned pairs.

This paper makes the following primary contributions:
1. An exploratory study of image-based code clone de-
tection. To the best of our knowledge, we are the first
to try comparing clones using images. We implemented a
tool, called Vincent, based on the proposed image-based code
clone detection framework and evaluated it on two data sets1.
We found that the technique gives a decent performance,
comparable to four well-known code clone detectors.
2. An investigation of using Gaussian blur as a code
normalisation technique. We evaluated the effectiveness of
applying blurring filter to code images before performing
clone detection and observed that it modestly increased the
detection’s precision and recall.

II. METHODOLOGY

A. Image-Based Code Clone Detection Framework

The framework of our image-based clone detection is de-
picted in Figure 1. We divide the clone detection process into
4 steps including Pre-processing, Image Conversion, Image
Processing, and Similarity Measurement.

In Step 1, given a of Java source code file within a software
system, the source code is prepared for image comparison by
going through the preprocessing steps as the following. We
parse the Java file to extract methods. Comments are removed
from the methods and pretty printing is applied to the code.
The pretty-printed methods are then converted into HTML

1The Vincent tool, its results, and the manually validated clone pairs can
be found at https://ucl-crest.github.io/iwsc2018-vincent-web

978-1-5386-6430-8/18 c© 2018 IEEE IWSC 2018, Campobasso, Italy

Accepted for publication by IEEE. c© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

44

https://ucl-crest.github.io/iwsc2018-vincent-web


Java

source files

comments 
removal 

+ 
pretty 

printing 
+ 

highlighting 

pre

processing

PNG 
converter

image

conversion

Foo.java

Bar.java

Foo.png

Bar.png

255 255 255 255

255 0 50 255

0 150 50 255

0 150 50 255

255 255 50 50

255 255 255 255

255 50 20 255

0 150 50 255

0 150 30 255

0 50 50 50

similarity

measure

image

processing

negative 
image 

converter 

image 
blur 
filter 

0 0 0 0

0 255 205 0

255 105 205 0

255 105 205 0

0 0 205 205

0 0 0 0

0 205 235 0

255 105 105 0

255 105 125 0

255 205 205 205

processed

images

Step 1 Step 2 Step 3 Step 4

Fig. 1: Image-based code clone detection framework

documents of highlighted Java code. We add highlights to Java
source code because it adds visual cues into the source code
image by giving different colours or different font weights
to keywords, packages, data types, class or function names,
identifiers, and number/string literals. In Step 2, each method
is converted into a Portable Network Graphics (PNG) image.
Each image is read into memory as a 2-dimensional matrix
of size m times n containing a value ranging from 0 to 255,
representing an 8-bit grey-scale image of the original image.
We compute a grey-scale value for each pixel by averaging
over the red, green, and blue (RGB) colour channels.

In Step 3, we convert the image into a negative image,
i.e. reversing the colour value, to ease the similarity detection
process. As displayed in Figure 2a, after the negative image
conversion, the pixels containing source code are either grey
or white, while the background, non-source-code pixels, are
completely dark. This means we can easily count the number
of pixels containing source code by the number of non-zero
elements in the matrix. In this step, image filters can be
added to the source code image before performing similarity
detection. In this paper, we investigated the effect of adding a
Gaussian blur filter to the image (Section II-C) and measured
it effects to the detection performance. Lastly, in Step 4,
two matrices of processed images are compared for similarity
(Section II-B). In order to locate clones in a software system,
we perform a pairwise comparison of every method pair.

B. Image Similarity

We consider two similarity measures for image comparison
in this study: Jaccard and Earth Mover’s Distance.

1) Jaccard Similarity (L0-norm): In order to calculate
Jaccard similarity, we define the difference of two code images
based on zero norm as follows. Given two images A and
B as matrices of size m × n, the amount of difference
between the two images, i.e. diff , is a count of non-zero
element in the element-wise difference matrix D derived
from A and B. For example, given a pair of source code
images BubbleSortLong1 and BubbleSortFloat2 as de-
picted in Figure 2a and Figure 2b, their difference is visualised
in Figure 2c. Then, the diff value is a count of non-zero pixels

within the red-boxed areas in the image.

