
Towards a Unified Framework for Contextual Variability in Requirements

Raian Ali
1
, Yijun Yu

2
, Ruzanna Chitchyan

3
, Armstrong Nhlabatsi

2
, Paolo Giorgini

1

1
 DISI, University of Trento, Italy

{raian.ali;paolo.giorgini}@disi.unitn.it
2
 Department of Computing, The Open University, UK

{y.yu;a.nhlabatsi}@open.ac.uk
3
 University of Lancaster, UK

r.chitchyan@lancaster.ac.uk

Abstract

Context is a significant factor in deciding the set of

requirements relevant to a system (i.e., software

product construction), the alternatives the system can

adopt to satisfy these requirements, and the quality

assessment of each alternative. By context we mean the

conditions in the operating environment of an system

that influences how the system should behave in

different situations. However, the relationship between

context and requirements can be challenging to

capture and analyze. Presently this area of

requirements engineering is largely under-researched.

In this position paper, we discuss several ways by

which context can be related to requirements and

subsequently used for product derivation. We outline

an approach that facilitates better understanding and

use of contextual information in requirements. Our

approach integrates three requirements engineering

approaches - goal modeling, feature modeling, and

problem frames - and is aimed at facilitating treatment

of contextual variability in requirements.

1. Introduction

Requirements can be tightly coupled with the

context of a software system, which has been

considered as a major factor in determining which

requirements are to be satisfied, how, and how well

each of the alternatives satisfies them [1]. On the other

hand, the system might change context while tasks are

performed in satisfying these requirements.

In software product line engineering (SPLE)

research, variability modeling is concerned with

eliciting and representing a static (design-time) space

of product variants and facilitating the product

derivation based mainly on stakeholders choices. The

context-related information is normally implicitly taken

into consideration while making such choices.

However, in dynamic (or runtime) SPL, the context

plays an even more important role in product

derivation, as each product configuration should be

validated against the changing context in which it must

function. Configurations that are inconsistent with the

current context should be prevented from realisation.

Therefore an explicit notion of the relation between

context and the product family model would allow for

more systematic product derivation. For example, in

feature modeling [2] an early consideration of context

can determine if a feature is mandatory, optional or

even unneeded. For instance, in an email editing

system, encryption could be an optional feature if the

system is to operate within one organization where staff

trusts each other. On the other hand, it should be

mandatory if users need to compose emails using a

public network.

Context is the reification of the environment, that is,

whatever provides a surrounding in which the system

operates [3]. Initial research has already started on the

relation between context and software variability at the

requirements level. For example, Ali et al [4]

investigate the relation between context and

requirements at the beginning of goal-oriented analysis.

Salifu et al [5] extends the application of the problem

frames approach with context monitoring and switching

problems. Similarly, Hartmann et al [6] propose that

the concept of context variability is a major factor for

deriving products in product lines engineering. All

these approaches recognize the role of context for a

decision maker to derive a system variant to better

satisfy the system objectives. Yet, there are still a

number of open problems related to contextual

variability understanding, modeling, and analysis.

In this position paper, we outline an initial attempt to

integrate various perspectives on contextual variability

into a unified framework in order to use context

information in analysis and derivation of holistic

products. By holistic product we mean a product

which is derived with consideration of stakeholder

intentions, desired functionality, quality properties, as

well as understanding of how the software and its world

context affect each other.

To this end, we study how a set of selected

requirements engineering approaches (goals, features,

and problem frames) treats context for requirements

adaption (section 2). We show the potential of

integration of this set of approaches into a framework

that allows for better expressing and reasoning on

contextual variability in requirements (section 3), and

demonstrate this framework with an example problem

of conflicted sharing of resources (section 4). A brief

conclusion completes the paper (section 5).

2. Modeling Contextual Variability in

Requirements

In this section, we compare three requirements

engineering (RE) approaches that have considered the

relation between requirements and context: goal

modeling, feature modeling, and Problem Frames. This

subset of RE approaches was selected due to the

complementary perspectives they provide on

expressing contextual variability in requirements.

Context of goals: the goal-based analysis elicits

different alternatives to satisfy a goal, but it does not

explicitly specify which alternative should be used for a

particular case or context. Supporting alternatives

without specifying when to follow each of them raises

the question “why does the system support several

alternatives?” On the other hand, the consideration of

different contexts that the software has to adapt to

without knowing supporting alternatives leads to the

question “what can the system do if the context

changes?” The work of Ali et al. [2, 7] proposes to

elicit the relation between each alternative to goal

satisfaction and the corresponding context, and

provides constructs to analyze context and discover the

data the system needs to monitor.

Context of features: features are characteristics of

the system, and feature model represents the variability

of these characteristics for configuring a family of

software products. As we mentioned in the

introduction, context influences the set of features to be

included in a software product variant. Considering

context at the design time can model a feature as

mandatory or optional, whilst at the runtime context

needs to be considered when switching to an alternative

feature. As Hartmann et al. [4] suggest: studying the

relation between context and features can support the

engineering of software supply chains, which allows for

more accurate derivation of a product that fits to the

environment in which it operates.

