
A Software/Hardware Platform For Rapid Prototyping

of Video and Multimedia Designs

Paul Schumacher, Marco Mattavelli, Adrian Chirila-Rus, and Robert Turney

Abstract -- Traditional design and test of complex multimedia

systems involves a large number of test vectors and is a difficult

and time-consuming task. The simulation times are prohibitively

long on current desktop computers. Driving actual design

scenarios and timing burst behavior which produce real-time

effects is difficult to do with current simulation environments.

This paper describes a rapid emulation framework for accessing

multiple hardware IP blocks on an FPGA. This solution involves

an abstraction of the FPGA platform by having a virtual socket

layer that resides between the design and the test vehicles. A

rapid prototyping platform is thus created, and its use with

complex video and multimedia systems is described.

I. INTRODUCTION

Video compression standards in the never-ending search for

higher and higher compression performances have reached an

extremely high level of complexity. While at the very

beginning of the MPEG activities the “text document” was the

traditional form for the reference specification of the standard,

already with MPEG-2 we have seen the appearance of non-

official, but publicly available software versions. It is with

MPEG-4 standardization efforts that the software description

of the algorithm has become the standard description and the

textual part [1] is just provided for clarity and documentation

purposes. Any possible ambiguous interpretation is solved by

referring to the software description. Therefore, the generic

and non-optimized software description has also become the

starting point for any implementation activity of the standard.

Unfortunately, working and reasoning on architectural

solutions or on appropriate software/hardware (SW/HW)

partitioning on several tens of thousands of lines is a very

time- and resource-consuming task [2]. In the traditional way

of designing HW blocks, the full rewriting of the reference

software to isolate candidate HW blocks and architectures and

to generate appropriate test vectors for the correct elicitation

of the designed HW system are mandatory tasks that could

result in even more resource-demanding tasks than the HW

design itself.

Realizing the fact that the starting point of the

implementation process is too far removed from a complete

implementation, two initiatives have been taken within the

MPEG committee. The first is to develop a generically

optimized reference software version of the standard (MPEG-4

Part 7 [3]). The second is to derive from such versions mixed

SW/HW descriptions for which some parts of the reference

software are described by alternative blocks described in an

HDL form (MPEG-4 Part 9 [4]). Supporting such mixed

SW/HW standard description with appropriate test and

emulation platforms is critical to their deployment and

acceptance in the industry. The ideal architecture for such

platforms includes an easily programmable board that can be

plugged into a standard SW environment. Therefore, the tool

needed to realize such a platform is a virtual socket that

enables a truly integrated, platform-independent environment

for SW and HW developments.

This paper describes such a virtual socket platform to

enable rapid emulation of video and multimedia designs and

verify various IP targeted for such systems. In Section II, the

concept of the virtual socket platform is described. Section III

explains our implementation using an FPGA-based platform.

Section IV then gives results for an entire MPEG-4 decoder

instantiated in the platform.

II. VIRTUAL SOCKET PLATFORM

A virtual socket platform has been created to aid in the rapid

emulation, test, and verification of FPGA designs for complex

multimedia standards [5]. This system was targeted

specifically to support high-throughput and high data rates

usually required by video and multimedia, however, all types

of designs could benefit from such an integrated platform. Fig.

1 shows the block diagram of the FPGA-based virtual socket

platform including N slots for hardware accelerators. Any

number of these slots can be utilized for a given build of the

platform. A single interface is provided to access the multiple

accelerators.

All required data and controls for the processing in the

hardware accelerators are sent through the interface block. To

allow for both controllability and observability of the

accelerators by the test/emulation engine, the platform

allocates four different memory spaces to each hardware slot

in a manner extending the work of [6]:

Fig. 1: FPGA-Based Virtual Socket Platform

Proceedings of the 9th International Database Engineering & Application Symposium (IDEAS’05)

1098-8068/05 $20.00 © 2005 IEEE

1. Write-only register file (written to by test/emulation

engine)

2. Read-only register file (read by engine)

3. Write-only block memory

4. Read-only block memory

The register file memories are for the writing and reading

of control signals. The write-only register file can be used for

important flags and parameters that are necessary for the

processing performed by the hardware slot. The test/emulation

engine controls how often these values are updated (e.g., video

frame type updated every frame). The read-only register file is

included for observation of critical run-time controls and can

be used to either convey important computed parameters back

to the test/emulation engine or for various diagnostic purposes.

The block memories are included for the passage of data

to/from the test/emulation engine. An example of this would

be a discrete cosine transform (DCT) hardware element

included in a hardware slot. The input data would be an 8x8

block of 8-bit pixel values, while the output would be an 8x8

block of 12-bit DCT coefficients. Disregarding pipelining, the

minimum size of the block memories for this element would be

64x8-bits and 64x12-bits, respectively. Table I shows a

memory addressing allocation scheme assuming N hardware

slots and M address locations per memory space for each slot.