D = A−B
diff = #(dij ∈ D|dij 6= 0)

To bound the distance score between zero and one, we
normalise the distance with sum, the area containing source
code text in the two images. This code area represents by
non-zero elements in the element-wise sum matrix S derived
from A and B. Again, given a pair of source code im-
ages BubbleSortLong1 and BubbleSortFloat2 (Figure 2a
and Figure 2b), the value of sum is the number of non-zero
pixels within the blue-boxed areas in Figure 2d.

S = A+B

sum = #(sij ∈ S|sij 6= 0)

We specifically choose the code areas instead of total num-
ber of pixels in an image because of a large area of non-code
background. Taking the non-code areas into account while
computing the distance will result in a tiny distance value
because they are large and always matched. The normalised
distance is then calculated from the diff and the sum value.
The similarity is an inverse of the distance.

distance =
diff

sum
similarity = 1− distance

This similarity measure can be considered as Jaccard sim-
ilarity on images because it quantifies how many pixels are
similar between the two images compared to the number of
all source code pixels (intersection over union).

2) The Earth Mover’s Distance (EMD): The earth mover’s
distance (EMD) is a metric that treats image comparison
as a transportation problem by finding the minimal cost to
transform one distribution into the other. Given signatures of
two images (e.g. bins of histogram or texture), one signature is
considered as distributions of earth mass spread in one space
and another signature is a collection of holes in the same
space [21]. EMD measures the least amount of “work” to fill
the holes with earth based on a pre-defined “ground distance”
between the location of the earth and the hole. From previous
studies, EMD is used for document similarity measure based

45



(a) The first method, BubbleSortLong1 (b) The second method, BubbleSortFloat2

(c) Difference between the two images (d) Sum of the two images

(e) The first method after adding a Gaussian blur filter (radius=3) (f) The second method after adding a Gaussian blur filter (radius=3)

Fig. 2: Source code images during the image processing step

on subtopics in the documents [25] and image retrieval based
on colours and textures [21].

In this paper, we use EMD to measure distance of two
source code images based on distribution of grey-scale colour
in source code pixels. We create an n-dimensional signature
for each image by dividing an image into n equal rectangles
(i.e. regions). For each part, we use a sum of grey-scale
values as the weight. The n × n ground distance matrix of
two signature S1 and S2 contains the distance between each
elements in S1 to the other element in S2. The ground distance
can be any distance such as Manhattan distance, Euclidean
distance, or a custom distance measure. In order to bound the
EMD distance between zero and one, we normalise the value
with the max EMD distance, i.e. the distance between pure
black and pure white images, (denoted EMDmax). Again, we
compute this value only from the regions that contain source

code pixels. Our EMD similarity is an inverse of the distance:

similarity = 1− EMD(P,Q)

EMDmax

C. Image Filters as a Code Normalisation Technique

In text- or token-based code clone detection, one can apply
normalisation to the code before performing similarity detec-
tion in order to handle clones with modifications. Examples of
normalisation techniques include pretty-printing [20], variable
renaming [20], [9], [17], and n-gram generation [23].

In image-based clone detection, we are allowed to use a
new approach for code normalisation which is not previ-
ously possible in the text- or token-based methods. In this
paper, we consider using “image filters” as code normalisation
techniques. This is similar to the scale-space representation
technique in image processing and computer vision [10], [13]