Context in Problem Frames: Salifu et al. [3] apply

Problem Frames approach to analyze different

specifications that can satisfy the core requirements,

under different contexts. The relationship between

contexts, requirements, and the specification (machine)

are represented by a problem description. Alternative

problem descriptions corresponding to different

contexts are elicited to identify variant problems.

Variant problems are variations of the original problem

adapted for a particular context. The specifications to

the variant problem are then composed into a context-

aware system. A change in context that violates the

requirement triggers a switching action to an alternative

specification for restoring the satisfaction of

requirements. Here there is a clear distinction between

the system and the world perceived as its context. The

way that the system modifies the context is clearly

described.

3. Integrating RE Approaches for

Contextual Variability

Goal models capture stakeholder needs and

intentions [8] at a time when variability of features in a

product line-to-be has not been conceptualized.

Relating goals to solution-oriented features leads to a

requirement traceability problem [9].

The Problem Frames (PF) approach makes explicit

the distinction between the Requirements (R), the

World (W), and the Specification (S). They are related

by the entailment relation W, S ├ R. Problems frames

capture such a structural relation of a problem more

explicitly than both goal models and feature models

[10]. However, the PF approach has the notion of a

„variant problem‟ it does not natively support a

hierarchy of variability as goal and feature modeling

approaches do. For a comparison, Figure 1 summarizes

the contribution that each of these modeling

approaches can provide to the others, and their

relations with context.

Besides its role of giving a rationale to features in the

solution space and constraining, at the intentional level,

the variability in problem frames, goal modeling can

also represent quality requirements as softgoals that

cannot have a clear-cut satisfaction criterion. The

different goal satisfaction alternatives might contribute

differently to reaching these softgoals. User preferences

over alternatives might be expressed by prioritizing the

quality measures, i.e. softgoals [11].

XOR OR

Context

and

-

+
-

+

Figure 1. The integrated framework for contextual variability in requirements

Considering the context dimension, we believe that

context influences human intentions and choices before

the software is made. Consequently, context influences

the variability at the goal level that in turn would help

to manage the variability at the system level (features).

Problem frames contain an explicit notion of the

context, i.e. the world (W), and how requirements

influences and are influenced by it. Therefore, PFs

have the expressive power to represent the actions the

system can do on the physical context, which is

important for analyzing the bidirectional relation

between requirements and context. In other words,

context can determine the variability at the intentional

and system level, while problems frames express the

relationship between context, requirements, and

specifications.

4. The Benefits of Integration: Example

The integration of the three models together with

context has the potential for better expression of and

reasoning about the requirements, which is potentially

useful for product configuration choices. For instance

such problems as conflicts between the system

requirements on sharing the context objects can be

detected and resolved early on. To illustrate this we

sketch an example of a “smart home” - an automated

adaptable living environment that supports patients

with dementia. In this sketch (Fig. 2) the system might

need to communicate with the caregiver and patients‟

relatives (see goal model in Fig. 2a). Since such

communication can be required for different goals that

are not alternatives, it may happen at the same time and

for different intentions (e.g., to manage the patient‟s

anxiety, and to arrange a social meeting). One way to

establish the communication is by making a phone call

(shown in Fig 2b). If phone is to be used for all

communications, this may cause a conflict on this

shared resource. Such a conflict can be easily detected

when problem frames are used to depict the interaction

between the system and its environment (Fig. 2 c).

In Fig. 2, we show how each of the three discussed

approaches contributes to detection and resolution of

such a conflict while configuring a product:

Problem frames have a clear distinction between the

physical environment elements (e.g., phone) and the

way the system interacts with them. This clear

distinction helps the detection of potential conflicts on

a shared element (i.e. exclusive use of the phone).

Worth noting is that in order to ascertain that sharing of

a resource does lead to a conflict, we need to model the

behavior of the shared resource.

Feature models support representation of system

alternative solutions that may help to avoid the detected

conflict (simultaneous use of phone to contact the

caregiver and patient‟s relatives). E.g., relative could

normally be contacted via an SMS instead of

establishing a voice call.

Goal model holds the upper level goals that the

system alternatives of the feature model are meant to

satisfy. Knowing the goals behind each feature is

essential to get better conflict resolution. E.g., if the

goal of calling a caregiver is to save the patient from

extreme anxiety, and calling relative is for informing

him/her about the next scheduled meeting, then the

resolution policy could be postponing the call to the

relatives.

Variability rationale at

the intentional level and

quality measures for

assessment of variants

Variability rationale at the system characteristics

level

Clear problem

structure that

allows for more

detailed analysis

of the goal level

variability

Clear problem structure that allows for more

detailed analysis of the system level variability

Context is observed and

actuated by the machine

Context influences the selection of

products to derive

Context influences the

adoptability of goal

satisfaction alternatives,

and their qualities.

Justifying features

by stakeholder

intentions and

relating them to

quality measures

Traceability

of goals at

the system

level

Problem Frames (PF)

Goal Models

Feature Models

d:{opened. closed}

b:{turn on, turn off}

a

b c

d

+

Figure 2. Modeling the requirements using the three integrated models.

