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Abstract—In active learning for Automatic Speech Recognition
(ASR), a portion of data is automatically selected for manual
transcription. The objective is to improve ASR performance with
retrained acoustic models. The standard approaches are based
on confidence of individual sentences. In this study, we look
into an alternative view on transcript label quality, in which
Gaussian Supervector Distance (GSD) is used as a criterion
for data selection. GSD is a metric which quantifies how the
model was changed during its adaptation. By using an automatic
speech recognition transcript derived from an out-of-domain
acoustic model, unsupervised adaptation was conducted and GSD
was computed. The adapted model is then applied to an audio
book transcription task. It is found that GSD provide hints for
predicting data transcription quality. A preliminary attempt in
active learning proves the effectiveness of GSD selection criterion
over random selection, shedding light on its prospective use.

Index Terms—Active learning; data selection; confidence mea-
sures; speaker adaptation

I. INTRODUCTION

Using large amounts of acoustic data can help to adapt an

Automatic Speech Recognition (ASR) system very precisely

to a speaker, but in many cases ground truth transcriptions

are not available for such data and one has to resort to

using the ASR hypotheses as pseudo labels. In this case, the

presence of errors in the transcripts degrades the performance

of adaptation, resulting in non-optimal results overall [1].

One way to deal with errorful labels and transcripts is to

perform data selection. If you only select data that is most

likely correct, based on assessments by some prior model, you

focus on less challenging data that reaffirms existing models,

but limits the learning of new attributes. Active learning’s

objective is to select samples for manual transcription for

active development of a model [2]. Active learning approaches

have already been studied for the training of acoustic models

for ASR. Confidence measuring and uncertainty sampling are

the standard data selection methods in speech recognition sce-

narios [3], [4], further work also explored query-by-committee

techniques [5]. In recent years there has been interest in

selection strategies based on predicting how models change

under new data (expected model change) [6].

In this work a need for speaker and domain adaptation is

demonstrated through an ASR task with audio book data. An

out-of-domain acoustic model generates errorful transcripts for

adaptation. We then select a portion of the data using the

new proposed method for manual labelling. The models can

then be re-adapted, aiming for better performance [7]. Several

techniques can be used to perform the data selection, including

random selection and confidence score based selection. This

paper proposes to use a new data selection method based on

Gaussian Supervector Distance (GSD) between original and

adapted models to perform active learning. Gaussian Mixture

Model (GMM) parameters of a Hidden Markov Model (HMM)

are adapted using Maximum A Posteriori (MAP) adaptation

[8], based on Perceptual Linear Perceptron (PLP) features.

GSD of MAP adapted models is usually exploited to express

difference in speaker or language space – this work proposes

new applications in active learning. The proposed GSD method

for active learning improved performance over the use of ASR

transcripts’ baselines and random selection methods.

The rest of the paper is organised as follows: Section

II reviews active learning approaches for ASR. Section III

describes the GSD method based on expected model change.

Sections IV and V present the experimental setup and list the

baseline results. Section VI analyses model change and its

relation to recognition errors. Section VII presents the results

achieved using the GSD method. Finally, Section VIII gives

the conclusions for this work.

II. ACTIVE LEARNING IN ASR

In machine learning literature, active learning is referred

to learning through trial and error and query learning [9],

[10]. It is an iterative approach combining special query

data selection techniques with data correction [11], shown to

improve classification performance [12], [13].

Active learning in acoustic modelling for ASR has been

used to select the most representative and informative subset

from a large set of untranscribed data in order to selectively

transcribe that subset [10]. Active learning helps minimise

manual transcription costs, by building acoustic models with

significantly better accuracy than out of domain models [14].

Active learning has been studied in various areas related to

speech technology including spoken language understanding

[15] and speaker recognition [16]. Many active learning meth-

ods are partly or fully uncertainty based, mainly relying on

confidence scores to select data. Applications include reducing

need for human transcription [3], [4], [17], accent adaptation

in ASR [18] and building emotional acoustic models [19].

Uncertainty-based methods of active learning are example-

based, where confidence metrics are computed for each utter-

ance example independently. Given the goal in selecting the

most informative data subset for further training, we took a



different approach. Take the typical tied-state triphone model

in ASR as an example, a model comprises of thousands of

states, each of which can behave differently. In theory one

must look for “poorly behaved” model components, determine

model behaviours, anchor said behaviours to a data subset and

select them for further training. In this paper, we show a first

attempt to analyse and interpret model behaviour using model

distance between original (out-of-domain) and (unsupervised)

adapted models. We used this knowledge to run a trial experi-

ment of speech recognition with audio book data and showed

the potential usage of model distance in active learning.

