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Abstract—Large-scale source-code clone detection is a chal-
lenging task. In our previous work, we proposed an approach
(SSCD) that leverages artificial neural networks and approx-
imates nearest neighbour search to effectively and efficiently
locate clones in large-scale bodies of code, in a time-efficient
manner. However, our literature review suggests that the relative
efficacy of differing neural network models has not been assessed
in the context of large-scale clone detection approaches. In this
work, we aim to assess several such models individually, in terms
of their potential to maximize recall, while preserving a high level
of precision during clone detection. We investigate if ensemble
inference (in this case, using the results of more than one of these
neural network models in combination) can further assist in this
task.

To assess this, we employed four state-of-the-art neural net-
work models and evaluated them individually/in combination.
The results, on an illustrative dataset of approximately 500K
lines of C/C++ code, suggest that ensemble inference outperforms
individual models in all trialled cases, when recall is concerned.
Of individual models, the ADA model (belonging to the ChatGPT
family of models) has the best performance. However commercial
companies may not be prepared to hand their proprietary
source code over to the cloud, as required by that approach.
Consequently, they may be more interested in an ensemble-
combination of CodeBERT-based and CodeT5 models, resulting
in similar (if slightly lesser) recall and precision results.

Index Terms—clone detection, artificial neural networks, en-
semble inference

NOTE TO PRACTITIONERS

This is the accepted version of the paper submitted to the
International Workshop on Software Clones (IWSC 2023). The
final version should be accessible at https://doi.org/10.1109/
IWSC60764.2023.00010.

I. INTRODUCTION

Clone detection is the process of locating textually or
functionally exact or similar pieces of code [1]. The reasons

for performing clone detection vary, but can involve the need
to address software maintenance issues (where, for example,
a vulnerability found in the clone-source should be alerted to
the clone-destination) and licensing issues (where code from
one licensing regime has historically, and inappropriately, been
cloned into a system with another licensing regime) among
other tasks.

Locating clones manually in large pieces of code is effort-
intensive and so, over the past few decades, many clone detec-
tion approaches and their implementing tools were proposed,
showing mixed results [1], [2], particularly with respect to
type three and type four clones where the textual-code match
is less exact and so techniques need to be more sophisticated
[1].

More recently, artificial intelligence (AI) models were uti-
lized and reported state-of-the-art results in pairwise clone de-
tection tasks [3], [4]. However, these AI-based approaches do
not address clone detection at scale, which is often needed in
real-world settings. This is because the pair-wise comparison
of code-segments results in combinatorial effort, as the scale
of the systems involved grows.

In our previous work, a novel approach (SSCD) was
proposed that addresses this issue: it allows for AI-based,
clone detection at scale, based on a global, nearest-neighbour
comparison of code-segment vectors encoded by a fine-tuned,
CodeBERT-based ANN [5]. When applied to our partner
company’s C and C++ datasets1, and to an open-source 320
million LOC BigCloneBench (BCB) dataset [6], SSCD was
both effective and efficient, outperforming baseline approaches
such as SAGA and SourcererCC [5].

1https://github.com/SFI-Lero/SSCD
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Extending this work, research has focused on approaches to
improve the clone-detection recall (focusing on the underlying
AI-based inference component), while also maintaining preci-
sion. The rationale for higher recall is to find as many clones as
reasonably possible, for example, to assist with vulnerability
detection. Improving accuracy of AI-based artificial neural
network (ANN) models is a non-trivial task and several
strategies can be adopted. For example:

• Designing new ANNs [7], or re-designing and changing
their architecture, parameters, or inputs [4]

• Pre-training and fine-tuning ANNs [8]
• Incorporating alternative ANNs
• Ensemble learning or inference: using multiple ANNs,

designed and trained towards a similar task, working
together [9]

Our literature review suggests that differing ANNs have
not yet been assessed for clone detection at scale. Hence,
in the work reported here, we focus on the two latter-
most strategies: assessing alternative, state-of-the-art ANNs
for clone detection and ensemble inference. These strategies
were selected because intuitively state-of-the-art models would
seem to promise improved accuracy of downstream tasks [9]
with a low practical-application barrier, which can be valuable
in industrial research. Likewise, ensembles of state-of-the-art
ANNs would seem likely to increase efficacy further, at least
in terms of recall. Here, four existing transformer-architecture
based [7] ANNs were used:

• CodeBERT (fine-tuned for clone detection)2 (CBF) [3],
[5];

• GraphCodeBERT (GCB) [4];
• CodeT5 (CT5) [10], and
• OpenAI ADA version 2 (ADA) GPT-3 model [11].
These models were selected because of reported state-of-

the-art results in source code tasks (including clone detection).
Yet these models are distinct enough in their characteristics to
suggest possible recall improvement when used in combina-
tion, leveraging their individual strengths and capabilities.

To enhance performance, first, averaging, pipelining, and
stacking were considered as ensembling strategies. For exam-
ple, using the stacking, the embedding outputs of individual
models were combined to a higher-level “meta-model” em-
bedding. However, the strategy did not yield effective.

Here in our adopted approach, we determine the results for
each ANN individually and then combine the results of these
models in all possible combinations (ensemble inferencing)
towards improving the accuracy of the downstream task: clone
detection. This was done to address the following research
question (RQ):

1) How do differing ANNs affect the recall and overall
efficacy of a large-scale, AI-based, clone-detection
approach like SSCD?

2) How does ensemble inference, based on combining
these differing ANNs, affect the recall and overall

2https://huggingface.co/mchochlov/codebert-base-cd-ft

efficacy of a large-scale, AI-based, clone detection
approach like SSCD?

The contributions of this work are following:
• It demonstrates that, by using ensemble inference (com-

bining the outputs of the four selected ANNs), recall with
respect to clone detection is improved, as compared to if
these models were used individually. Additionally, and
somewhat surprisingly, the decrease in precision when
using these ensembles is not as drastic as one might
expect.

• It demonstrates significant difference in recall and preci-
sion performance between four different, state-of-the-art
source-code-targeted ANNs, when applied individually;

• In doing so, it clearly identifies the ChatGPT ADA model
as most appropriate for high-accuracy clone detection;

The rest of the paper is organized as follows: in Section II,
ANNs are introduced and the selected ANNs are discussed
in detail, with their differences explained. Also the section,
briefly discusses SSCD and changes to SSCD that were needed
to run the ”alternative ANNs” experiment that is the focus of
this paper. Section III presents the experimental methodology
and Section IV talks to the results of that experiment. Sec-
tion V touches on threats to the validity of this experiment
and Section VI summarizes conclusions, giving directions for
future work.

II. BACKGROUND

In the last decade new, deep neural networks with many
layers have become the most accurate computer-based solution
to a growing number of problems. The first big successes
were in the area of image classification and processing, where
ANNs give more accurate results than classical computer
vision. More recently, deep neural network models have also
greatly improved the capacity and accuracy of text and lan-
guage processing. Recurrent neural networks (RNN), where
connections between the nodes in the neural network can form
a cycle, and thus allow output from nodes to affect subsequent
input to those nodes, have proven especially accurate for text
processing, but they require a great deal of time to train.

Transformer-based models (described below), such as Bidi-
rectional Encoder Representations from Transformers (BERT),
allow greater parallelism in the training compared to RNNs,
meaning that much larger models can be trained. More re-
cently, generative pre-trained transformer (GPT) models with
billions of parameters have achieved even higher accuracy
in language processing and generation. These models have
been trained to operate both on natural language and on
programming languages.

A. Transformer based Models Used in This Work

ANNs used in this work, and their characteristics, are shown
in Table I. Abbreviations used in the table (and further in the
text) are as follows: PT stands for “pre-trained”; where we
use the existing model without modification. FT stands for
“fine-tuned”, meaning that we have taken the original pre-
trained model and done additional fine-tune training using

https://huggingface.co/mchochlov/codebert-base-cd-ft


TABLE I
CHARACTERISTICS OF TRANSFORMER-BASED ANNS USED IN THIS WORK

Model
Training

Status
Input Year # Parameters PL used for training

Embedding

Size

ADA N/A NL/PL 2022 N/A N/A 1536

CT5 PT
NL/PL

(focus on identifiers)
2021 223M Ruby, JavaScript, Go, Python, Java, PHP, C, C# 768

