
FAST GPU-ENABLED COLOR NORMALIZATION FOR DIGITAL
PATHOLOGY

A PREPRINT

Goutham Ramakrishnan∗
Department of Electrical Engineering

Indian Institute of Technology Bombay
Mumbai, India

gouthamr@iitb.ac.in

Deepak Anand
Department of Electrical Engineering

Indian Institute of Technology Bombay
Mumbai, India

deepakanand@iitb.ac.in

Amit Sethi
Department of Electrical Engineering

Indian Institute of Technology Bombay
Mumbai, India

asethi@iitb.ac.in

January 11, 2019

ABSTRACT

Normalizing unwanted color variations due to differences in staining processes and scanner responses
has been shown to aid machine learning in computational pathology. Of the several popular tech-
niques for color normalization, structure preserving color normalization (SPCN) is well-motivated,
convincingly tested, and published with its code base. However, SPCN makes occasional errors in
color basis estimation leading to artifacts such as swapping the color basis vectors between stains
or giving a colored tinge to the background with no tissue. We made several algorithmic improve-
ments to remove these artifacts. Additionally, the original SPCN code is not readily usable on
gigapixel whole slide images (WSIs) due to long run times, use of proprietary software platform and
libraries, and its inability to automatically handle WSIs. We completely rewrote the software such
that it can automatically handle images of any size in popular WSI formats. Our software utilizes
GPU-acceleration and open-source libraries that are becoming ubiquitous with the advent of deep
learning. We also made several other small improvements and achieved a multifold overall speedup
on gigapixel images. Our algorithm and software is usable right out-of-the-box by the computational
pathology community.

1 Introduction

Tissue samples stained with any stain in general, and hematoxylin and eosin (H&E) in particular, suffer from variability
in their appearances (see Figure 1), which arise due to differences in the staining protocols and reagents used to
process them. In digital pathology, the sensor response of the scanners used to capture their images can also add to this
variability. While human visual perception automatically adjusts to differences in stain appearances, the performance of
machine learning and deep learning algorithms that analyze these images depends on seeing enough variation in the
training data. Conversely, the performance of these algorithms improves with color normalization Sethi et al. [2016].
This makes color normalization a necessity when the data is sourced from only a few labs.

Several color normalization algorithms for histological images have been recently proposed, of which Khan et al.Khan
et al. [2014], Macenko et al.Macenko et al. [2009] and Reinhard et al.Reinhard et al. [2001] are the most popular.
Vahadane et al. proposed a technique for stain separation and color normalization called structure preserving color

∗Equal contributions by first two authors

ar
X

iv
:1

90
1.

03
08

8v
1 

 [
cs

.C
V

] 
 1

0 
Ja

n 
20

19



A PREPRINT - JANUARY 11, 2019

Figure 1: Need for color normalization: The same tissue slide scanned with Aperio and Hamamatsu
scanners respectivelyVahadane et al. [2016]

normalization (SPCN), and released its source code Vahadane et al. [2016]. They demonstrated that it performed
qualitatively better in preserving biological structure, and quantitatively better in preserving stain densities compared to
the previously popular techniques. However, no software exists for public use that can handle large gigapixel images
that are common in digital pathology. Additionally, as well-motivated as SPCN is, it occasionally produces undesirable
artifacts.

In this work, we significantly improve upon SPCN and its prior implementation to introduce a software for color
normalization that (a) is free for non-commercial public use based on open-source software, (b) can handle large images
without the need for embedding it in custom code to break up images, (c) scales gracefully in its runtime with image
size by utilizing GPU acceleration, and (d) avoids undesirable artifacts that are common in the results of SPCN.

2 SPCN Algorithm and its Shortcomings

We chose to improve and scale up the SPCN algorithm because it is intuitively satisfying in how it handles histological
images. It first breaks a source image down into its stain densities, and then normalizes the color basis for each stain
with respect to those of a target image. Additionally, the processes of stain density estimation and color normalization
themselves are well-motivated. In this section, we revisit SPCN and document the strengths and shortcomings of its
core algorithm and Matlab R© implementation.