If N and M are pre-determined values in a system, then an API

can be provided to aid in the calculation of memory addresses,

abstracting the process away from the software engineer.

Fig. 2 shows the block diagram of a typical hardware

accelerator slot. Note that while the start/end flags and

information registers are accessible through the register file

memory space, the input/output data uses the block memory

space. Fig. 2 shows just one example of starting/stopping an

accelerator controlled by flags exchanged with the

test/emulation engine. Either a push or pull model can be

created, where the finish flag can either be polled by the

test/emulation engine or can be used as an interrupt signal to

the processor. Another method would be a streaming-data

model triggered by the availability of the input data as well as

the availability of unused locations in the output memory.

This type of model would most likely configure the

input/output RAMs as FIFOs, allowing for the capture of

multiple output values before a read procedure by the

test/emulation engine is required. This expands on the

capabilities in [7] where only a single I/O set is captured and

shifted out using JTAG. Both the push and pull methods of

data capture are supported in the proposed virtual socket

platform.

In order to support access to multiple hardware

accelerators on the platform shown in Fig. 1, a hardware

identification (ID) value is included accessible via a read-only

register file location in the master socket. An example of the

hardware ID value is shown in Fig. 3, where an N+1 bit word

is used to specify the active hardware slots in the current build.

The test/emulation engine would read this value and determine

that two slots are included at locations 1 and 6. There are then

two methods for the test/emulation engine to determine the

functionality available in this build: 1) use a pre-determined

table of slot numbers and their corresponding hardware

functionality (e.g., a DCT engine is always in slot 6); or 2) use

a read-only information register to inform the test/emulation

engine the exact functionality that the hardware designer

included in a given slot. The actual usage of the hardware

slots by the software running on the test/emulation engine can

be decided at either compile-time or at run-time as described

in [8].

III. IMPLEMENTATION

Fig. 4 shows the block diagram of the environment used to

verify the concepts of the virtual socket platform described in

Section II. For this exemplary system, the WildCard-IITM
 PC

card is the target platform, providing an excellent co-

processing platform in a small, portable CardBus
TM

 form

factor [9]. This card is used in conjunction with a laptop

TABLE I

VIRTUAL SOCKET MEMORY ALLOCATION SCHEME

Fig. 2: Block Diagram of Virtual Socket Platform

Fig. 3: Example Hardware Identification Value

Proceedings of the 9th International Database Engineering & Application Symposium (IDEAS’05)

1098-8068/05 $20.00 © 2005 IEEE

where the microprocessor on the laptop becomes the heart of

the test/emulation engine for the system. The WildCard-II

contains many of the elements necessary for our desired co-

processing platform, including the following features:

1. Xilinx Virtex-II
TM

 XC2V3000 FPGA for processing

[10]

2. 64 MB of DDR SDRAM

3. 2 MB of ZBT SRAM

4. 32-Bit / 33 MHz PCI interface

5. Multi-channel DMA controller

A virtual socket interface and hardware API was created

for this card providing an HDL/EDIF wrapper for any design.

The targeted language supported is VHDL, however, any

synthesizable HDL could be used. This interface performs the

multiplexing/demultiplexing for accessing the multiple

hardware accelerators and also provides access to the two on-

board memory chips. For our system, the number of hardware

slots, N = 31, providing simple access to the 32-bit hardware

ID over the PCI bus. A memory controller is included in the

virtual socket interface to arbitrate access to the memories

amongst the hardware accelerators as well as provide a

simpler, non-physical interface. The test/emulation engine

also has access to the memories on the WildCard-II. For faster

access to/from the virtual socket platform, the interface also

supports DMA transfers.

Software code is written for the laptop to perform any

functionality not off-loaded to the WildCard-II, including:

reading and writing of files; transferring data to/from the

WildCard-II; and performing real-time analysis of the results.

Examples of such back-end analysis include: comparison of

results versus expected values; monitoring sequences of run-

time parameters for verification of correct operation; and real-

time playing or displaying of results. Since the test/emulation

engine has access to both register file and block memory

spaces for all hardware accelerators, debug and verification

can be performed on not just IP outputs but any desired

internal signals and debug counters. This allows very good

observability for the operation of an IP.

A software API layer written in ANSI C is provided for

platform-independent functions to communicate with the

platform on the WildCard-II [5]. Functions such as VSWrite()

and VSRead() are provided, with the user needing to know the

hardware slot number and the starting address value in the

shared memory space. Following the scheme shown in Table

I, our system uses a fixed locations per memory space value of

M = 512, so the API also provides macros to simplify the

address calculation. Note that the API is layered such that the

software designer can write his code in a manner regardless of

the actual hardware platform used.

IV.RESULTS

The virtual socket platform implemented on the WildCard-II

was used to verify the FPGA design of an MPEG-4 Simple

Profile video decoder. As described in [2], this debug step

was used after the VHDL design was verified in the ModelSim

simulator [11]. It proved to be an invaluable debug step, not

just for verifying actual FPGA hardware, but providing a

“bursty” data transfer environment to strain the communication

primitives in the design.