CBF PT/FT NL/PL 2022 125M
PT: Go, Java, JavaScript, PHP, Python, Ruby

FT: Java (BCB)
768

GCB PT NL/PL/ data flow graph 2020 125M PT: Go, Java, JavaScript, PHP, Python, Ruby 768

clone detection training data. The input to the model may be
“natural language” (NL), or “programming language” (PL).
In the “# Parameters” column, M stands for “millions”.
OpenAI ADA version 2 (ADA) is a proprietary GPT-3 based
model developed by OpenAI [11]. Some of its parameters are
unknown and therefore there is a N/A designation in that cell,
as with the programming language(s) used for training.

Common to all ANNs used in this work is whats known as a
transformer architecture [7]. Characteristic of this architecture
is the usage of attention layer(s) that allow for learning of a
word/token representation from its context. The encoder part
of these models takes source code as an input and, using the
tokens’ contexts, returns an associated numeric representation
(embedding). All the models were pre-trained: they learned
a certain generic language model making them suitable for a
broad spectrum of NL/PL tasks.

Similarly, all of the models are fairly recent (having ap-
peared in the past 3 years) and have showed state-of-the-art
results in natural and programming language tasks particularly,
suggesting their suitability for the clone detection task probed
here [4], [5], [10], [11].

The differences in these models can be found in their
degree of training, input details, their number of parameters,
the types of programming languages used for training, and the
size of generated embeddings (see Table I). For example, in
addition to pre-training, CBF was fine-tuned (further trained)
towards clone detection specifically (see our previous work
for more details [5]). The input to these models is a mix of
NL (e.g. comments) and PL, as found in source code. Unlike
other models, CT5 focuses on identifiers in the source code
and GCB adds structural information (data flow), derived from
source code. CT5 has twice as many parameters as CBF/GCB.
The set of programming languages used for training the ANNs
includes Ruby, Javascript, Go, Python, Java, and PHP, but is
individual to each model. In addition to this set, CT5 was
also trained on C (one of the languages used in our industrial
partner’s codebase) and C#. Finally, the embedding size in
ADA is twice as large as the rest of the models.

The nature of these models (usage directed towards NL/PL
tasks) suggests their suitability for clone detection in isolation.
Yet their differences suggest they are heterogeneous enough

to be also leveraged together to improve the recall of clone
detection: in clone-instances where one model fails another
can excel, thus making them more effective cumulatively. The
reasoning for relying on the complementary strengths of the
chosen ANNs specifically are:

• Fine-tuning with respect to clone detection should im-
prove effectiveness of ANNs in downstream tasks [8];

• The inclusion of structural information could improve
clone detection [12];

• The number of parameters in ANNs could improve their
effectiveness [13].

We also assume that using the same PL for training and
inference (e.g. C language in CT5) can be beneficial. For
example, in our previous work, we have fine-tuned CBF on
Java-language code-clones, but used that model with C/C++
datasets [5].

Finally, the ADA model belongs to either the GPT3 or
GPT3.5 model family [11], [14] that recently showed state-
of-the-art results in NL/PL tasks and led to the success of
ChatGPT (for example [15]). These factors, and specifically
the individual characteristics that suggested individual ANN
suitability for clone detection, prompted their selection for
inclusion in this study.

B. Scalable clone detection

This section provides an overview of the architecture of
SSCD, an approach which is primarily motivated by the
need for a more efficient and scalable approach to code
clone detection, especially within large-scale code repositories.
Several ANN based approaches ASTNN [16], CodeBERT [3],
and GraphCodeBERT [17] to clone detection have improved
the accuracy of detection of T3/T4 type clones but they rely on
pairwise comparison of code fragments and thus can not scale
to large code bases due to the quadratic complexity of said
pairwise comparisons. In light of these challenges, SSCD was
developed to generate numerical representations or ’embed-
dings’ for each code fragment using artificial neural networks
(transformer architecture). By transitioning to this embedding-
based approach, SSCD can leverage efficient approximate k-
nearest neighbour (k-NN) algorithms for clone detection, in-
stead of performing exhaustive pairwise comparisons, finding



the ’k’ nearest neighbours for each embedding in logarithmic
time complexity [5].