III. MODEL CHANGE AS A PREDICTOR TO TRANSCRIPT

QUALITY

Model change is a metric quantifying how the model was

changed during adaptation. Speaker recognition is an example

of the use of model change. A Gaussian mixture model is

trained on the background population. This model, commonly

referred to as the Universal Background Model (UBM), is

then adapted to individual speakers. Model change between

the UBM and the adapted model is analysed, the underlying

assumption being that different “principal components” of

model change can be correlated with speaker identity, by

techniques such as factor analysis and i–vector [20].

In ASR, an acoustic model comprises of a set of units which

normally correspond to phonemes or some sensible partitions

in the acoustic space. A baseline model is analogous to the

UBM. It is trained on abundant out-of-domain data but with

mismatched speakers, channels and domains. Model adapta-

tion takes the in-domain data and tunes the model parameters.

In this study, we attempt to correlate model adaptation di-

rection, in terms of the model distance between the baseline

and adapted model, with transcript quality. As a preliminary

study, we take Hidden Markov Models (HMM) for context-

dependent phonemes as the exemplar model. The model is

adapted by updating the mean statistics using Maximum A

Posteriori (MAP) criterion. In theory, this method should be

applicable to other acoustic model architectures.

Let si denote a clustered GMM–HMM state, then let

Λ(si) denote the supervector formed by concatenation of N

Gaussian mean vectors associated with the state, Λ(si) =
[µ1...µn...µN ]. We then define the state-level GSD between

the two states in the baseline and adapted models as the

Euclidean distance between supervectors of the models. Let

ΛX denote the original model’s supervector. Without assuming

any knowledge on oracle data, adaptation can use an ASR

transcription obtained by decoding with the baseline model.

A supervector ΛASR
X

is composed. GSD for a state si is then

expressed as,

GSD(Λ(si),Λ
ASR(si)) =

√

(Λ(si)− ΛASR(si))2 (1)

GSD is a state-level metric on model distance. A segment-

GSD (sGSD) is computed to summarise the model distance

in one segment. This is done by iterating through M states,

weighting each state-level GSD with its duration in a segment,

then taking the average:

sGSD(Λ,ΛASR) =
1

T

M
∑

i=1

li ×GSD(Λ(si),Λ
ASR(si)) (2)

li is the duration of state i in a segment derived from the

forced alignment of the ASR transcript. T =
∑M

i=1
li is the

segment duration.

The sGSD indicates an expected model distance. There

are several observations and assumptions on the relationship

among GSD, sGSD and ASR transcript quality. First, the

sGSD value of a segment is correlated with the GSD values

of its constitute phonemes (according to Eq. (2)). Second, by

using sGSD as a grouping criterion to partition the training set,

we can then derive different training subsets where particular

types of GSD states are relatively prominent. Meanwhile, it is

expected that phoneme (thus state) distribution within each

segment will be comparable. Because linguistic constraints

bind phonemes together in different segments in a similar way

(i.e. phonotactic constraints), a segment with low sGSD will

also contain states with high GSD values, but the ratio of high

GSD states will be relatively lower. As such, a training subset

with low sGSD is still representative for the full phonetic space

and error comparison across different sGSD sets are still valid.

If a certain relationship between sGSD and segment error

can be established, we can then locate the corresponding train-

ing subset to render better labelling, following conventional

active learning approaches.

IV. EXPERIMENTAL SETUP

For evaluation using GSD, experiments were set up using

audio book recordings (hereinafter abbreviated as ABA) from

the public domain, as large amounts of data from individual

speakers are available [21]. Six audio books were used: A

Tramp Abroad, Oliver, Typee, His Grace of Osmonde, Wuther-

ing Heights and Emma, with audio retrieved from the Librivox

archives and text from Project Gutenberg1.

A baseline GMM-HMM model on Perceptual Linear Per-

ceptron (PLP) features was used for the ASR experiments.

The baseline model is trained on out-of-domain data (170

hours) from close-talking microphone recordings as used in

the AMIDA RT’09 transcription system [22]. The acoustic

features comprise 13 PLP features and first and second deriva-

tives. The baseline language model was the one used for

the AMIDA RT’09 system [22], based on a 50,000–word

vocabulary.

For ABA data, 60 hours of speech were available, con-

taining 811k words from 3 male speakers (m1, m2, m3)

and 3 female speakers (f4, f5, f6). The text data was

pre-processed to remove metadata inserted in the transcripts,

including chapter headings or other elements not spoken in

the audio files. Further processing normalised the use of

abbreviations and other written forms. Finally, this transcript

was aligned to the audio and used as the reference for scoring.