In order to verify the operation of this complicated

decoder design, software code was written for the

test/emulation engine to: read the encoded bitstream file(s)

located on the laptop; write the bitstream to the WildCard-II;

read the results from the WildCard-II; and render the output.

Since a video design was targeted, the back-end analysis

involved displaying the reconstructed video in a DirectX

window for both debug and demonstration purposes. On an

as-needed basis, the platform also provided access to a number

of internal signals and counters for debug purposes.

Table II shows the emulation performance results

comparing three different test sequences: City QCIF @ 15 fps;

City CIF @ 30 fps; and City 4CIF @ 30 fps. These tests were

performed using Rev. B of the WildCard-II connected to a 1.7

GHz Dell D600 laptop with 1.0 GB of RAM. The overhead

times for hardware include operations done in software such as

getting the data ready for DMA transfer, polling the output

Fig. 4: Virtual Socket Platform Test Environment

TABLE II

EMULATION PERFORMANCE COMPARISON

Test Sequences
Run-Time

Parameters
City

QCIF

City

CIF

City

4CIF

Bitrate (kbps) 200 1000 8000

Total Frames 150 300 300

Frame Rate (fps)* 223.9 62.9 14.7

DMA Read 0.10 1.18 4.68

Write 0.03 0.34 1.78

Overhead 0.11 0.42 2.26

Hardware

(sec)

Total 0.24 1.94 8.72

Re-order 0.10 0.91 3.38

Display 0.33 1.92 8.32
Software

(sec)

Total 0.43 2.83 11.70

Total Time (sec) 0.67 4.77 20.42

* Frame rate found using “free running” mode.

Proceedings of the 9th International Database Engineering & Application Symposium (IDEAS’05)

1098-8068/05 $20.00 © 2005 IEEE

flags, etc. While the typical DMA read data rate was found to

be 35-40 Mbytes/sec, it has been shown to be faster on other

laptops [12], providing an even faster emulation environment.

The clock rate for the FPGA circuit was 49 MHz, giving a

much faster emulation time than previously reported in [6] and

[7], where verification was performed at a maximum rate of

1.1 MHz.

V. CONCLUSION

A virtual socket platform was described here, providing a

rapid test and emulation environment for complicated video

and multimedia designs. A novel virtual socket concept was

described as well as an implementation of that platform using

an FPGA-based PC card. Results for emulating an MPEG-4

Simple Profile decoder design using the platform were

described. The platform provided a real data transfer

environment to verify the actual FPGA hardware design. A

demonstration of the decoder running on the WildCard-II can

be shown.

REFERENCES

[1] Information Technology – Generic Coding of Audio-Visual

Objects – Part 2: Visual, ISO/IEC 144962-2:2004, June 2004.

[2] K. Denolf, et al, “A Systematic Design of an MPEG-4 Video

Encoder and Decoder for FPGAs”, GSPx 2004, Santa Clara, CA,

USA, September 2004.

[3] Information Technology – Generic Coding of Audio-Visual

Objects – Part 7: Optimized Reference Software, ISO/IEC TR

14496-7:2004, October 2004.

[4] Information Technology – Generic Coding of Audio-Visual

Objects – Part 9: Reference Hardware Description, ISO/IEC TR

14496-9:2004, June 2004.

[5] P. Schumacher and R. Turney, “Integrated Framework for

MPEG-4 Part 7, Part 9, Part 10,” ISO/IEC JTC1/SC29/WG11

N6092, Hawaii, USA, 8-12 December 2003.

[6] Y. Nakamura, et al, “A Fast Hardware/Software Co-Verification

Method for System-On-a-Chip by Using a C/C++ Simulator and

FPGA Emulator with Shared Register Communication”, DAC 2004,

San Diego, CA, USA, June 2004.

[7] R. Siripokarpirom and F. Mayer-Lindenberg, “Hardware-

Assisted Simulation and Evaluation of IP Cores Using FPGA-based

Rapid Prototyping Boards”, International Workshop on Rapid

System Prototyping, Geneva, Switzerland, June 2004.

[8] T. Mohamed, et al, “A Rapid Prototyping Framework for

MPEG/H.264-enabled Consumer Products”, ICCE 2005, Las Vegas,

Nevada, USA, January 2005.

[9] Annapolis Micro Systems, http://www.annapmicro.com.

[10] Xilinx, Inc., http://www.xilinx.com.

[11] Mentor Graphics / ModelSim, http://www.model.com.

[12] Annapolis Micro Systems, WildCard-II Reference Manual, Rev.

2.6, 2004.

Proceedings of the 9th International Database Engineering & Application Symposium (IDEAS’05)

1098-8068/05 $20.00 © 2005 IEEE