The underlying models used in this process are fine-tuned
versions of pretrained models—CodeBERT and GraphCode-
BERT—which are adapted by adding a pooling layer to
generate a 768-dimensional vector representation for each
code fragment. For the CodeBERT-fine-tuned model, only
textual information from the source code is used to generate
vectors, whereas the GraphCodeBERT-fine-tuned model also
includes structural information to enhance the richness of the
representation.

The tool ranks the results based on their cosine similarity,
producing a list of similar code fragments for each piece of
source code. The generation of this ranked list is controlled
by two parameters: a cosine similarity threshold and a ’topN’
parameter that determines the number of results returned.

In summary, the SSCD integrates embedding generation,
efficient search techniques, and result ranking, thus providing
a scalable and effective solution for clone detection in large
codebases.

C. Changes to SSCD in This Work

As can be seen in Figure 1, SSCD has 3 major components:
parsing, inference (employing ANNs), and search (relying on k
approximate nearest neighbour (kANN) for scalability [18]).
The input to the approach is source code and the output is
a set of nearest neighbour clone candidates. The approach
operates at function-level granularity and its implementing tool
currently supports Java, C, and C++ languages.

In our previous work, we relied on locally available models
such as CBF and GCB for inference [5]. The ADA model,
used in this work is available as a cloud service only [11].
Therefore the capability was added to SSCD to either use
locally available models (CT5, CBF, GCB) for inference or to
employ a cloud based OpenAI service (ADA) (see Figure 1).

Parsing Inference Search

SSCD

Local models: 

CT5 
CBF 
GCB

OpenAI 

ADA

Fig. 1. The Updated Schema of SSCD

SSCD was used in the following manner to evaluate
individual-ANN inference and ensemble inference: given a
combination of ANNs and source code, SSCD would execute

clone detection with each model selected and capture the
results, to assess individual ANN performance. Then, the clone
candidates from each individual ANN-run would be merged to
assess the combinations. For example, given a combination of
CT5 and CBF (CT5 CBF), SSCD would first execute with the
CT5 model and then with the CBF model. For the ensemble,
the resulting sets of clone candidates from each execution
are merged into a final set of clone candidates, removing
duplicates (resembling mathematical union operation). We
hypothesize that this merging should drive higher recall, in
that it aggregates the true-positives from both sets. But also
important here is the merging effect on precision: intuitively
the false positives in both sets, aggregated together, should
negatively impact on precision and the extent of that impact
is also of interest in a real-world context. Specifically, false
positives increase the effort for developers who typically have
to scan all the results of clone-detection techniques, for no
clone-detection gain.

III. EXPERIMENTAL DESIGN

The objective of this experiment is to assess the effect of
using different individual state-of-the-art ANNs, individually
and as components of ensemble inference, towards improving
the recall of clone detection over large-scale software systems,
while preserving sufficient precision. This leads us to the
following research question (RQs):

1) How do differing ANNs affect the recall and overall
efficacy of a large-scale, AI-based, clone-detection
approach like SSCD?

2) How does ensemble inference, based on combining
these differing ANNs, affect the recall and overall
efficacy of a large-scale, AI-based, clone detection
approach like SSCD?

Our industrial partners provided the C and C++ datasets,
which we have made available online [19] as resources for
other researchers. The existing options for C/C++ benchmark
datasets are already quite limited and those that do exist were
deemed quite unreflective of code clones in realistic codebases
by experts at our industrial partner company. Hence this new
dataset was manually created by the company to provide
realistic examples that spanned all four clone types.

From these, only clone pairs at function-level granularity are
used, resulting in 70 such clone pairs for THE C benchmark
and 83 clone pairs for C++ benchmark.

Standard metrics of recall, precision, and F-score [1], [5] are
used to assess the effectiveness of the individual ANNs and
the subsequent ensemble inferencing, towards clone detection.

