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ABSTRACT 

Transversal adaptive filters for digital signal processing 

have traditionally been implemented into DSP processors 

due to their ability to perform fast floating-point 

arithmetic. However, with its growing die size as well as 

incorporating the embedded DSP block, the FPGA 

devices have become a serious contender in the signal 

processing market.  Although it is not yet feasible to use 

floating-point arithmetic in modern FPGAs, it is sufficient 

to use fixed-point arithmetic and still achieve tap-weight 

convergence for adaptive filters.  This paper examines the 

feasibility of implementing an adaptive algorithm, namely 

the LMS algorithm, based on fixed-point arithmetic, using 

the Altera Stratix device.   

1. INTRODUCTION 

Transversal filters have fixed weights and the output of 

the filters is the convolution of the taps and the filter 

coefficients.  Transversal adaptive filters need an 

appropriate algorithm to update the filter coefficients and 

are widely used in the communication industry, as well as 

in applications such as echo noise cancellation, adaptive 

beamforming, and channel equalization [4].    An 

important issue in transversal adaptive filters is the lack of 

clear methodology to determine the topology before 

training starts.  It is then desirable to speed up the training 

and allow fast experimentation with various topologies 

[5].   

       Transversal adaptive filters have traditionally been 

implemented using DSP processors.  The DSP processors 

hold the advantage of being able to perform fast floating-

point arithmetic, which is essential to fast convergence of 

adaptive algorithms such as the Least Mean Square (LMS) 

algorithm.  However, the DSP processors lack the 

flexibility for adjusting to different adaptation 

requirements from various topologies. Also, the fixed-

structure feature of the DSP processors restricts that DSP 

processors can only perform one arithmetic operation at a 

time. Such feature restricts the DSP processors’ 

performance. 

On the other hand, FPGAs are a form of 

programmable logic, which offer flexibility to be 

reconfigured repetitively.  Also, since FPGAs consist of 

Embedded Array Blocks (EABs) organized in rows and 

columns, a great deal of parallelism can be explored.  In 

transversal adaptive filters, each tap, as well as component 

for updating each filter coefficient, requires a multiplier 

and an adder.  By instantiating the required numbers of 

multipliers and adders, the performance of FPGA based 

filter can increase significantly compared to DSP 

processors.  Additionally, the new generation of FPGAs, 

the Stratix device family from Altera for example, offers 

embedded DSP blocks within the device.  The embedded 

DSP blocks have dedicated circuitry to perform additions 

and multiplications, which are fundamental for any DSP 

applications. 

Without performing arithmetic in floating-points, 

with sufficient bit length to represent tap-weights, one can 

achieve convergence in adaptive algorithms by using 

FPGAs [2].  However, stalling, also known as lockup,

may arise in fixed-point adaptation process.  This 

phenomenon can be avoided by carefully studying the 

nature of the experiment and choosing bit length 

accordingly for the filter coefficients [4]. 

This paper explores the LMS based transversal 

adaptive filters implemented in the Altera EP1S25F780 

device.  In section 2, an overview of the Altera’s Stratix 

device family is given.  Section 3 outlines the LMS 

algorithm and its procedures.  Detailed hardware 

implementation of such filter is presented in Section 4.  

Issues such as bit length selection criterion, fixed point vs. 

floating-point, and design performance are also discussed.  

2. STRATIX DEVICES 

The Stratix family is the newest family of programmable 

logic devices from Altera.  The Stratix devices have three 

times the size of memory blocks compared to traditional 

FPGAs.  The Stratix devices also contain embedded DSP 

blocks, which have dedicated multiplier, pipeline and 

accumulator circuitries.  With the embedded DSP blocks, 

the Stratix devices can perform high speed calculation.

Proceedings of The 3rd IEEE International Workshop on System-on-Chip  
for Real-Time Applications ISBN 0-7695-1929-6/03 $17.00 © 2003 IEEE



2.1. Stratix architecture 

Stratix devices contain a two-dimensional row and column 

based architecture to implement custom logic.  A network 

of varying length and speed, row and column 

interconnects provide signal interconnections between 

Logic Array Blocks (LABs), memory blocks, and 

embedded DSP blocks.   

Each LAB consists of 10 Logic Elements (LEs).  

LABs are grouped into rows and columns across the 

device.

