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Abstract—Semantic clones are program components with sim-
ilar behavior, but different textual representation. Semantic
similarity is hard to detect, and semantic clone detection is
still an open issue. We present semantic clone detection via
Probabilistic Software Modeling (PSM) as a robust method for
detecting semantically equivalent methods. PSM inspects the
structure and runtime behavior of a program and synthesizes a
network of Probabilistic Models (PMs). Each PM in the network
represents a method in the program and is capable of generating
and evaluating runtime events. We leverage these capabilities to
accurately find semantic clones. Results show that the approach
can detect semantic clones in the complete absence of syntactic
similarity with high precision and low error rates.

Index Terms—clone detection, semantic clone detection, prob-
abilistic modeling, multivariate testing, software modeling, static
code analysis, dynamic code analysis, runtime monitoring, infer-
ence, simulation, deep learning

I. INTRODUCTION

Copying and pasting source code fragments leads to code
clones. Code clones are considered an anti-pattern as they
increase maintenance costs, promote bad software design, and
propagate bugs [1], [2], [3], [4], [5], [6], [7], [8]. Code clones
are traditionally split into four categories. Type 1-3 [9], [10],
[11] code clones are textual copies of a program fragment with
possible changes. Type 4 code clones are behavioral copies of
a program fragment that do not have any syntactic similarity
but implement the same functionality (semantic equivalence).
For example, the iterative and recursive implementations of
the Fibonacci algorithm have no syntactic similarity while
implementing the same functionality.

Juergens et al. [12] have shown that existing tools only
have limited capabilities for detecting Type 4 clones. This
limitation can also be seen in various clone detection tool
comparisons [13], [14], [9], [10], [15] through the absence
or explicit exclusion of Type 4 clones. Nevertheless, Type 4
clones exist and tools for detecting them are needed [12], [16].

We present Semantic Clone Detection via Probabilistic
Software Modeling (SCD-PSM). SCD-PSM detects semantic
clones with no textual and structural similarity. First, a network
of Probabilistic Models (PMs) is built via Probabilistic Software
Modeling (PSM) [17]. Each PM models an executable (e.g.,
a method in Java) in the program under analysis. SCD-PSM
leverages these PMs and their inferential capabilities to detect
semantically equivalent executables. Probabilistic inference
enables a similarity measure based on probabilities. These

probabilities are used to conduct statistical tests (Generalized
Likelihood Ratio Test) that produce the final clone decision.

II. BACKGROUND

A basic understanding of clone detection and probabilistic
software modeling is needed to understand the approach. We
will use a monospace font to refer to program elements
(e.g., factorial_a) and italics to refer to the corresponding
model elements (e.g., factorial_a).

A. Clone Detection

Clone detection is the process of finding pairs of similar
program fragments as illustrated in Figure 1. Figure 1 shows
three different implementations of the factorial computation.
Figure 1a uses a for loop, while Figure 1b uses a while loop
implementation. Finally, Figure 1c uses recursion to compute
the factorial of n. The clone detection process includes the
representation (e.g., text fragments), pairing (e.g., of text
fragments of similar size), the similarity evaluation (e.g.,
counting the differences in the text fragments), and the clone
decision (e.g., less than 10 differences).

Representations can be, for example, text (e.g., source code),
graphs (e.g., AST), or probabilistic models (like in this work).
Pairing is the process of selecting two code fragments that
are potentially a clone. Each pair is called a candidate clone
pair (or candidate pair). The similarity evaluation measures
the similarity between the fragments of a candidate pair. The
clone decision labels the candidate pair as a clone given that
the similarity fulfills some criteria.

The properties of the similarity metric splits clones into two
groups [9]. Type 1-3 clones capture textual similarity while
Type 4 clones capture semantic similarity [10], [14], [18],
[9], [11], [19]. These types are increasingly challenging to
detect, with Type 4 being the most complex one. Figure 1a and
Figure 1b are an instance of a Type 3 clone while Figure 1a (or
Figure 1b) and 1c are an instance of a Type 4 clone. Note, that
the definition of a semantic clone is often relaxed where up-to
50% syntactic similarity of the code fragments is allowed [13],
[20]. However, we consider these clones as complex Type 3
clones (additions, deletions, reordering) and not as semantic
clones. This means that semantic clones in the context of
this work are clones with no syntactic similarity except for
per-chance similarities (e.g., equal parameter names).
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factorial_a(n){
  product = 1
  for(i = 1; i <= n; i++){
    product *= i
  }
  return product
}

(a) A for implementation of factorial.

factorial_b(n){
  product = 1
  i = 1
  while(i <= n){
    product *= i
    i++
  }
  return product
}

(b) A while implementation of factorial.

factorial_c(n){
  if(n <= 1){
    return 1
  }
  return factorial_c(n - 1) * n
}

(c) A recursive implementation of factorial.