46



TABLE I: Configurations of Vincent

Parameter Values Default Description

minsize [0, n] 10 minimum clone size
maxsize [minsize, n] 100 maximum clone size
similarity jaccard/emd jaccard similarity measure
threshold [0, 1] 0.25, 0.9985 similarity threshold
blur on/off off add blur to images

which tries to detect similar images with different structures at
different scales. We choose a Gaussian blur image filter [14]
to normalise the source code images before detection. In
our context, blurring code images increases fuzziness in the
similarity computation and helps to handle detection of clones
with changes in keywords, data types or identifier names,
i.e. type-2 clones. Gaussian blur filter works by applying a
Gaussian averaging operator to each pixel at coordinate (x, y)
in the image. The level of blurriness is controlled by the
radius (σ) value representing a radial distance (a square of
size σ×σ pixels having the target pixel at the centre) that the
Gaussian operator will have effects on. Choosing a larger σ
value results in a more blurry image than a small value. The
code images of BubbleSortLong1 and BubbleSortFloat2

after applying a Gaussian blur filter with a radius size of 3
are shown in Figure 2e and Figure 2f respectively. The two
processed images are now ineligible and only shapes of the
two source code text remain.

D. Vincent: An Image-Based Code Clone Detector

According to the framework presented in Section II-A, we
implemented Vincent, an imaged-based code clone detector.
Vincent is a method-level code clone detector and currently
supports Java. Vincent employs the JavaParser library [24]
to extract methods from a Java source file and the highlight
tool [1] to highlight Java source code. Image conversion from
HTML to PNG is performed using Python imgkit [7] and
the Gaussian blur image filter is done by the Pillow Python
imaging library [3].

Vincent compare PNG images of size 300 × 300 pixels.
From an empirical analysis, we found that processing source
code image at 300 by 300 pixels offers a good balance
between the accuracy and speed of detection. The image
processing and Jaccard distance is computed using Python’s
numpy package. The earth mover’s distance is based on
PyEMD Python wrapper of Ofir Pele and Michael Werman’s
C++ implementation [15], [16]. During the EMD computation,
we divide an image into 36 squares of size 50 by 50 pixels
and create a signature of 36 numbers containing a sum of
grey-scale values from the 2,500 pixels within the square.
We compute ground distance based on a Euclidean distance
between two elements from the two signatures.

Vincent reports clone pairs in two formats: comma-
separated value file (CSV), and the XML-based General Clone
Format (GCF) [26] file. The tool offers five configurable
parameters as explained in Table I. minsize is the minimum
clone lines (default 10), maxsize is the maximum clone lines

TABLE II: The generated data set

Data set Files #Comparisons Positives Negatives

generated 100 10,000 1,000 9,000

TABLE III: Open source software projects

Project Version Files SLOC

JUnit 4.13 203 9,777
JFreeChart 1.5.0 644 96,711
Tomcat 9.0 1,688 241,924

(default 100), similarity is the image distance measure (Jaccard
or EMD), threshold is the cut-off similarity threshold between
cloned/non-cloned pairs (default 0.25 for Jaccard and 0.9985
for EMD),

E. Data Sets

We employed two data sets in our evaluation as displayed
in Table II. The first data set, called the generated data set,
is used in our previous study of comparing 30 code similarity
analysers [19]. It contains 100 Java source code files with
pervasive code modifications. Pervasive modifications are code
modifications that are applied to the code globally across the
whole file, and contain several changes made one after another.
These modifications are found in software plagiarism, code
cloning, and code refactoring. The generated data set provides
a complete clone ground truth and allows us to measure
accuracy, precision, and recall of a given tool. The 100 Java
source files forms 1,000 true, and 9,000 false clone pairs at
a file level. The data set is constructed using source code
and bytecode obfuscators, compiler and decompilers. Hence,
it includes challenging clone pairs with modifications at both
syntactic (variable renaming, formatting changes, equivalent
statement replacements), and semantic level (compiled and
decompiled clones with totally different source code).

The second data set consists of three well-known Java open
source systems used in another clone study [18]: JUnit v.4.13,
JFreeChart v.1.5.0, and Apache Tomcat v.9.0. We removed test
classes from the data set to avoid generating too many trivial
clones usually found in testing methods. The size of the three
systems after removing test code are shown in Table III.