To answer the RQs, we assess how using ANN models
(listed in Section II), used in isolation and in combination
compare to each other, focusing primarily on recall, but also
considering precision and overall performance (the F-score).
For example, given a combination CT5 CBF, we can assess
how its recall compares to CT5 and CBF when the latter two
are used standalone, but also how it compares to ADA and
GCB. We can also compare it to other ensembles to identify



best-practice for developers. The exact steps to conduct this
experiment are as follows:

1) First, we run SSCD with both C/C++ datasets using
the following parameters: minimum LOC = 0, search
= naı̈ve (faiss), code length = 128, no preprocessing
(comments etc. retained), (similarity) threshold = 0, and
topN = 10 (for parameters and their explanation please
see below). In our previous work we found that the code
length of 128 allows for effective and efficient neural
network inference [5]. The only variable parameter here
is the choice of ANN used to compute the embedding for
each code segment. We use four ANN models:{ADA,
CT5, CBF, GCB} as described in Section II. Therefore,
4 executions of SSCD are conducted: one for each
individual model.

2) In the second step, we obtain the best performing
configuration, with regards to the F-score (given our
requirements that improved recall should also have
adequate precision). For this, we look at all possible
configurations of similarity threshold and topN with
given increase-steps, relying on the outputs obtained
in the prior 4 executions. The increase-step for the
similarity threshold is 0.01 and goes from 0 to 1 in-
clusively. The increase-step for topN is 1 and goes from
1 to 10 inclusively. Therefore, 100/10 threshold/topN
combinations are inspected for each execution (obtained
in Step 1). For example, for the ADA model, for the C++
benchmark, the best-performing configuration achieves
96.34% F-score: this happens when the threshold is set
to 0.91 and topN is set to 1. This is different for other
models.

3) Equipped with the reusults from these best-
performing configurations, we combine them
in all possible ways, resulting in 11 distinct
combinations: {ADA CT5, ADA CBF, ADA GCB,
CT5 CBF, CT5 GCB, CBF GCB, ADA CT5 CBF,
ADA CT5 GCB, ADA CBF GCB, CT5 CBF GCB,
ADA CT5 CBF GCB}.

4) In the final step, the recall and F-score of the individual
ANNs and their combinations are compared to assess
their relative efficacy and the effectiveness of the en-
sembles.

The meaning of the parameters to SSCD are:

• Minimum LOC: The threshold number of lines of code
that a C/C++ function must contain for SSCD to be
considered as a clone candidate.

• Search: The efficient nearest neighbour library that is
used to find similar embeddings. In this work we use
the Faiss library from Facebook.

• Code length: The number of tokens of input source code
from a given code segment that is used as input to
the neural network when creating the embedding. Any
subsequent tokens in the code segment are ignored.

• Pre-processing: SSCD offers several pre-processing
choices to create a canonical form of the source code

for each code fragment, such as rewriting the code to
eliminate unnecessary white space. In the current paper
we use no pre-processing.

• Similarity threshold: The nearest neighbour algorithm
computes the cosine similarity between embeddings to
find code segments with similar embeddings. Pairs of
similar embeddings are the initial set of candidates that
SSCD identifies as possible clones. Setting a similarity
threshold causes SSCD to eliminate all candidate pairs
with a similarity less than the threshold. Note that dif-
ferent neural networks can create neighbours with very
different similarity scores. Thus, in the second step above,
we search for a suitable similarity threshold for each of
the four ANNs.

• topN: The nearest neighbour algorithm is configured to
find the topN nearest neighbours for each embedding.
Finding a larger number of nearest neighbours for each
embedding increases the execution time. The nearest
neighbours for some embeddings may be very close, and
for others very distant. Thus, the similarity threshold is
used to eliminate neighbours that may be nearest to some
embedding, but nonetheless distant.

IV. RESULTS AND DISCUSSION

A. Results

The results of this experiment are presented in Table II and
in Table III for C++ and C benchmarks respectively. The upper
parts of these tables show recall, precision, and F-score for
individual models and the lower parts show these statistics
for models’ combinations. In Table III, only 4 combinations
are used: ADA is excluded because it achieves 100% F-score
individually and thus cannot be improved: any combination
would only decrease precision.