Figure 1: The for and while implementations are complex Type 3 clones in which new lines were added and some changed.
The recursive implementation is a Type 4 clone of the for and while implementations without any syntactic resemblance.

B. Probabilistic Software Modeling

Probabilistic Software Modeling (PSM) [17] is a data-driven
modeling paradigm that transforms a program into a network of
Probabilistic Models (PMs). PSM extracts a program’s structure
given by types, properties, and executables (e.g., classes, fields,
and methods respectively in Java). This structure includes the
call dependencies between the different code elements which
defines the topology of the PM network. Each PM is optimized
towards a program execution. The program execution can either
be synthetic (e.g., random testing), from tests (e.g., developer
tests), or from the program in its production environment. In
the context of clone detection, synthetic program executions
suffice as the results are based on differential comparisons of
two elements.

Each PM represents an executable (e.g., a method in Java)
in the program. Inputs are parameters, property reads, and
invocation return values. Outputs are the method return value,
property writes, and invocation parameters. The distinction
between inputs and outputs is only a logical view from a soft-
ware engineering perspective. The actual PMs are multivariate
density estimators without such distinction (joint model of all
variables). PMs can generate observations that are similar to
the initial training data. More importantly, each model can
evaluate the likelihood of data. The likelihood is used to
detect behavioral equivalence between models, which is then
generalized to the semantic equivalence between executables
in the program.

The PMs in the network are real Non-Volume Preserving
transformations (NVPs) [21], a generative likelihood-based
latent-variable model for density estimation. NVPs learn
a function that maps data to a known latent-space, e.g.,
input parameter values n and return values product of
factorial_a, to a bivariate normal distributions. More
formally, each NVP is a neural network that learns a bijective
function f : X 7→ Z (with g = f−1) between the original
data x ∈X and predefined latent-variables z ∈ Z. The latent-
variables are selected, such that sampling, conditioning, and
likelihood evaluation is efficient and straightforward, e.g., via
an isotropic unit norm Gaussian N (0,1).

Sampling generates data x ∈ X by drawing observations
from the latent-variables z ∼ Z and inverting them via the

NVP to the original data-space x = g(z) ∼X .
Conditioning finds a latent-space configuration (i.e., a latent-

code) ẑ such that the associated data g(ẑ) = x̂ satisfies a
given condition. First a proposal code is drawn form the latent-
space ẑ which is then inverted to its data form x̂ = g(ẑ).
Then the error is measured on the conditioned dimensions
via, e.g., Mean Squared Error (MSE). The error is used
to update the latent code ẑ and the procedure is repeated
until convergence. For example, one can condition the return
value from factorial_a on to the return value of the
fibonacci method. First, samples are drawn from the
factorial_a model retaining only the dimension associated with
the return value. Then, samples are drawn from the fibonacci
model and the error between the return value dimensions is
computed. This error is back-propagated to the latent-code
which is updated according to the errors. After convergence of
the optimization the fibonacci sample contains the same return
values as imposed by the factorial_a sample. Furthermore, the
remaining dimension n is resampled (imputed) in such a way
that it adheres to the joint relationship of all the variables
in fibonacci. Finally, fibonacci can be used to evaluate the
likelihood of the conditioned sample.

III. APPROACH

SCD-PSM uses the models built by PSM and compares
them for behavioral equivalence. The behavioral equivalence is
then generalized to semantic equivalence of executables (i.e.,
methods).