Context can determine if a conflict might ever

happen. For instance, if the call to the relatives is made

to find out if the patient is visiting them in the context

“the patient is away from Smart Home for a long

time”, and the call to caregiver is to treat the patient in

the context “the patient is exhibiting anxious behavior

inside the home”, then there will be no conflict as the

two contexts stimulating the two calls could never hold

together (we assume that only one patient lives in each

smart home). Moreover, context might decide the

adoptability of alternatives. E.g. if issuing a public call

for a caregiver through the healthcare institute speakers

is adoptable only during the day, then this alternative

might not be always possible as a way to resolve the

conflict on using the phone.

Product Configuration: the integrated information

provided by the three approaches is invaluable in

configuring a product. For instance, knowing the

details of goals for which the communication is needed,

we can choose to always use email/SMS for meeting

arrangement, always use public speakers for calling

caregivers at day time, and always prioritize calls to

caregiver in the night time over that calls to relatives.

5. Conclusions

In this paper, we have introduced our vision of the

contextual variability in requirements and briefly

discussed the treatment of the relation between

requirements and context in a framework based on

integration of three main-stream requirements

engineering modeling languages. We discussed how

one may benefit from this framework by better

expressing requirements adaptation to context and

being able to better reason and configure products

through it. We remark here that extra modeling

constructs and a methodological process are needed to

map the three models and to enable the reasoning on

the integrated model. Our future work is to look at

provision of mechanisms to verify the proposed context

variability models among specification, requirements

and context.

6. Acknowledgements

This work has been partially funded by EU

Commission, through the SecureChange, and DiVA

projects, and by the PRIN program of MIUR under the

MEnSA project. We would also like to thank Prof.

Bashar Nuseibeh for the valuable discussions we had

about this work.

7. References

[1] Fickas, S., Feather, M.: Requirements monitoring in

dynamic environments. RE‟ 95, IEEE SC, 140.

[2] Kang, K.C., Kim, S., Lee, J., Kim, K., Shin, E., Huh, M.:

Form: A feature-oriented reuse method with domain-specific

reference architectures. Ann. Softw. Eng. 5 (1998) 143168

[3] Finkelstein, A., and Savigni, A.: A framework for

requirements engineering for context-aware services.

STRAW‟01.

[4] Ali, R., Dalpiaz, F., Giorgini, P.: A Goal Modeling

Framework for Self-Contextualizable Software.

EMMSAD‟09. LNBIP 29-0326, pp. 326–338. Springer .

[5] Salifu, M., Yu, Y., Nuseibeh, B. Specifying Monitoring

and Switching Problems in Context Proc. RE‟07, 211-220.

[6] Hartmann, H., Trew, T.: Using Feature Diagrams with

Context Variability to Model Multiple Product Lines for

Software Supply Chains. SPLC ‟08, pp. 12-21.

[7] Ali, R., Dalpiaz, F., Giorgini, P.: Location-based software

modeling and analysis: Tropos-based approach. In: Li, Q.,

Spaccapietra, S., Yu, E., Olive, A. (eds.) ER 2008. LNCS,

vol. 5231, pp. 169-182. Springer, Heidelberg (2008)

[8] Yu, E. and Mylopoulos, J.: Why goal-oriented

requirements engineering. REFSQ 1998, pp. 15–22

[9] Yu, Y., do Prado Leite, J.C.S., Lapouchnian, A.,

Mylopoulos, J.: Configuring features with stakeholder goals.

SAC 08, 645649

[10] Classen, A., Heymans, P., Laney, R., Nuseibeh, B., Tun,

T.: On the structure of problem variability: From feature

diagrams to problem frames. VaMoS07, pages 109-117,

Limerick, Ireland, January 2007.

[11] Hui, B., Liaskos, S., Mylopoulos, J.: Requirements

analysis for customizable software goals-skills- preferences

framework. RE 2003, IEEE SC, 117-126

care for patient

Involve patient
in social events

meet with
relatives

book meeting
place

and

and

and

and

or

or

XOR

OR OR

attend
entertainment

events

notify
relatives

ensure patient
health

C1

C2

C1: patient is exhibiting anxiety symptoms

at home. C2: patient is outside for long time
unexpectedly

knowing patient
location

patient is
tracked

patient
privacy

notify
caregiver

manage
anxiety

calm patient
down

notify
relatives

Notification

Offline Online

Email SMS Public
speakers

Phone
call

C3

C3: 9AM< Time <11 PM

a:CN!{dial(caregiverNumber)}

b:CN!{Notify}

c:Phone!{idle, dialing, ringing,

busy, connected}

d:CG!{Notified, Unnotified}

aa: RN!{dial(relativeNumber)}

bb: RN!{Notify}

cc:Phone!{idle, dialing,

ringing, busy, connected}

dd:R!{Notified, Unnotified}

Caregiver
notifier

Relative
notifier

Caregiver

Phone

Caregiver

Phone

Relative

Notify
caregiver

Notify
relative

a

b d

c

aa

bb dd

cc

