
FEASIBILITY OF FIXED-POINT TRANSVERSAL ADAPTIVE FILTERS IN FPGA

DEVICES WITH EMBEDDED DSP BLOCKS

Andrew Y. Lin, Karl S. Gugel and José C. Príncipe

Computational NeuroEngineering Laboratory, Dept. of ECE, University of Florida

Emails: alin@ufl.edu, gugel@ecel.ufl.edu, principe@cnel.ufl.edu

ABSTRACT

Transversal adaptive filters for digital signal processing

have traditionally been implemented into DSP processors

due to their ability to perform fast floating-point

arithmetic. However, with its growing die size as well as

incorporating the embedded DSP block, the FPGA

devices have become a serious contender in the signal

processing market. Although it is not yet feasible to use

floating-point arithmetic in modern FPGAs, it is sufficient

to use fixed-point arithmetic and still achieve tap-weight

convergence for adaptive filters. This paper examines the

feasibility of implementing an adaptive algorithm, namely

the LMS algorithm, based on fixed-point arithmetic, using

the Altera Stratix device.

1. INTRODUCTION

Transversal filters have fixed weights and the output of

the filters is the convolution of the taps and the filter

coefficients. Transversal adaptive filters need an

appropriate algorithm to update the filter coefficients and

are widely used in the communication industry, as well as

in applications such as echo noise cancellation, adaptive

beamforming, and channel equalization [4]. An

important issue in transversal adaptive filters is the lack of

clear methodology to determine the topology before

training starts. It is then desirable to speed up the training

and allow fast experimentation with various topologies

[5].

 Transversal adaptive filters have traditionally been

implemented using DSP processors. The DSP processors

hold the advantage of being able to perform fast floating-

point arithmetic, which is essential to fast convergence of

adaptive algorithms such as the Least Mean Square (LMS)

algorithm. However, the DSP processors lack the

flexibility for adjusting to different adaptation

requirements from various topologies. Also, the fixed-

structure feature of the DSP processors restricts that DSP

processors can only perform one arithmetic operation at a

time. Such feature restricts the DSP processors’

performance.

On the other hand, FPGAs are a form of

programmable logic, which offer flexibility to be

reconfigured repetitively. Also, since FPGAs consist of

Embedded Array Blocks (EABs) organized in rows and

columns, a great deal of parallelism can be explored. In

transversal adaptive filters, each tap, as well as component

for updating each filter coefficient, requires a multiplier

and an adder. By instantiating the required numbers of

multipliers and adders, the performance of FPGA based

filter can increase significantly compared to DSP

processors. Additionally, the new generation of FPGAs,

the Stratix device family from Altera for example, offers

embedded DSP blocks within the device. The embedded

DSP blocks have dedicated circuitry to perform additions

and multiplications, which are fundamental for any DSP

applications.

Without performing arithmetic in floating-points,

with sufficient bit length to represent tap-weights, one can

achieve convergence in adaptive algorithms by using

FPGAs [2]. However, stalling, also known as lockup,

may arise in fixed-point adaptation process. This

phenomenon can be avoided by carefully studying the

nature of the experiment and choosing bit length

accordingly for the filter coefficients [4].

This paper explores the LMS based transversal

adaptive filters implemented in the Altera EP1S25F780

device. In section 2, an overview of the Altera’s Stratix

device family is given. Section 3 outlines the LMS

algorithm and its procedures. Detailed hardware

implementation of such filter is presented in Section 4.

Issues such as bit length selection criterion, fixed point vs.

floating-point, and design performance are also discussed.

2. STRATIX DEVICES

The Stratix family is the newest family of programmable

logic devices from Altera. The Stratix devices have three

times the size of memory blocks compared to traditional

FPGAs. The Stratix devices also contain embedded DSP

blocks, which have dedicated multiplier, pipeline and

accumulator circuitries. With the embedded DSP blocks,

the Stratix devices can perform high speed calculation.

Proceedings of The 3rd IEEE International Workshop on System-on-Chip
for Real-Time Applications ISBN 0-7695-1929-6/03 $17.00 © 2003 IEEE

2.1. Stratix architecture

Stratix devices contain a two-dimensional row and column

based architecture to implement custom logic. A network

of varying length and speed, row and column

interconnects provide signal interconnections between

Logic Array Blocks (LABs), memory blocks, and

embedded DSP blocks.

Each LAB consists of 10 Logic Elements (LEs).

LABs are grouped into rows and columns across the

device.

The memory blocks are RAM based. These memory

blocks provide dedicated simple dual-port or single port

memory up to 36 bits wide and up to 291MHz access

speed.