2.1 SPCN Algorithm

Stain separation process in SPCN is based on the following insights about the staining process Vahadane et al. [2016]:
(a) stain densities that modulate optical densities are non-negative, (b) their mixing proportions and color components
are also non-negative, and (c) each pixel is likely to represent a spatially contiguous biological structure that absorbs
largely one stain.

The major steps of SPCN based on these insights are given below Vahadane et al. [2016]:

1. Optical density computation: The insight about the need to model the optical densities as opposed to the
pixel intensities motivated the use of Beer-Lambert transform. Relative optical density vc,x,s corresponding
to intensity ic,x,s for each channel c ∈ {red, green, blue} for each pixel location x for each image s ∈
{source, target} is computed by assuming a maximum intensity i0 (fixed to 255 for 8-bit images in the
original implementation) corresponding to zero optical density and by using Beer-Lambert law as follows:

vc,x,s = log

(
i0
ic,x,s

)
(1)

2. Unsupervised stain density estimation: The non-negativity of optical densities, stain densities, and their
mixing proportions motivated the use of non-negative matrix factorization (NMF). Stain specificity of each
biological structure motivates the use of sparse NMF (SNMF) to perform soft clustering of each pixel into stain
clusters. The relative optical density Vs (which is a matrix of vc,x,s) can be decomposed into its constituent
non-negative factors – the color basis matrix Ws and the stain density matrix Hs such that Vs ≈WsHs. To
obtain this decomposition we solve the following optimization problem assuming that the rank r of Hs is two
(number of stains) for H&E:

min
Ws,Hs

‖Vs −WsHs‖2F + λ

r∑
j=1

‖Hs(j, :)‖1 , Ws ≥ 0, Hs ≥ 0, ‖Ws(:, j)‖22 = 1 (2)

The penalty on the L1 of Hs induces sparsity, which is controlled by the hyperparameter λ ≥ 0 (fixed to 0.1
as per Vahadane et al. [2016]). Dictionary learning is used to estimate Ws and its pseudo inverse is used to
compute Hs.

2



A PREPRINT - JANUARY 11, 2019

3. Color normalization: After stain separation the source image is normalized with respect to the target image
by replacing the former’s color basis with that of the latter while preserving the former’s relative stain densities.
The source stain density for each stain is linearly scaled so that its 99th-percentile value matches that of the
corresponding target stain. That is, the normalized matrix V ′source is represented as:

V ′source =
P99(Htarget)

P99(Hsource)
WtargetHsource (3)

4. Normalized pixel intensity computation: The source optical densities for each channel and each pixel thus
normalized with respect to the target image are then converted back to the pixel intensity space using the
inverse Beer-Lambert transform as follows:

i′c,x,source = i0 exp(−v′c,x,source) (4)

2.2 Occasional qualitative defects produced by SPCN

In our experimentation with SPCN, we observed the following problems:

1. Invalid maximum channel intensity assumption: SPCN assumes a fixed maximum intensity value i0 for
each color channel in equations 1 and 4. When the background area of a slide has a color tinge or is slightly
darker than the maximum possible brightness (e.g. 255), this assumption is no longer valid. This occasionally
leads to undesirable color artifacts in the normalized image.

2. Inconsistency in extracting stain color prototype: When there is lack of density variation in one stain due
to a few very dark nuclei or a large proportion of light background, the optimization problem in equation 2 can
become ill-conditioned. This problem is exacerbated in SPCN as it cannot process large images efficiently.

3. Unintentional stain swapping: While solving the optimization problem in equation 2, the order of the two
color bases (columns of Ws) and consequently stain density estimates (rows of Hs) can get swapped between
the two stains.

2.3 Challenges in applying SPCN to WSIs

To its credit, a fast approximate scheme for estimating Ws in equation 2 was proposed for SPCN in Vahadane et al.
[2016], but it is still not a software that can be used out-of-the-box for WSIs. The Matlab R© implementation of SPCN
does not have support to read WSI formats such as .svs, .ndpi (from popular scanner brands such as Aperio and
Hamamatsu) to begin with, which is a platform integration issue. Additionally, it reads the entire source or target image
in one go for estimating Hs in step 2, which leads to program crashes for WSIs that cannot fit in the RAM. It does not
utilize GPUs for computationally heavy tasks such as computing Beer-Lambert transform, its inverse, or normalizing
each pixel in equations 1, 4,and 3 respectively, even though GPUs are becoming commonplace due to the increasing
application of deep learning to pathology. Using SPCN in a loop over patches in a compatible format extracted from a
WSI is problematic, because it will simply normalize each patch independently, leading to color inconsistency over a
WSI.