The memory blocks are RAM based.  These memory 

blocks provide dedicated simple dual-port or single port 

memory up to 36 bits wide and up to 291MHz access 

speed.   

The DSP blocks can implement multiplications in 

various bit length with add or subtract features.  The 

blocks also contain 18-bit input shift registers for 

applications such as Finite Impulse Response (FIR) or 

Infinite Impulse Response (IIR) filters.   

Figure 1 shows the block diagram of a typical Stratix 

device [1].   

Figure 1.  Stratix Device Block Diagram 

2.2. Embedded DSP Blocks 

The most commonly used DSP functions include 

multiplication, addition, and accumulation.  The Stratix 

devices provide DSP blocks to meet the arithmetic 

requirements of these functions.  Each Stratix device has 

two columns of DSP blocks to efficiently implement DSP 

functions faster than LE-based implementations.   

Each DSP block can be configured to support: 

Eight 9 x 9 bit multipliers 

Four 18 x 18 bit multipliers 

One 36 x 36 bit multiplier 

DSP block multipliers can optionally feed an 

adder/subtractor or accumulator within the block.  This 

feature saves LE routing resources and increase 

performance, since all inter-connections and blocks are all 

within the DSP block.  The DSP block input registers can 

also be configured as shift registers for FIR filter 

applications. 

Figure 2 is a block diagram for a typical component 

inside the DSP block.   

Figure 2.  DSP Block Diagram 

3. THE LMS ALGORITHM 

The LMS algorithm is a Tap Delay Line (TDL) structure 

and uses Mean Square Error (MSE) as criterion.  LMS 

uses a small step-size parameter, , input signal, along 

with the difference of desired signal and filter output 

signal to periodically calculate the update of the filter 

coefficients set. 

3.1. LMS Equation 

Each filter coefficient adaptation uses its present 

coefficient value, w[n], to add to the product of the step-

size parameter, , tap input x[n] and error output e[n], to 

obtain an updated version of the filter coefficient w[n+1]. 

All updated filter coefficients are then gathered to perform 

convolution with the taps to produce a filter output.  The 

filter output y[n] is subtracted from the desired value d[n] 

to produce an error term, e[n], which is fed back into the 

filter coefficient update equation to produce consequent 

coefficient updates.  The equations are shown below: 

e[n] = d[n] – y[n]    (1) 

 w[n+1] = w[n] + *x[n]*e[n]                         (2) 

Note that the only information needed to update filter 

coefficients are the tap input and the error term.  The step-

size parameter is pre-determined by the system engineer 

and is a decimal number between 0 and 1. 

3.2. Selecting Step-size and Filter Order  

The choice of the step-size parameter and the order of the 

filter effectively determine the performance of LMS 

solution.  Unfortunately, there is no clear mathematical 
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analysis to derive the quantities.  Only through 

experiments may we obtain a feasible solution [4].   

Nevertheless, the step size parameter, , is bounded at the 

range of 0< < (2/ max), where max is the maximum 

eigenvalue of the auto-correlation matrix of the filter input 

[4].   

4. HARDWARE IMPLEMENTATION 

4.1. Structural Overview 

The LMS algorithm uses FIR filter structure.  The design 

shown in Figure 3 depicts a structural view of such FIR 

filter.  As shown in the figure, the main components of the 

filter consist of m Unit Delay Registers and m+1 Weight 

Updates.   The Unit Delay Registers are simply D Flip-

Flops.  Each Weight Update component updates the filter 

coefficient according to equation (2).  The filter output is 

subtracted from the desired signal to produce an error 

signal.  The error signal is a buffer, which is fed back to 

the Weight Update components to produce next sets of 

filter coefficients. 

Figure 3.  FIR Filter using LMS Algorithm 

4.2. Arithmetic Operations

Weight Updates perform logics according to equation (2).  

The operations needed in equation (2) include two 

multiplications and one subtraction.  Note that the step-

size parameter  is a decimal number, and that 

multiplying a decimal number is equivalent of dividing its 

reciprocal.  However, in order to avoid implementing 

complicated and area-consuming division circuitry, or 

multiplication for floating-point numbers, Arithmetic Shift 

Right (ASR) operation is used instead to simplify and 

boost the run-time frequency of the design.   