The DSP blocks can implement multiplications in

various bit length with add or subtract features. The

blocks also contain 18-bit input shift registers for

applications such as Finite Impulse Response (FIR) or

Infinite Impulse Response (IIR) filters.

Figure 1 shows the block diagram of a typical Stratix

device [1].

Figure 1. Stratix Device Block Diagram

2.2. Embedded DSP Blocks

The most commonly used DSP functions include

multiplication, addition, and accumulation. The Stratix

devices provide DSP blocks to meet the arithmetic

requirements of these functions. Each Stratix device has

two columns of DSP blocks to efficiently implement DSP

functions faster than LE-based implementations.

Each DSP block can be configured to support:

Eight 9 x 9 bit multipliers

Four 18 x 18 bit multipliers

One 36 x 36 bit multiplier

DSP block multipliers can optionally feed an

adder/subtractor or accumulator within the block. This

feature saves LE routing resources and increase

performance, since all inter-connections and blocks are all

within the DSP block. The DSP block input registers can

also be configured as shift registers for FIR filter

applications.

Figure 2 is a block diagram for a typical component

inside the DSP block.

Figure 2. DSP Block Diagram

3. THE LMS ALGORITHM

The LMS algorithm is a Tap Delay Line (TDL) structure

and uses Mean Square Error (MSE) as criterion. LMS

uses a small step-size parameter, , input signal, along

with the difference of desired signal and filter output

signal to periodically calculate the update of the filter

coefficients set.

3.1. LMS Equation

Each filter coefficient adaptation uses its present

coefficient value, w[n], to add to the product of the step-

size parameter, , tap input x[n] and error output e[n], to

obtain an updated version of the filter coefficient w[n+1].

All updated filter coefficients are then gathered to perform

convolution with the taps to produce a filter output. The

filter output y[n] is subtracted from the desired value d[n]

to produce an error term, e[n], which is fed back into the

filter coefficient update equation to produce consequent

coefficient updates. The equations are shown below:

e[n] = d[n] – y[n] (1)

 w[n+1] = w[n] + *x[n]*e[n] (2)

Note that the only information needed to update filter

coefficients are the tap input and the error term. The step-

size parameter is pre-determined by the system engineer

and is a decimal number between 0 and 1.

3.2. Selecting Step-size and Filter Order

The choice of the step-size parameter and the order of the

filter effectively determine the performance of LMS

solution. Unfortunately, there is no clear mathematical

Proceedings of The 3rd IEEE International Workshop on System-on-Chip
for Real-Time Applications ISBN 0-7695-1929-6/03 $17.00 © 2003 IEEE

analysis to derive the quantities. Only through

experiments may we obtain a feasible solution [4].

Nevertheless, the step size parameter, , is bounded at the

range of 0< < (2/ max), where max is the maximum

eigenvalue of the auto-correlation matrix of the filter input

[4].

4. HARDWARE IMPLEMENTATION

4.1. Structural Overview

The LMS algorithm uses FIR filter structure. The design

shown in Figure 3 depicts a structural view of such FIR

filter. As shown in the figure, the main components of the

filter consist of m Unit Delay Registers and m+1 Weight

Updates. The Unit Delay Registers are simply D Flip-

Flops. Each Weight Update component updates the filter

coefficient according to equation (2). The filter output is

subtracted from the desired signal to produce an error

signal. The error signal is a buffer, which is fed back to

the Weight Update components to produce next sets of

filter coefficients.

Figure 3. FIR Filter using LMS Algorithm

4.2. Arithmetic Operations

Weight Updates perform logics according to equation (2).

The operations needed in equation (2) include two

multiplications and one subtraction. Note that the step-

size parameter is a decimal number, and that

multiplying a decimal number is equivalent of dividing its

reciprocal. However, in order to avoid implementing

complicated and area-consuming division circuitry, or

multiplication for floating-point numbers, Arithmetic Shift

Right (ASR) operation is used instead to simplify and

boost the run-time frequency of the design.

The ASR operation on a 2’s complement integer

shifts the number n bits to the right (direction of the least

significant bit), while preserving the sign bit (the most

significant bit). By shifting the number n bits to the right,

it is equivalent of multiplying this number by 2-n.

Therefore, in order to achieve simplicity and feasibility,

this design restricts the value of to be = 2-n, where n is

a positive integer.

Since all arithmetic operations in this design are done

in fix-point, tradeoffs relate to precision exist which must

be dealt with delicately. The problem is twofold: first,

how to balance between the need of reasonable numeric

precision, which is important for accuracy and

convergence, and the cost of area in terms of LEs

occupied. Second, how to choose a suitable bit length

whose dynamic range is large enough to guarantee that

saturation, as well as the stalling phenomenon will not

occur for a particular application [2].