3 Proposed Algorithm and its Implementation

We now describe key features of our software2.

3.1 Improving qualitative results

We solved the problems mentioned in Section 2.2 as follows:

1. Neutral background color: To fix the background tinge, we replaced the fixed maximum i0 of equations 1
and 4 that deal with Beer-Lambert transform by channel-wise and image-wise maximum maxx(ic,x,s). For
outlier rejection while maintaining efficiency for WSIs, we sample at most 100,000 pixels with intensity above
220, and choose their 80th-percentile as our estimate for the maximum channel intensities.

2. Color consistency over a WSI: Although we seamlessly process WSIs of any size patch-wise, we estimate
the color basis only once per WSI to maintain color consistency. This was not possible with SPCN because it

2Software available at: https://github.com/MEDAL-IITB/Fast_WSI_Color_Norm

3

https://github.com/MEDAL-IITB/Fast_WSI_Color_Norm


A PREPRINT - JANUARY 11, 2019

can only treat patches of a WSI independently. We use large enough samples of non-white pixels (intensity less
than 220) from the entire WSI to increase the variance of different stains observed, which prevents equation 2
from becoming ill-conditioned while estimating Ws. At the same time, because we sub-sample a gigapixel
image, we solve the optimization problem efficiently. Additionally, while scaling using the 99th-percentile
values attempts to reject dark outlier pixels while normalizing stain densities, this can still lead to problems in
images with a large background portions. We use the 99th-percentile of the sub-sampled non-white pixels to
reject problems of both dark outliers and white pixels.

3. Unintentional stain swapping: The original heuristic implemented to get the stain order correct only com-
pared the average blue channel of each stain. This leads to problems when the epithelium is light in color or
the stroma also has a blue tinge. We resolved this issue by comparing the difference between red and blue
channels across the two stains to get hematoxylin and eosin in the correct order.

3.2 Improving efficiency and WSI compatibility

Our next set of contributions are in the form of a complete re-implementation of SPCN for efficiency and scale up to
handle WSIs, as noted below:

1. WSI format compatibility using open-source software: We implemented SPCN in python, which allowed
us to use OpenSlide libraryGoode et al. [2013] for reading popular WSI file formats such as .svs and .ndpi.

2. Efficient estimation of color basis: As mentioned in Section 3.1, computation of Ws can easily be scaled up
by limiting the number of pixels used for stain color basis estimation, for which we use the open-source SPAMS
libraryMairal et al. [2010]. Our software attempts to find a sufficient number of randomly scattered non-white
pixels by finding at most 20 non-background patches on which the optimization problem of equation 2 is
solved. This step thus scales sub-linearly with WSI size and is similar to the speedup scheme suggested
in Vahadane et al. [2016]. It isn’t constant because the search space for a sufficient number of pixels goes up
with image size.

3. Handling gigapixel WSI through divide and conquer: As mentioned in Section 3.1, computation of Ws

can easily be scaled up by limiting the number of pixels used for stain color basis estimation. On the other hand,
steps that necessarily involve all pixels of the source image, e.g. computation of Beer-Lambert transform and
inverse and the estimation of the normalized optical densities in equations 1, 3, and 4 were performed serially
on patches of the whole WSI. This required time consuming disk reads and writes, which were marginally
sped up by sampling longitudinal patches from a WSI instead of the usual square patches based on the insight
about row-wise contiguous storage of a WSI on a hard drive.

4. Efficient computation of order statistics: As mentioned previously, some steps required computation of a
99th-percentile of stain density for outlier rejection, which we efficiently implemented for the WSI by taking
medians of that percentile across patches.

5. Speedup using TensorFlow: First, re-implementation in python instead of Matlab itself led to a significant
speedup for small images. Then, we implemented the heavy lifting computations of the algorithm in TensorFlow
Abadi et al. [2016], which easily deploys any available CPU or GPU cores for speed.