F. Research Questions

We performed an experiment to answer the following re-
search questions.

RQ1 Clone Detection Performance: How is the precision
and recall of our image-based code clone detection compared
to other tools? We evaluated precision, recall, and F1-score
of Vincent compared to three clone detectors on the generated
data set containing clones with pervasive code modifications.

RQ2 Code Normalisation with Gaussian Blur Filter: To
what extent blurring images increase the detection accuracy?
We compared the performance of Vincent before and after
adding image blurring normalisation.

RQ3 Manual Clone analysis: What are clones that
uniquely found and missed by image-based technique? We

47



compared the clones found by Vincent and NiCad on three
real-world software systems and manually studied the clones
that were only reported by Vincent and NiCad.

G. Experimental Design

To measure the tool’s performance on locating clones (RQ1,
RQ2), Vincent was executed using the default configurations
against the generated data set in a file-to-file pairwise compar-
ison manner. This resulted in performing 10,000 comparisons
and reporting 10,000 similarity values. Using the ground truth,
we could compute score such as precision, recall, accuracy,
and F1 score, based on the number of true (TP, TN), and
false (FP, FN) results. Moreover, we also search for Vincent’s
optimal configurations. With the presence of the groundtruth,
we varied the tool’s parameters and searched for the similarity
threshold that gave the highest F1 score.

To qualitatively study clones detected by Vincent (RQ3),
we executed the tool on the three open source systems and
compared the reported clones with NiCad. NiCad is a text-
based clone detector which can detect clone from type-1 to
type-3. It preprocesses source code before detecting clones by
using pretty-printing, variable renaming, and code abstraction.
We chose NiCad because it has been used in several clone
studies [19], [26], [22] and it reports clones at method-level,
similar to Vincent. Both Vincent and NiCad were configured
with the default configurations. We compared clones reported
by Vincent and NiCad, and randomly sampled distinct clone
pairs that were solely reported by each tool and manually
looked at them.

III. RESULTS AND DISCUSSION

We performed the experiment on an Ubuntu 16.04.1 ma-
chine with two 3.40 GHz processors and 8 GB of RAM. The
answers to the research questions are discussed below.

RQ1: Clone Detection Performance

Table IV shows the results from running two versions of
Vincent, with Jaccard similarity (denoted Vincent-Jaccard) and
with EMD similarity (denoted Vincent-EMD), and other five
widely-used code clone detectors including CCFinderX [9],
Deckard [8], iClones [4], NiCad [20], and Simian [5] on the
generated data set. For the top half of the table, every tool was
configured with its default configurations and the similarity
threshold (T) was chosen to retrieve the optimal F1 score. For
the bottom half of the table, every tool was tuned to offer its
optimal performance based on their F1 score by varying their
parameters and similarity threshold.

Vincent-Jaccard gives a comparable results to other clone
detectors and was ranked the third with an F1 score of
0.5172 behind the highest ranked tool, Deckard (0.6837)
and CCFinderX (0.5772). The third tool is NiCad (0.4369),
followed by Simian (0.4195) and iClones (0.4109). Vincent-
EMD is ranked the last with an F1 score of 0.3869. We
performed a manual checking of false positive and negative
clone pairs reported by Vincent-EMD to gain insight on its
poor performance. We found that EMD similarity reported

false positives from non-cloned source code files with similar
layout. Since our EMD is computed from the distributions of
grey-scale colour values in 36 non-overlapped regions in the
images, it is a coarse-grained similarity measurement. In the
case of pervasive code modifications, we found that a finer-
grained Jaccard similarity which compares images pixel-by-
pixel provides superior results.

Nevertheless, after tuning for the optimal performance, we
observed that Vincent-Jaccard and Vincent-EMD were ranked
the 6th and 7th while the best performing tool was CCFind-
erX (0.9760). The F1 score of Vincent-Jaccard (0.6268) was
slightly lower than the 5th tool, iClones (0.6345). This finding
shows that while other clone detectors were sensitive to con-
figuration change, our image-based clone detection technique
obtains only small improvement from parameter tuning.