A. Similarity Evaluation

The similarity evaluation computes the cross-wise likelihood
of the models by sampling and conditioning. Given is a
pair of candidate PMs, each representing an executable. The
similarity evaluation starts by selecting a reference model (null-
model) Mnull and an alternative model (alt-model) Malt. Then,
null-dimensions Mnull

k and alt-dimensions Malt
k are selected

from the models, e.g., parameter n from factorial_a is
compared to parameter n of factorial_b. Then, a reference
sample Dnull

k is generated by Mnull as illustrated in Figure 2
(1) representing the behavior of Mnull. This reference sample
is used to generate a conditioned alternative sample Dalt|null

(2) representing the behavior of Malt given that dimensions k
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Figure 2: SCD-PSM evaluates the similarity of a pair of models
via their data likelihood. The likelihoods are combined into
the final clone decision.

are fixed to the behavior of Mnull
k (3). Finally, the likelihood of

Dnull is evaluated under Mnull, resulting in the base likelihood
of the reference sample under the null-model LLnull, and
Dalt|null is evaluated under Malt, resulting in the likelihood
of the conditioned alternative sample under the alt-model
LLalt|null. Then, the null and alt roles are swapped and the
procedure is repeated (see Figure 2 Link B).

The swapping of roles is necessary because of sub-model
relationships. For instance, one model returns data distributed
according to N(0, 1) and the other according to N(0, 5). One
link will lead to a high likelihood (sub-model is null) while the
other link will result in low likelihood (super-model is null).

In conclusion, the similarity evaluation tests the likelihood
of the models in the context of each other. The final clone
decision is based on these likelihood values.

B. Clone Decision

The final step is to combine the likelihood values from the
similarity evaluation to a final decision as shown in Figure 2).
The two likelihood ratios (4) are combined by a pooling
operator (5) and compared against a critical value yielding
the final clone decision (6).

More formally, the procedure makes use of the Generalized
Likelihood Ratio Test (GLRT) [22]. The log-GLRT measures
whether the log-likelihoods are significantly different from 0
with

λ = LLalt − LLnull, (1)

where LL is the log-likelihood. The null hypothesis is that the
models are equal. It is rejected for small ratios λ ≤ c where c
is set to an appropriate Type 1 error, i.e., false-positive rate. For
example, λ < log(0.01) allows 1 out of 100 candidates to be
a false positive, i.e., wrongly rejecting semantic equivalence.

The Clone Decision (6) is computed by pooling (5) the link
results. Hard pooling accepts the candidate pair as a clone if
the null hypothesis for both links could not be rejected. Soft
pooling accepts the candidate pair as a clone if the average
log-likelihood ratio of both links cannot be rejected. Hard

Table I: The 8 subject examples used in the evaluation.

Subject Style Clone Class Parameter Executable

Factorial iterative A 1 1

Factorial recursive A 1 1

Fibonacci iterative B 1 1

Fibonacci recursive B 1 1

BubbleSort iterative C 1 1

BubbleSort recursive C 3 2

MergeSort iterative C 6 2

MergeSort recursive C 8 3

22 12

pooling does not allow any sub-model relationship, while the
soft pooling relaxes this condition slightly.

The final requirement is that a candidate pair is only accepted
as a clone if the selected dimensions k of both, Mnull and
Malt contain at least one input and output dimension. That is,
methods are semantically equivalent if at least parts of their
input and output relationship is equivalent.

In conclusion, the clone decision combines the link results
and controls the results for a predefined false positive rate.

IV. STUDY

We implemented a prototype for SCD on top of PSM and
applied the similarity evaluation given in Section III.

1) The study uses 8 well-known algorithms listed in Table I
distributed in 3 clone classes. Each clone class is a
well-understood example of semantic clones with 0%
syntactic similarity. Each subject was triggered with
positive uniform distributed random values.

2) The Probabilistic Model Network was computed via Gra-
dient, a PSM prototype [17]. The same hyper-parameters
were selected as in our previous reported experiments.

3) The Candidate Clone Pairs were all combinations of
dimensions of the PMs. The candidate pairs were formed
from all 8 subject systems.

4) Each valid candidate pair was tested for behavioral equality
by cross-wise likelihood evaluation described in Section
III-A.

5) The clone decision was computed via the GLRT and the
results were pooled as described in Section III-B.

A. Controlled Variables

The study controls for pooling, the Type 1 error , and
the number of particles used in the similarity evaluation
(Section III-A).
Pooling describes how likelihoods are combined to the final

clone decision {soft, hard} (see Section III-B).
Type 1 error, or the false-positive rate, defines the critical value

c at which clones are considered significantly different
{0.001, 0.01} (Section III-B). The critical value is the total
Type 1 for both links.