6. Software functionalities and easy debugging: The new software is modular, easy to understand and user-
friendly. The ability to normalize a batch of images using the same target image is also available for user
efficiency, and so is a demo and a verbose mode for better understanding.

4 Results

We present an evaluation of the quality of the output normalized image of our improved SPCN algorithm compared to
the original SPCN, and discuss the speed of our implementation on varying image sizes.

4.1 Quality of Color Normalization

A qualitative and quantitative comparison of the SPCN algorithm with other color normalization techniques is described
in Vahadane et al. [2016], and justifies its choice as a starting point in this work. In Figure 2, we compare the
performance of the original SPCN to our improved version on three challenging examples of source images taken from
TCGA. On Image (a), the original SPCN exhibits swapping of stain color basis due to the presence of significant blue
components in both stains. Our proposed improvement to compare the difference of red and blue components avoids
this error. Image (b) illustrates that in cases where one stain dominates, SPCN can lead to a color tint in the intermediate

4



A PREPRINT - JANUARY 11, 2019

whitespace. Our algorithm avoids this by estimating a channel-wise maximum pixel intensity. Image (c) shows an
image with a significant background portion, which leads to a strong tinge in the background after normalization in an
extreme case, which is also handled well in our results by estimating the maximum intensity for each channel separately.

Original Image Original SPCN Vahadane et al.
[2016]

Improved SPCN

(a)

(b)

(c)

Figure 2: Comparison of image quality between original and improved SPCN.

4.2 Runtime analysis on gigapixel images

The flowchart in Figure 3 summarizes the steps of the algorithm, highlighting the efficiency achieved by our software
through GPU computations. Even without GPU’s, the TensorFlow implementation is much faster than the original
Matlab implementation. A step-wise comparison of the time taken for color normalization by the almost original
SPCN (modified to accommodate large images using python and NumPy) and our TensorFlow implementation using
CPU and GPU respectively is shown in Figure 4. For relatively smaller images, the speeds of the implementations
are comparable. Additionally, the time taken to estimate Ws remains almost constant for large image sizes due to our
efficient implementation. As the images become very large, even though other steps scale linearly with image size, our
algorithm achieves a multi-fold speedup over a simple python implementation. It takes only a few minutes for even 5
gigapixel images.3 This shows that it is practical to use this software on large pathology images right out-of-the-box.

4.3 Comparison with other Deep learning methods

SPCN has been well validated against the most commonly used algorithms in the base paper Vahadane et al. [2016].
We compare the presented work to most recent literature Shaban et al. [2018],Zanjani et al. [2018] and Cho et al.
[2017].These papers presents a Generative Adversarial Network (GAN) for color normalization. In Cho et al. [2017]
the proposed method requires retraining once the target or reference image changes. In Zanjani et al. [2018], proposed
method do not require the retraining when the reference image changes. In algorithm also presents many advantages
over [BenTaieb] (which was published in March 2018). Firstly, the stain transfer procedure using GANs is a completely
different approach to color normalization and it is a domain which is still largely unexplored and does not guarantee
theoretical performance. Secondly, the algorithm does not perfectly preserve biological structure as it only approximates
it using a loss function. Finally, it involves training of deep neural networks, requiring availability of training data,
heavy computations, adjustment of hyperparameters and application to large images intractable. Moreover, it presents
a black-box to the internal computations involved, making debugging difficult. Our algorithm in comparison, is
well-validated, preserves structure, is simple to understand and debug, requires simple computations and with our
software, can be used on images of any size. An additional advantage of our algorithm is that it contains a stain
separation step as an integrated module, which can aid research work involving any particular stain in the histological
images.

3Computer: CPU Core i7, 4.2GHz, 8 core, 64GB RAM; GPU Titan X 12GB RAM

5



A PREPRINT - JANUARY 11, 2019

Figure 3: SPCN Flowchart

5 Conclusion

Uptake of computational pathology suffers from two major problems – lack of investment in whole slide scanners,
and the lack of fast algorithms to process whole slide images. With this work, we have contributed to overcoming
the second challenge by introducing a open-source software that can color normalize WSIs in a reasonable time. Our
software significantly improved upon SPCN Vahadane et al. [2016] in this respect, while also improving on the image
quality and retaining the advantages of SPCN. With the advent of deep learning, several research groups are using
GPUs and open-source software such as OpenSlide Goode et al. [2013] and TensorFlow Abadi et al. [2016] to work
with WSIs. Our improved and corrected implementation of SPCN is built on top of such libraries. To ensure that
working with large slides does not seem daunting to medical researchers, it is necessary to make other widely-used
parts of a computational pathology pipelines, such as nucleus detection and segmentation Kumar et al. [2017] and gland
segmentation, also scalable and open-source.