To answer RQ1, we empirically evaluated the image-based
code clone detection technique on code clones with pervasive
modifications. We observed that the technique, with its default
configurations, reported clones with higher F1 score than
iClones, NiCad and Simian. However, our technique offered
only tiny improvement of F1 score after parameter tuning and
was ranked the last with its optimal configurations. Jaccard
similarity is more suitable similarity measure for image-based
clone detection than EMD similarity.

RQ2 Code Normalisation with Gaussian Blur Filter

Table V presents the performance of Vincent-Jaccard after
adding a Gaussian blur filter to code images before detection.
We evaluated 5 different level of blurring radius: 1, 3, 10,
20, and 30. We observed that small blurring radius did harm
the detection performance by reporting an F1 score of 0.4993
which is lower than the default configurations without blurring
(0.5172). However, after increasing the radius to 3, 10, and
20, the Gaussian blur filter boosted the tool’s F1 score to
0.5206 (1% increment), 0.5393 (4% increment), and 0.5478
(6% increment) respectively. Nonetheless, with the radius of
30, the F1 score stopped increasing and dropped to 0.5433.

To answer RQ2, we found that applying a Gaussian blur fil-
ter help to increase the image-based clone detection precision,
recall, and F1 score. The size of blurring radius also affected
the tool’s performance. The blurring radius of 20 gave the
highest F1 score, followed by a radius of 30, 10, and 3.

RQ3: Manual Clone Analysis

Clones in the three software systems reported by NiCad
and Vincent are presented in Table VI. NiCad reported 7;
2,282; 901 clone pairs for JUnit, JFreeChart, and Tomcat
respectively. Vincent reported more clones of 9 clone pairs
for JUnit, 9,435 clone pairs for JFreeChart, and 1,864 pairs
for Tomcat. The execution of Vincent was dramatically higher
than NiCad due to several steps of preprocessing and image
similarity comparison. NiCad completed the analysis of JUnit,
JFreeChart, and Tomcat in 1 second, 6 seconds, and 7 seconds
respectively. It took Vincent 1 minutes, 1 hour and 16 minutes,
and 5 hours 31 minutes to complete the same task.

48



TABLE IV: Vincent performance compared to other clone detectors on the generated data set

Tool Configurations T TP FP TN FN Precision Recall Accuracy F1

Default configurations
CCFinderX b=50, t=12 8 417 28 8,972 583 0.9371 0.4170 0.9389 0.5772
Deckard mintoken=50, stride=inf, similarity=1.0 5 536 32 8,968 464 0.9437 0.5360 0.9504 0.6837
iClones minblock=20, minclone=100 0 181 0 4,200 519 1.0000 0.2586 0.8941 0.4109
NiCad UPI=0.30, minline=10 7 284 16 8,984 716 0.9467 0.2840 0.9268 0.4369
Simian threshold=6 0 276 40 8960 724 0.8734 0.2760 0.9236 0.4195
Vincent-Jaccard threshold=0.25 6 376 78 8,922 624 0.8282 0.3760 0.9298 0.5172
Vincent-EMD threshold=0.9985 7 260 84 8,916 740 0.7558 0.2600 0.9176 0.3869

Optimised configurations
CCFinderX b=5, t=11 36 976 24 8,976 24 0.9952 0.9760 0.9760 0.9760
Deckard mintoken=30, stride=2, similarity=0.95 17 773 44 8,956 227 0.9729 0.9461 0.7730 0.8509
iClones minblock=10, minclone=50 0 342 36 4,164 358 0.9196 0.9048 0.4886 0.6345
NiCad UPI=0.50, minline=8 38 654 38 8,962 346 0.9616 0.9451 0.6540 0.7730

rename=blind, abstract=literal
Simian threshold=4, ignoreVariableNames 5 835 150 8,850 165 0.9685 0.8477 0.8350 0.8413
Vincent-Jaccard threshold=0.15, GBRadius=20 16 492 77 9123 509 0.8647 0.4915 0.9426 0.6268
Vincent-EMD threshold=0.9975, GBRadius=20 22 339 405 8,595 661 0.4556 0.3390 0.8934 0.3888