The ASR operation on a 2’s complement integer 

shifts the number n bits to the right (direction of the least 

significant bit), while preserving the sign bit (the most 

significant bit).  By shifting the number n bits to the right, 

it is equivalent of multiplying this number by 2-n.

Therefore, in order to achieve simplicity and feasibility, 

this design restricts the value of  to be  = 2-n, where n is 

a positive integer. 

Since all arithmetic operations in this design are done 

in fix-point, tradeoffs relate to precision exist which must 

be dealt with delicately.  The problem is twofold:  first, 

how to balance between the need of reasonable numeric 

precision, which is important for accuracy and 

convergence, and the cost of area in terms of LEs 

occupied.  Second, how to choose a suitable bit length 

whose dynamic range is large enough to guarantee that 

saturation, as well as the stalling phenomenon will not 

occur for a particular application [2]. 

In this particular design, for simplicity and clarity, the 

bit lengths for all intermediate results are truncated to be 

equal to the bit lengths of the operands, by removing the 

lower significant bits but preserving the sign bit.  Result 

from each operation therefore loses precision however still 

achieves convergence.  

5. RESULTS 

Each individual component from figure 3 is created using 

behavioral architecture of the VHDL.  A package VHDL 

file is also created to hold constants such as number of 

taps and bit length for the system inputs.  By using port 

map statements in VHDL, in association with the package 

file, the author is able to dynamically instantiate the fixed-

point transversal adaptive filter with various numbers of 

taps.  The bit length of the system is chosen to be 16 bits. 

The design is simulated in Altera’s Quartus II 

software.  The device chosen is the Stratix EP1S25F780 

device, which contains 25,660 LEs, 10 DSP blocks, and 

has maximum clock rate of 250MHz.   

 Area and speed are the two main measurements in 

evaluating system performance of this filter.  Figures 4 

and 5 show the varying filter orders vs. area and speed 

plots, respectively.  Area is measured by number of LEs 

occupied.  Speed is measured by the maximum allowable 

clock frequency.   

Figure 4.  Filter Order vs. Area Plot
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Figure 5.  Filter Order vs. Speed Plot

6. DISCUSSION 

Refer to Figures 4 and 5, as filter order increases, the 

performance of the design is reduced considerably.  For 

each additional tap, a separate weight update, multiplier, 

and adder also have to be instantiated. Therefore, when 

the number of taps reaches 50, all available LEs are all but 

occupied.   Similarly, for each additional tap, the longest 

register-to-register path is elongated as well, resulting 

allowable frequency to plunge.  

Figure 6.  Proposed Structure 

Although the design depicted in Figure 3 fully utilize 

the parallelism advantage of FPGA devices, it becomes 

impractical for higher order FIR filters, in which instances 

of multiplier and adders become substantial. For an 

adaptive filter with order L, 2L multipliers and adders are 

required.  One way to cope with such setback is the use of 

parallel-serial multipliers [3].  Alternatively, since each 

tap requires the exact operations, namely multiplication 

and addition, the author proposes a more sophisticated 

design.  In this design, a single Multiply and Accumulate 

(MAC) component is used and shared by all taps. The 

input to the MAC is controlled by a multiplexer.  Figure 6 

shows the block diagram of this design. 

The proposed structure requires two clock signals.  

One clock signal corresponds to the input data and desired 

data frequency.  The other clock signal, clk2, is used in 

both the controller and the weight update component.  The 

controller, essentially a counter/state machine, controls 

which tap serves as the input to the MAC.  The controller 

also directs the accumulator to output the final 

accumulation after all taps have been served as inputs to 

the MAC. Clearly, clock signal clk2 has to run fast enough 

so that accumulation is done prior to the next input cycle, 

but slow enough so that weight update and the MAC has 

enough time to propagate their logics.   

7. CONCLUSION 

The implementation of a fixed-point based transversal 

adaptive filter in a Stratix device has been presented.  The 

implementation is based on the design shown in Figure 3.  

Performance is measured in terms of speed (maximum 

allowable clock frequency) and area (number of LEs 

occupied).  The results indicate that it is feasible to 

implement fixed-point based adaptive filters in FPGA 

devices.  The system engineer, however, must study the 

tradeoffs between precision of the data and filter 

coefficients, speed of convergence, speed of the system, 

and available LEs, based on the nature of the data and the 

nature of the topology. 
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