References

Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay
Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: a system for large-scale machine learning. In OSDI,
volume 16, pages 265–283, 2016.

Hyungjoo Cho, Sungbin Lim, Gunho Choi, and Hyunseok Min. Neural stain-style transfer learning using gan for
histopathological images. arXiv preprint arXiv:1710.08543, 2017.

Adam Goode, Benjamin Gilbert, Jan Harkes, Drazen Jukic, and Mahadev Satyanarayanan. Openslide: A vendor-neutral
software foundation for digital pathology. Journal of pathology informatics, 4, 2013.

6



A PREPRINT - JANUARY 11, 2019

Figure 4: Comparison of time taken between python (CPU), TensorFlow without GPU (TF CPU), and with GPU (TF
GPU)

Adnan Mujahid Khan, Nasir Rajpoot, Darren Treanor, and Derek Magee. A nonlinear mapping approach to stain
normalization in digital histopathology images using image-specific color deconvolution. IEEE Transactions on
Biomedical Engineering, 61(6):1729–1738, 2014.

Neeraj Kumar, Ruchika Verma, Sanuj Sharma, Surabhi Bhargava, Abhishek Vahadane, and Amit Sethi. A dataset and a
technique for generalized nuclear segmentation for computational pathology. IEEE transactions on medical imaging,
36(7):1550–1560, 2017.

Marc Macenko, Marc Niethammer, James S Marron, David Borland, John T Woosley, Xiaojun Guan, Charles Schmitt,
and Nancy E Thomas. A method for normalizing histology slides for quantitative analysis. In Biomedical Imaging:
From Nano to Macro, 2009. ISBI’09. IEEE International Symposium on, pages 1107–1110. IEEE, 2009.

Julien Mairal, Francis Bach, Jean Ponce, and Guillermo Sapiro. Online learning for matrix factorization and sparse
coding. Journal of Machine Learning Research, 11(Jan):19–60, 2010.

Erik Reinhard, Michael Adhikhmin, Bruce Gooch, and Peter Shirley. Color transfer between images. IEEE Computer
graphics and applications, 21(5):34–41, 2001.

Amit Sethi, Lingdao Sha, Abhishek Ramnath Vahadane, Ryan J Deaton, Neeraj Kumar, Virgilia Macias, and Peter H
Gann. Empirical comparison of color normalization methods for epithelial-stromal classification in h and e images.
Journal of pathology informatics, 7, 2016.

M Tarek Shaban, Christoph Baur, Nassir Navab, and Shadi Albarqouni. Staingan: Stain style transfer for digital
histological images. arXiv preprint arXiv:1804.01601, 2018.

Abhishek Vahadane, Tingying Peng, Amit Sethi, Shadi Albarqouni, Lichao Wang, Maximilian Baust, Katja Steiger,
Anna Melissa Schlitter, Irene Esposito, and Nassir Navab. Structure-preserving color normalization and sparse stain
separation for histological images. IEEE transactions on medical imaging, 35(8):1962–1971, 2016.

7



A PREPRINT - JANUARY 11, 2019

Farhad G Zanjani, Svitlana Zinger, Babak E Bejnordi, Jeroen AWM van der Laak, et al. Histopathology stain-color
normalization using deep generative models. MIDL, 2018.

8


	1 Introduction
	2 SPCN Algorithm and its Shortcomings
	2.1 SPCN Algorithm
	2.2 Occasional qualitative defects produced by SPCN
	2.3 Challenges in applying SPCN to WSIs

	3 Proposed Algorithm and its Implementation
	3.1 Improving qualitative results
	3.2 Improving efficiency and WSI compatibility

	4 Results
	4.1 Quality of Color Normalization
	4.2 Runtime analysis on gigapixel images
	4.3 Comparison with other Deep learning methods

	5 Conclusion