TABLE V: F1 scores of Vincent-Jaccard (threshold=0.25) with
Gaussian blur filter

Blur radius N/A 1 3 10 20 30

F1 score 0.5172 0.4993 0.5206 0.5393 0.5487 0.5433

We compared the clone pairs reported by the two tools and
categorised them into three groups: (1) Common are clone
pairs reported by both tools, (2) NiCad only are the pairs
solely reported by NiCad, and (3) Vincent only are clone
pairs reported only by Vincent. The number of clone pairs
in the three groups are shown in Table VI. For JUnit, there
were 3 common pairs, 4 pairs only reported by NiCad, and
5 pairs only reported by Vincent. For JFreeChart, 1,284 pairs
were common, 998 pairs were reported only by NiCad, and
8,151 pairs were reported only by Vincent. Lastly, for Tomcat,
common pairs contained 604 pairs. There were 297 and 1,260
NiCad-only and Vincent-only pairs respectively.

We manually checked a sample of clone pairs from the
three systems in order to gain insights on the characteristics
of code clones that were detected by either Vincent or NiCad.
The results of JUnit were feasible for a complete manual
investigation so we checked all the 3 NiCad-only and 4
Vincent-only pairs. However, the number of distinct clone
pairs in JFreeChart and Tomcat were large. Thus, we applied a
random sampling of 100 clone pairs for the manual checking.
Half of them (50 pairs) were NiCad-only and the other half
(50 pairs) were Vincent-only pairs. The first author took a
role of the investigator and performed the clone investigation.
He validated if a given clone pair candidate was a true clone
pair or not and also studied why they were only reported by a
single tool. The manual investigation results are also explained
in Table VI. For JUnit, the 3 distinct clone pairs reported by
NiCad and the 5 distinct Vincent pairs were all true positive.
For JFreeChart, the sampled 50 NiCad-only candidate pairs
contained 50 true clone pairs and no false clone pair. The true
clone pairs included 33 type-3 pairs, and 17 type-2 pairs. On

the other hand, the sample 50 Vincent-only candidate pairs
consisted of 45 true and 5 false pairs. The true clone pairs
included 42 type-3 pairs and 3 type-2 pairs. For Tomcat,
the sampled 50 NiCad-only candidate pairs contained 50 true
positive (27 type-3 and 23 type-2 pairs) and no false positive
pair. The 50 Vincent-only pairs consisted of 43 true positive
(27 type-3 and 16 type-2 clones) and 7 false positive pairs.
Most of Vincent’s false clone pairs were caused by methods
with first few lines being similar or identical while the rest
were different. Several NiCad-only pairs were type-3 clones
with relocated statements which were difficult to detect using
our technique. On the contrary, Vincent-only pairs were clones
with similar structure but had low similarity when compared
using NiCad’s algorithm. All the manually validated clone
pairs can be found on the study website2.

To answer RQ3, we observed that the image-based clone
detection technique could detect the same clones that were
reported by the text-based clone detector, NiCad, in three real-
world Java software systems. Moreover, the manual investiga-
tion of sampled clone pairs showed that our technique could
report true clone pairs that were missed by NiCad but also
suffered from some false positives.

IV. THREATS TO VALIDITY

The evaluation of the tools’ performance is based on a data
set of Java code with pervasive modifications. Although the
data set contains several types of code modifications cover-
ing the use cases of code cloning, software plagiarism, and
refactoring, it may not be generalised to all cloned code and
to other languages besides Java. We performed a comparison
of Vincent to five clone detectors based on their default and
optimised configurations. Although we searched for a wide
range of parameter values, we might not cover all possible
configurations of the tools. Lastly, the manual investigation is
performed by only the first author. Although it was carefully
executed, it might still be subject to human errors.