Number of Particles are the number of samples that are
sampled during the similarity evaluation for the reference
sample Dnull and the alternative sample Dalt. A low
number of particles is faster to compute but has a higher
variance in the results.

B. Response Variables

The performance of the clone detection is measured via
precision, recall, and the balanced accuracy. These metrics
are computed by the True Positive (TP), False Positive (FP),
True Negative (TN), and False Negative (FN) proportion of
detected clone instances, e.g., correctly identifying a clone pair
counts towards TP.
Precision measures the performance to detect only relevant

instances given by

TP

TP + FP
(2)

Recall measures the performance of detecting all relevant
instances given by

TP

TP + FN
(3)

Balanced Accuracy measures the performance of detecting
relevant and irrelevant instances but considers a possible
imbalance between the number of relevant and irrelevant
instances. It is given by

TP

TP + FN
+

TN

TN + FP
2

(4)

C. Experiment Results

The study results are given in Table II. Average precision was
0.991, recall was 0.797, and the balanced accuracy was 0.870.
The precision across experiments was excellent, indicating that
models can reliably detect behavioral equality. This is reflected
in the low number of FPs. However, the FNs indicate that
some positive examples are missed. Reducing the Type 1 error,
i.e., falsely rejecting semantic equality, improves on the FNs.
The recall was good for most evaluates. However, hard pooling
caused a slight drop in the recall. The balanced accuracy is
good to excellent for most experiment configurations. Perfect
scores are given for experiment 1 and 12.

No effect of Pooling, Type 1, and Particles on the accuracy
can be seen.

V. DISCUSSION

The results from Section IV-C are encouraging. The general
performance was good to excellent. No significant difference
between the different levels of pooling, Type 1, and Particles in
Table II can be seen. However, a larger sample size is needed to
precisely attribute effects on the performance. In the 10-particle
setting a higher variance of performance can be seen caused
by per-chance errors. The number of FPs is in all experiments
low which is expected given that the Type 1 error was set to
0.001 and 0.01. In contrast, the number of FNs is acceptable.
This is reflected in the Recall that ranges from 0.64 to 1. The

balanced accuracy shows high detection rates of the approach
in most experiments settings.

VI. LIMITATIONS

SCD-PSM inherits the limitations of PSM. PSM models
data. Object references are handles to containers (objects) that
store data. Thereby, SCD-PSM cannot detect semantic clones
of executables that solely manage object references, e.g., a
collection library. However, this limitation does only hold if
the program never accesses the underlying data. Furthermore,
PSM explodes lists into singular values since distributions do
not contain any order information. This means executables
that change the order of sequences are matched based on the
values, not their order. As a consequence, invoking a wrongly
implemented, e.g., sorting algorithm, would result in a false
positive. Extending PSM to model distributions of sequences
will alleviate this issue.

A limitation of the detection process is that it is built on
runtime observations. This means that the approach can only
be applied to runnable source code.

The final limitation is that the approach cannot detect Type
2-3 clones. Slight changes, e.g., flipping a plus sign to a minus,
have large implications on the resulting runtime behavior. These
changes will impact the semantic detection process such that
the candidate clone pair will not be accepted. For example,
common clone detectors will report Listing 1 and Listing 2 as
clones since they differ only by one character (ignoring names
and reducing minimum size). However, this does not hold for
Type 4 detectors because the input and output relationship
is different. In contrast, many clone detectors will not detect
Listing 1 and 3 as clones because of the many additions. Type 4
detectors will report this pair as clones since the behavior of
adding one to the input is identical. This hints that Type 2-3
and Type 4 clones represent detached concepts that share less
common ground than expected. More importantly, this raises
the question whether existing detectors that report Type 3-4
detection capabilities generalize as expected.

i n c ( a : I n t ) : I n t {
re turn a + 1

}

Listing 1: Increment method

dec ( a : I n t ) : I n t {
re turn a − 1

}

Listing 2: Decrement method

i n c ( a : I n t ) : I n t {
b = 1 ∗ 3 . 1 2
c = b / 2
d = c + −0.5
re turn ( I n t ) a + d

}

Listing 3: Complicated increment method



Table II: Results of the clone detection experiments.