TABLE II
ENSEMBLE INFERENCE RESULTS FOR C++ BENCHMARK

Model/combination
name Recall (%) Precision (%) F-score (%)

Individual models
ADA 95.18 97.53 96.34
CT5 90.36 96.15 93.17
CBF 81.93 90.67 86.08
GCB 84.34 89.74 86.96
Combinations
ADA CT5 98.80 95.35 97.04
ADA CBF 97.59 91.01 94.19
ADA GCB 98.80 90.11 94.26
CT5 CBF 92.77 89.53 91.12
CT5 GCB 91.57 88.37 89.94
CBF GCB 87.95 85.88 86.90
ADA CT5 CBF 98.80 89.13 93.72
ADA CT5 GCB 98.80 88.17 93.18
ADA CBF GCB 98.80 86.32 92.14
CT5 CBF GCB 93.98 84.78 89.14
ADA CT5 CBF GCB 98.80 84.54 91.12

Overall the results show that ADA is the clear winner in
terms of individual efficacy, both in terms of recall and preci-
sion. But the recall achieved during clone detection improved



TABLE III
ENSEMBLE INFERENCE RESULTS FOR C BENCHMARK

Model/combination
name Recall (%) Precision (%) F-score (%)

Individual models
ADA 100 100 100
CT5 90 92.65 91.31
CBF 77.14 94.74 85.04
GCB 84.29 90.77 87.41
Combinations
CT5 CBF 91.43 88.89 90.14
CT5 GCB 91.43 85.33 88.27
CBF GCB 87.14 87.14 87.14
CT5 CBF GCB 92.86 82.28 87.25

in all cases (15/15) when ensemble inference is compared to
its component elements. For example, the ADA CT5 com-
bination used on the C++ benchmark achieves 98.8% recall,
while, when used individually, the constituent models achieve
only 95.18% (ADA) and 90.36% (CT5).

For the ADA CT5 combination, the precision drops by
2.18% compared to the ADA model and 0.8% compared to
the CT5 model. The worst-case precision drop, from the best
individual model (ADA, 97.53%) to the four-model combina-
tion ADA CT5 CBF GCB (84.54%), is a decrease of about
13.33%. When we exclude ADA, the highest precision drop is
from the individual CT5 model (96.15%) to the three-model
combination CT5 CBF GCB (84.78%), which is a decrease
of approximately 11.82%.

It is also important to note, that this recall (98.8%) cannot
be achieved by either ADA or CT5 individually, while main-
taining the same precision (95.35%): ADA cannot achieve this
recall individually with any threshold/topN parameters in the
threshold range of {0 .. 1} and the topN range of {1 .. 10}.
In contrast, CT5 can achieve this recall (98.8%) individually
(the recall was manually increased to this number), but its
precision and F-score decrease very markedly to 16.3% and
27.98% respectively.

Looking at the results on the C benchmark, the individual
ADA model reports perfect results, achieving maximum recall
and precision. No combinations of ADA were considered as
they would have only decreased precision for no possible recall
gain. The best alternative individual model was CT5 achieving
90% recall and 92.65 precision, but again there was a wide
span in performance across the individual techniques.

In terms of ensembles CT5 CBF achieved a relatively high
recall (91.43%) with precision of 88.89%. While a higher
recall was achieved by CT5 CBF GCB, that did come at the
expense of precision, which decreased to 82.28%.

The answers to the RQs posed above then are as follows:

1) Differing ANNs significantly impact the recall and over-
all efficacy of SSCD-based clone detection, with ADA
outperforming the other individual ANNs trialled;

2) Ensemble inference improves recall further over the
component ANNs (as expected) and, in the case of the
ADA-CT5 ensemble, improves overall efficacy, as mea-

sured by the F-score. For other ensembles, while recall
persistently improves, overall efficacy often deteriorates
due to increased imprecision.

B. Discussion

In terms of the individual ANNs, ADA outperforms the
others significantly, particularly with respect to recall and
overall F-score. CT5 is quite close in terms of precision but
for best clone-detection performance, ADA is the most suitable
candidate.

However, ADA is a GPT-based model that is not publicly
available. To use ADA we had to send each of our code
fragments to the OpenAI platform, and pay a small dollar
amount for ADA to generate the embeddings for each code
fragment. In many cases, proprietary source code is a valuable
business asset and, for such organizations, sending their source
code to an external provider is unlikely to be acceptable.