1http://www.gutenberg.org/



TABLE I
WER(%) ON ABA-TEST FOR BASELINE AND ADPATED MODELS

Speaker

Model m1 m2 m3 f4 f5 f6 Avg

Baseline 30.4 57.7 28.6 82.8 82.3 46.1 52.9
Adapt (ASR) 19.2 33.7 14.6 45.2 61.4 28.6 33.7

Adapt (GT) 16.5 16.0 11.2 16.4 21.1 13.7 15.8

For experimentation purposes, the data was split into 54 hours

for model adaptation (ABA-DEV), and 6 hours for testing

(ABA-TEST).

MAP adaptation of the GMM–HMM models was performed

on ABA-DEV data independently for each speaker. Adaptation

with ASR one-best hypotheses (ASR) and ground truth tran-

scripts (GT) were performed respectively. For ASR adaptation,

initial decoding with the baseline model derived the first-best

hypotheses, based on which the models were adapted. For GT

adaptation, the ground truth transcription was used for MAP

adaptation. Baseline ASR results show the model performance

without any adaptation. The GT condition mimics the scenario

where high quality transcripts are available for model adap-

tation. The ASR and GT adaptation conditions represent the

lower and upper bound performance of adaptation, controlled

by the availability of high-quality labelled data. τ was set to

10 for all MAP adaptations for fair comparison.

V. ASR RESULTS WITH BASELINE AND ADAPTED MODELS

In this section, we report the capabilities of baseline and

adapted ASR models on ABA-TEST. Results on ABA-TEST

obtained with the baseline model and the two adapted models

are shown in Table I in terms of Word Error Rate (WER).

That the baseline model shows WER, suggests a mismatch

between the model training data (meeting speech) and ABA-

TEST (audio book data). Four speakers, f4, f5, f6 and

m2, show especially poor performance. Results with ASR-

adapted and GT-adapted models show significant adaptation

improvements over the baseline model, which confirms the

mismatch between baseline model and test data. With the

Ground Truth (GT) transcript adaptation yielding better results

by a wide margin, the gap between ASR-adapted and GT-

adapted models show the potential improvement of audio

book speech recognition with the availability of ground truth

transcription from ABA-DEV. As expected, ASR transcripts

for speakers with high WER (f4, f5, f6, m2) are low quality.

Thus the GT-adapted model provides relative WER improve-

ment above 50%, compared with the other speakers m1 and

m3, where the improvement is 14% and 23% respectively.

VI. MODEL DISTANCE AND PHONEME ERROR RATE

A. Error analysis with respect to sGSD

In this section, an analysis is performed on ABA-DEV

in an attempt to establish a relationship between sGSD and

the transcription quality. Based on each speaker-dependent

ASR-adapted model, GSD was computed for every state

according to Eq.(1). segment-GSD (sGSD) was then computed

for every segment in ABA-DEV using Eq.(2). A histogram

of sGSD was computed and five subsets with equal numbers

TABLE II
PHONEME ERROR RATE (%) FOR DURATION OF DATA SORTED BY SGSD

Speaker. m1 m2 m3 f4 f5 f6

0-20% 19.53 51.40 23.77 76.30 58.58 35.13

21-40% 18.96 42.80 21.56 59.34 54.69 30.47

41-60% 18.31 41.60 19.80 55.10 54.96 29.54

61-80% 18.38 40.31 18.49 49.89 61.48 31.34

81-100% 20.50 41.49 18.36 46.54 76.13 37.77

of segments were derived such that the segments they contain

have sGSD falling in the 0-20%, 21-40%, 41-60%, 61-80%

and 81-100% percentiles respectively.

GSD is a state-level metric. Ideally, comparison with a state-

level error metric makes sense as the two metrics are on the

same linguistic level. However the confusion patterns among

states were obscure and it may have a loose connection to the

transcript quality compared with WER. Therefore, we chose

to use Phoneme Error Rate (PER) as an evaluation metric for

transcript quality to correlate with sGSD.

The PER of the five subsets, derived by their sGSD values,

are represented in Table II. For each of the speakers, the

correlation between sGSD and PER can be observed from

figure 1. The relationship between sGSD and PER is either

linear, or U shaped. When the data has low sGSDs, i.e. the

0-20% sGSD percentile data set, the PERs are high. When

the data has high sGSDs, i.e. the 80-100% sGSD percentile

subset, the PERs showed a mixed trend, where half of the

speakers have high PERs and the other half give low PERs.

B. Low-GSD states: Discussion and further validation

The error analysis results above indicate two characteristics

in sGSD which reflect transcript quality. First, segments with

low sGSD values render high phoneme error rates. It is

envisaged that among other complex factors, low GSD states

reflect a “failure of adaptation” with low quality transcript.