Controlled Variables Response Variables
Pooling Type I Particles TP FP TN FN Precision Recall Balanced Accuracy

1 hard 0.001 10 22 0 14 0 1.00 1.00 1.00
2 hard 0.001 50 18 0 10 8 1.00 0.69 0.78
3 hard 0.001 100 20 0 12 4 1.00 0.83 0.89
4 soft 0.001 10 14 0 18 4 1.00 0.78 0.89
5 soft 0.001 50 22 0 10 4 1.00 0.85 0.89
6 soft 0.001 100 22 0 10 4 1.00 0.85 0.89
7 hard 0.010 10 8 0 26 2 1.00 0.80 0.94
8 hard 0.010 50 14 0 14 8 1.00 0.64 0.78
9 hard 0.010 100 14 0 14 8 1.00 0.64 0.78
10 soft 0.010 10 16 2 10 8 0.89 0.67 0.72
11 soft 0.010 50 20 0 12 4 1.00 0.83 0.89
12 soft 0.010 100 22 0 14 0 1.00 1.00 1.00

VII. RELATED WORK

Many studies have evaluated textual clones. However, there
are only a few studies reporting reliable results on semantic
clones without relaxing the definition of Type 4.

Rattan [11] et al. provided a review of clone detection
studies. The review also investigated approaches that tackle
Type 4 clones. They conclude that some approaches solve
approximations (i.e., complex Type 3 clones) of Type 4 clones.

Horwitz [23] detected textual and semantic differences
in programs via a Program Representation Graph, which
is similar to a Program Dependency Graph (PDG). PDG-
based approaches [18], [24], [25] use (static) data and control
dependencies to find similar sub-graphs between the candidates.
They can detect complex Type 3 clones, e.g., Figure 1a and
Figure 1b. However, the compared PDG sub-graphs are a
representation of the source code; thereby, the approaches still
rely on syntactic similarity [26].

Another category of semantic clone detectors are test-based
methods. Test-based methods randomly trigger the execution
of two candidates and measure whether equal inputs cause
similar outputs. Jiang and Su [27] were able to detect semantic
clones without syntactical similarities. A similar approach
was presented by Deissenboeck et al. [28]. One issue with
test-based clone detection is that candidates need a similar
signature. Differences in data types or the number of parameters
can not be effectively handled by the test-case generators or
the similarity measurement. SCD-PSM works similar to test-
based methods in that it observes the runtime and compares
the resulting behavior. However, SCD-PSM builds generative
models from the observed behavior capable of generating
and evaluating data. Missing dimensions are imputed by
conditioning and sampling. This allows SCD-PSM to overcome
the issue of signature mismatches. Furthermore, PSM abstracts
the data types into text, integer, and floats mitigating data type
mismatches.

Finally, the clone detector Oreo [20] has also reported Type 3
to Type 4 detection capabilities. Oreo uses a combination
of representations and detection stages to find clones. Most
important is the semantic similarity comparison based on

actions a method takes, e.g., accessing an array, writing a
property, or invoking a method. These actions correspond,
to some extend, to the dimensions of PSM models, i.e.,
represent entry-points of information (e.g., field accesses,
invocations, etc.) Oreo counts these entry-points and compares
then between the fragments in a candidate pair. No analysis of
the runtime assignments is conducted, nor is the relationship
between the actions analyzed like SCD-PSM does. Oreo
reports many complex Type 3 and Type 4 clones up to 50%
syntactic similarity based on this semantic similarity (and the
additional pipeline steps). However, more research is needed to
identify the weaknesses and strengths of both approaches. This
highlights the need for a hard but well understood baseline
dataset of Type 4 clones similar to the examples in our study
but extended with a larger variety of semantic clones.

VIII. CONCLUSION AND FUTURE WORK

In this work, we presented a viable approach for semantic
clone detection - Semantic Clone Detection via Probabilistic
Software Modeling (SCD-PSM). SCD-PSM leverages the PMs
of PSM to detect method level semantic clones with 0%
syntactic similarity.

We have discussed the similarity evaluation and the clone
decision that represent the central aspect of a clone detector.
We evaluated the concepts on a set of well-known semantic
clones that provide a hard baseline for Type 4 detectors.

Our future work is to evaluate the scalability of the approach
with large programs. Furthermore, we want to compare SCD-
PSM with existing Type 3 clone detectors.

In conclusion, SCD-PSM is capable of detecting semantic
clones with 0% syntactic similarity.
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