If that is the case, then the best individual option is CT5:
recall drops by 5% on the C++ benchmark (10% on the C
benchmark) but code confidentiality is preserved. Alternatively
the CT5 CBF GCB ensemble could also be considered: using
that approach improves recall to nearly 94% on the C++
benchmark (92.86% on the C benchmark) whilst ensuring
confidentiality. Lower precision means the need to look at
more false candidates. However, even though precision for this
ensemble comes in as second-lowest across all approaches,
a precision rate of 82-84% does imply that 16-17 out of
every 20 candidates proposed by the approach would be
true positives, so not too much developer effort would be
wasted during confirmation. A final point that needs to be
made about this alternative is that all three approaches can be
run in parallel (hardware resources permitting) meaning that
speed performance is limited only by the slowest performing
individual technique.

In terms of best-efficacy overall, regardless of inference-
location, the choice for C is the individual ADA approach,
albeit based on this admittedly small dataset. For C++ the
choice is slightly less clear: ADA offers the best precision but
recall and overall F-score is is achieved using the ADA CT5
ensemble.

V. THREATS TO VALIDITY

We acknowledge ANN selection and sampling bias as one
of the core threats to the validity of this experiment. Although,
we’ve tried to select transformer-based ANNs with distinctive
characteristics, those achieving state-of-the-art results, and
those produced by different research teams (OpenAI - ADA;
Microsoft - CBF, GCB; CT5- Salesforce), it is still possible
that there are other existing models of this architecture-family
(transformers) that would achieve better results and affect the
ensemble results of this experiment by providing more diverse
individual characteristics.

In addition, the sample size of of the code benchmarks is
fairly small: it was approximately 480 KLOC in total with
153 clone, and was exclusively composed of C/C++ code.
This suggests that the initial findings presented here should



be buttressed by larger-scale studies and studies of different
languages.

But good large-scale datasets are exceptionally difficult to
locate due to the nature of clone detection [20]. For example,
while the code employed here was scanned for additional
clones, it is unlikely that the 153 clones identified as our gold-
standard reflect all the clones in the dataset. Consequently out
results may reflect a slightly higher recall than is absolutely
correct and a slightly lower precision. To mitigate against
this latter concern we manually inspected all ’false positives’
generated by the ANNs and found that all were indeed
correctly categorized.

VI. CONCLUSIONS AND FUTURE WORK

In this work we employ differing state-of-the-art ANNs
and ensembles of those ANNs to assess their effectiveness
towards improving the recall of clone detection, with a view
to improving large-scale clone detection. The results (see
Section IV) suggest that ADA is the best individual technique
and that typically ensemble inference can be used to improve
the recall: it improved over the individual components in
15/15 cases assessed, although combinations of ADA were not
considered for the C dataset because it had already achieved
100% recall and precision in isolation. In this context, it’s
worth mentioning that the C dataset is relatively small, with
just 80,190 lines of code (LOC), in contrast to the significantly
larger C++ dataset, which contains 424,626 LOC. Thus the
C++ dataset might have allowed for a more realistic evaluation.

There are several practical implications here:
• In situations where sending source code to the cloud is

acceptable, ADA seems like a promising alternative;
• Where ADA is not acceptable, CT5 is the best individual

candidate;
• Ensemble inference can improve the recall of clone de-

tection, if needed, and seems to have a low-cost practical
application barrier;

• Ensemble inference can be helpful particularly if pri-
vacy and/or cost considerations exist. For example, the
CT5 CBF GCB combination achieves nearly as good
recall (93.98%) as ADA (a proprietary, paid-for service)
(95.18%) on the C++ dataset (see Table II). On the C
dataset there is a larger distance between the approaches
but the free, non-proprietary ensemble still identifies
92.86% of the clones with acceptable precision.

• Inference time was not specifically assessed here but it
depends on the execution design. When executed in par-
allel, the inference time becomes the maximum time of
any ANNs in the ensemble. When executed sequentially,
the inference time is a sum of all inference times of all
the ANNs in the ensemble.

Future work might include characterization of other ANN
models and inspecting the impact of their characteristics
towards improving the recall of clone detection (whilst pre-
serving precision). Another direction might use larger bench-
marks, such as the BCB [6], while remaining cognisant of the
limitations of these larger datasets [20].
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