When the ASR transcript for a state is fundamentally wrong,

it would have been mapped to different first-best hypotheses

phonemes in different examples. As a result, adaptation would

be conducted in a noisy condition, resulting in little change

on average. Second, segments with high sGSD values also

render high phoneme error rates, but this is only true for half

the speakers. High GSD value implies a significant shift of

model parameters after adaptation. Given the adaptation target

is ASR transcripts, it is not clear whether the parameter shifts

are correct or wrong. This may be a factor leading to the

contradictory PER values among different speakers.

To further validate the effectiveness of sGSD and GSD in

the role of active learning, an experiment was carried out

to implement a full pipeline of active learning. We focus

on the low-GSD regions as it gave a consistent trend for

different speakers, suggesting their poor label quality. As

explained in Section III, low-sGSD segments contain a fair

amount of high-GSD states due to the phonotactic constraints.

Therefore a count-based method was used to select segments

for relabelling. This count-based method tried to enhance the

homogeneity of low-GSD states in the selected segments.



Fig. 1. Relationship between phoneme error rate (PER) using baseline model and sGSD values of segments (ABA-DEV)

In this count-based method, the 40% of states with the

lowest GSD values were selected. The occurrences of these

states in every segment were counted. The counts were nor-

malised by segment length and the segments were ranked.

This ranking method is equivalent to substituting the five-

class sGSD quantisation (Section VI-A) with a binary GSD

classification scheme (low or high GSD). Meanwhile, the

count-based method tried to enhance the homogeneity of the

low-GSD states in the selected segments.

To complete the active learning system pipeline, selected

segments under the count-based methods had their labels

replaced by ground-truth transcriptions. These new transcripts

were then combined with the ASR transcripts from the unse-

lected segments, on which model adaptation was performed.

Therefore, despite different selection conditions the total du-

ration of the adaptation data set remained the same.

Finally, the adapted acoustic models with different percent-

ages of relabelled data were tested on ABA-TEST and the

WERs were compared with the amount of data relabelled.

This count-based selection method was also compared with

random selection.

VII. ACTIVE LEARNING EXPERIMENTS

As described in Section VI-B, various amounts of ASR

transcripts in ABA-DEV were replaced by ground truth

transcripts, mimicking an active learning scenario in which

important data is chosen for relabelling. To evaluate the per-

formance, the adapted models were applied to ABA-TEST.

A control experiment was run where equivalent amounts of

data were selected randomly to contrast with each set derived

from the GSD selection method.

Fourteen data sets (7 GSD selection + 7 random selection)

were used. For each selection method, the amount of data

selected for relabelling varied between 5%, 10%, 20%, 30%,

40%, 50% and 70% (by duration).

Results on ABA-TEST with the GMM-HMM models

adapted with different data are shown in Figure 2. All curves

started on the left with a lower-bound performance (0% rela-

belled data, highest WER). For both selection methods, WER

decreases with the percentage of relabelled data. Nevertheless,

the decrease of WER with the random method is slower and

more unpredictable. This is particularly true when we constrain

the percentage of relabelled data to 10% and 20%.

Table III compares the WER with the GSD and random

selection method particularly at 10% and 20% selection ratios.

Apart from speaker f6, using the GSD selection method with

10% relabelled data gave almost as good performance as using

the random selection method with double (20%) relabelled

data.

TABLE III
COMPARISON BETWEEN GSD AND RANDOM DATA SELECTION FOR

ACTIVE LEARNING

Data m1 m2 m3 f4 f5 f6

Random selection

10% 19.3 31.6 14.1 44.5 51.5 26.5
20% 18.9 29.1 13.5 34.5 48.7 23.8

GSD selection: Dist(Λ(si),Λ
ASR

X
(si))

10% 18.7 30.4 13.7 34.3 49.4 25.9
20% 18.4 27.4 13.2 29.0 42.5 23.4

VIII. DISCUSSION

This paper explored the relationship of model change after

adaptation with correct or errorful transcripts. It was observed

that errorful transcripts yield different distributions of GSD

compared to correct transcripts. Based on that observation, a

method was devised to first identify problematic states and

then use them to identify problematic sentences as candidates

for manual correction.



Fig. 2. Per-speaker comparison on word error rate (WER) when different percentages of the data has been relabelled using Ground-Truth. Two data selection
methods (random and GSD) were used.

Different active learning approaches based on model change

have been evaluated, in the context of MAP adaptation of

acoustic models of GMM–HMM systems. The results have

shown that this type of selection method can perform better

than the random selection method.

This method proved to work efficiently in the GMM-HMM

modeling framework because model units and distances are

well defined and theoretically sound. In another experiment

we applied GSD on tandem DNN configuration and arrived

at the same qualitative conclution. The GSD metric provides

important information and this is extracted from the statistical

model rather than the training data. With detailed considera-

tion, this concept will be adapted in a deep learning framework

in future studies.
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