In this particular design, for simplicity and clarity, the

bit lengths for all intermediate results are truncated to be

equal to the bit lengths of the operands, by removing the

lower significant bits but preserving the sign bit. Result

from each operation therefore loses precision however still

achieves convergence.

5. RESULTS

Each individual component from figure 3 is created using

behavioral architecture of the VHDL. A package VHDL

file is also created to hold constants such as number of

taps and bit length for the system inputs. By using port

map statements in VHDL, in association with the package

file, the author is able to dynamically instantiate the fixed-

point transversal adaptive filter with various numbers of

taps. The bit length of the system is chosen to be 16 bits.

The design is simulated in Altera’s Quartus II

software. The device chosen is the Stratix EP1S25F780

device, which contains 25,660 LEs, 10 DSP blocks, and

has maximum clock rate of 250MHz.

 Area and speed are the two main measurements in

evaluating system performance of this filter. Figures 4

and 5 show the varying filter orders vs. area and speed

plots, respectively. Area is measured by number of LEs

occupied. Speed is measured by the maximum allowable

clock frequency.

Figure 4. Filter Order vs. Area Plot

Proceedings of The 3rd IEEE International Workshop on System-on-Chip
for Real-Time Applications ISBN 0-7695-1929-6/03 $17.00 © 2003 IEEE

Figure 5. Filter Order vs. Speed Plot

6. DISCUSSION

Refer to Figures 4 and 5, as filter order increases, the

performance of the design is reduced considerably. For

each additional tap, a separate weight update, multiplier,

and adder also have to be instantiated. Therefore, when

the number of taps reaches 50, all available LEs are all but

occupied. Similarly, for each additional tap, the longest

register-to-register path is elongated as well, resulting

allowable frequency to plunge.

Figure 6. Proposed Structure

Although the design depicted in Figure 3 fully utilize

the parallelism advantage of FPGA devices, it becomes

impractical for higher order FIR filters, in which instances

of multiplier and adders become substantial. For an

adaptive filter with order L, 2L multipliers and adders are

required. One way to cope with such setback is the use of

parallel-serial multipliers [3]. Alternatively, since each

tap requires the exact operations, namely multiplication

and addition, the author proposes a more sophisticated

design. In this design, a single Multiply and Accumulate

(MAC) component is used and shared by all taps. The

input to the MAC is controlled by a multiplexer. Figure 6

shows the block diagram of this design.

The proposed structure requires two clock signals.

One clock signal corresponds to the input data and desired

data frequency. The other clock signal, clk2, is used in

both the controller and the weight update component. The

controller, essentially a counter/state machine, controls

which tap serves as the input to the MAC. The controller

also directs the accumulator to output the final

accumulation after all taps have been served as inputs to

the MAC. Clearly, clock signal clk2 has to run fast enough

so that accumulation is done prior to the next input cycle,

but slow enough so that weight update and the MAC has

enough time to propagate their logics.

7. CONCLUSION

The implementation of a fixed-point based transversal

adaptive filter in a Stratix device has been presented. The

implementation is based on the design shown in Figure 3.

Performance is measured in terms of speed (maximum

allowable clock frequency) and area (number of LEs

occupied). The results indicate that it is feasible to

implement fixed-point based adaptive filters in FPGA

devices. The system engineer, however, must study the

tradeoffs between precision of the data and filter

coefficients, speed of convergence, speed of the system,

and available LEs, based on the nature of the data and the

nature of the topology.

8. REFERENCES

[1]Altera, Stratix Programmable Logic Device Family

Data Sheet, Data Sheet DS-STXFAMLY-2.1, Altera,

Inc., August, 2002

[2]Chew, W.C., Farhang-Boroujeny, B., FPGA
Implementation of Acoustic Echo Cancelling.

TENCON 1999. Proceedings of the IEEE Region 10

Conference, Volume: 1, pp. 263—266.

[3]FU, R. FORTIER, P, VLSI Implementation of Parallel-

Serial LMS Adaptive Filters, 18th Biennial

Symposium on Communications, Kingston, June 1996,

pp. 159—162.

[4]Haykin, S. Adaptive Filter Theory, 4th edition, Prentice

Hall, New Jersey, 2002.

[5]Nichols, K.R., Moussa, M.A., Areibi, S.M., Feasibility

of Floating-point Arithmetic in FPGA based Artificial
Neural Networks, submitted and accepted to 15th

International Conference on Computer Applications in

Industry and Engineering, November 2002.

Proceedings of The 3rd IEEE International Workshop on System-on-Chip
for Real-Time Applications ISBN 0-7695-1929-6/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