2The study website is at https://ucl-crest.github.io/iwsc2018-vincent-web

49

https://ucl-crest.github.io/iwsc2018-vincent-web


TABLE VI: Comparison of clones found by NiCad and Vincent (default configurations)

System NiCad Vincent Common

NiCad only Vincent only

All Manual All Manual

Time Clones Time Clones TP T3 T2 T1 FP TP T3 T2 T1 FP

JUnit 1s 7 1m 9 4 3 3 3 0 0 0 5 5 5 0 0 0
JFreeChart 7s 2,282 1h 16m 9,435 1,284 998 50 33 17 0 0 8,151 45 42 3 0 5
Tomcat 16s 901 5h 31m 1,864 604 297 50 27 23 0 0 1,260 43 27 16 0 7

V. RELATED WORK

Several clone detectors, both for source code and binary
code, have been introduced in the literature. Many of them
exploit string comparison techniques such as Simian [5],
and NiCad [20]. Other tools transform source code into an
intermediate representation to measure similarity. Examples
are token-based clone detection tools, e.g. SourcererCC [22],
CCFinderX [9], JPlag [17], and iClones [4], AST-based clone
detection tools, CloneDR [2] and Deckard [8], and graph-
based clone detection tools [12], [11]. In this paper, we
introduce a new representation of source code by using images.

Code normalisation enhances similarity of cloned code
fragments by changing their layouts, identifier names, or
statements into a standard format or by transforming the
code into another representation. Token-based clone detectors
convert source code text into token streams [9]. Tree-based tool
converts a program into abstract syntax trees [2], [8]. Compi-
lation/decompilation can also be used as a code normalisation
in Java [19]. NiCad [20] uses TXL with pretty printing as
a code normaliser. In this study, we applied a Gaussian blur
filter as a code normaliser before comparing two code images.

There are studies on measuring document similarity based
on their images [6], [21]. Hu et al. [6] compute visual
similarity of two document images based on a feature set,
called interval encoding, which is more accurate than comput-
ing distances between blocks in the images (e.g. Manhattan
distance). Rubner et al. [21] used EMD for image retrieval
tasks based on colour and texture. In this paper, we deployed
EMD as a code image similarity measure based on grey-scale
colour distributions in image subregions.

VI. CONCLUSION

This paper presents an image-based code clone detection
technique and a tool called Vincent. The tool compares code
fragments based on their visual representation, which resem-
bles how programmers manually looks for clones. We showed
that Jaccard similarity is preferred over the earth mover’s
distance as a similarity measure for our technique. Moreover,
we found that applying a Gaussian blur filter to source code
images before performing clone detection can increase an F1
score of Vincent by 6 percent. The performance of Vincent on
a data set of code clones with pervasive code modifications
was comparable to CCFinderX, Deckard, iClones, NiCad, and
Simian. A manual comparison of clones from three software
projects reported by Vincent and NiCad showed that the two
tools, while agreed on some clone pairs, also discovered
additional clone pairs that were missed by another tool.

REFERENCES

[1] S. Andre. Highlight 3.41. http://www.andre-simon.de, 2017. Online;
access 17-Dec-2017.

[2] I. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier. Clone
detection using abstract syntax trees. In ICSM ’98, volume 98, pages
368–377, 1998.

[3] A. Clark. Pillow: ImageFilter module. http://pillow.readthedocs.io/en/
latest/reference/ImageFilter.html, 2017. Online; access 17-Dec-2017.

[4] N. Göde and R. Koschke. Incremental clone detection. In CSMR’09,
pages 219–228, 2009.

[5] S. Harris. Simian – similarity analyser, version 2.4. http://www.
harukizaemon.com/simian/, 2015. Accessed: 2016-02-14.

[6] J. H. J. Hu, R. Kashi, and G. Wilfong. Document image layout
comparison and classification. pages 285–288, 1999.

[7] K. Jia. Python imgkit. http://www.andre-simon.de, 2017. Online; access
17-Dec-2017.

[8] L. Jiang, G. Misherghi, Z. Su, and S. Glondu. DECKARD: Scalable
and accurate tree-based detection of code clones. In ICSE’07, pages
96–105, 2007.

[9] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: a multilinguistic
token-based code clone detection system for large scale source code.
Transactions on Software Engineering, 28(7):654–670, 2002.

[10] J. J. Koenderink. The structure of images. Biological Cybernetics,
50(5):363–370, Aug 1984.

[11] R. Komondoor and S. Horwitz. Using slicing to identify duplication in
source code. In SAS’01, pages 40–56, 2001.

[12] J. Krinke. Identifying similar code with program dependence graphs. In
WCRE ’01, 2001.

[13] T. Lindeberg. Scale-space theory: a basic tool for analyzing structures
at different scales. 21(1):225–270, 1994.

[14] M. S. Nixon and A. S. Aguado. Feature Extraction and Image
Processing. 2002.

[15] O. Pele and M. Werman. A linear time histogram metric for improved
sift matching. In ECCV 2008, pages 495–508. Springer, October 2008.

[16] O. Pele and M. Werman. Fast and robust earth mover’s distances. In
ICCV ’09, pages 460–467. IEEE, September 2009.

[17] L. Prechelt, G. Malpohl, and M. Philippsen. Finding plagiarisms among
a set of programs with JPlag. Journal of Universal Computer Science,
8(11):1016–1038, 2002.

[18] C. Ragkhitwetsagul and J. Krinke. Using compilation / decompilation
to enhance clone detection. In IWSC’17, 2017.

[19] C. Ragkhitwetsagul, J. Krinke, and D. Clark. A comparison of code
similarity analysers. Empirical Software Engineering, 2017.

[20] C. K. Roy and J. R. Cordy. NICAD: Accurate detection of near-miss
intentional clones using flexible pretty-printing and code normalization.
In ICPC’08, pages 172–181, 2008.

[21] Y. Rubner, C. Tomasi, and L. J. Guibas. The earth mover’s distance as
a metric for image retrieval. IJCV, 40(2):99–121, 2000.

[22] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and C. V. Lopes.
SourcererCC: Scaling code clone detection to big-code. In ICSE ’16,
pages 1157–1168, 2016.

[23] S. Schleimer, D. S. Wilkerson, and A. Aiken. Winnowing: Local
algorithms for document fingerprinting. In SIGMOD ’03, page 76, 2003.

[24] D. van Bruggen. JavaParser. http://javaparser.org, 2017. Online; access
17-Dec-2017.

[25] X. Wan. A novel document similarity measure based on earth mover’s
distance. Information Sciences, 177(18):3718–3730, 2007.

[26] T. Wang, M. Harman, Y. Jia, and J. Krinke. Searching for better
configurations: A rigorous approach to clone evaluation. In FSE’ 13,
pages 455–465, 2013.

50

http://www.andre-simon.de
http://pillow.readthedocs.io/en/latest/reference/ImageFilter.html
http://pillow.readthedocs.io/en/latest/reference/ImageFilter.html
http://www.harukizaemon.com/simian/
http://www.harukizaemon.com/simian/
http://www.andre-simon.de
http://javaparser.org

	Introduction
	Methodology
	Image-Based Code Clone Detection Framework
	Image Similarity
	Jaccard Similarity (L0-norm)
	The Earth Mover's Distance (EMD)

	Image Filters as a Code Normalisation Technique
	Vincent: An Image-Based Code Clone Detector
	Data Sets
	Research Questions
	Experimental Design

	Results and Discussion
	Threats to Validity
	Related Work
	Conclusion
	References

