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Abstract—W hile providing the same functionality, the various 
Deep Learning software frameworks available these days do not 
provide similar performance when running the same network 
model on a particular hardware platform. On the contrary, 
we show that the different coding techniques and underlying 
acceleration libraries have a great impact on the instantaneous 
throughput and CPU utilization when carrying out the same 
inference with Caffe, OpenCV, TensorFlow and Caffe2 on an 
ARM Cortex-A53 multi-core processor. Direct modelling of this 
dissimilar performance is not practical, mainly because of the 
complexity and rapid evolution of the toolchains. Alternatively, 
we examine how the hardware resources are distinctly exploited 
by the frameworks. We demonstrate that there is a strong 
correlation between inference performance -  including power 
consumption -  and critical parameters associated with memory 
usage and instruction flow control. This identified correlation is a 
preliminary step for the development of a simple empirical model. 
The objective is to facilitate selection and further performance 
tuning among the ever-growing zoo of deep neural networks 
and frameworks, as well as the exploration of new network 
architectures.

Keywords—convolutional neural networks, deep learning, edge 
inference, embedded vision, hardware performance, software 
frameworks

I . I n t r o d u c t i o n

Deep Learning (DL) [1] has emerged as the reference 
paradigm for applications demanding accurate inference. In 
particular, concerning computer vision, Convolutional Neural 
Networks (CNN) are being employed for multiple tasks, rang­
ing from image recognition to pixel-wise segmentation. This 
versatility along with much higher accuracy in comparison with 
classical vision approaches come at the cost of notably increas­
ing the requirements for computational and memory resources 
[2], This constitutes a major challenge for the implementation 
of CNNs in embedded systems [3].

The relevance gained by the DL paradigm in the last few 
years has driven the development of several software frame­
works for prototyping and practical deployment of CNNs. 
While globally targeting the same functionality, each of these 
frameworks follows a particular approach and exploits spe­
cific libraries to deal with the massive computational load 
demanded by deep neural networks. For instance, matrix-matrix 
or matrix-vector operations, which are the backbone of CNNs, 
can be realized by Basic Linear Algebra Subroutines (BLAS)

[4] [5] available in a number of libraries: Adas [6], MKL 
[7], OpenBLAS [8] [9], Eigen [10], cuBLAS [11], etc. This 
diversity of strategies and tools result in remarkable different 
inference performance from DL frameworks, even when they 
are running the same CNN model on a common hardware 
platform. Direct modelling of this heterogeneous performance 
is unmanageable due to the complexity of the frameworks and 
their rapid evolution.

In this context, research on CNN is usually focused on a 
straightforward assessment. For instance, some works dissem­
inate a throughput comparison of various DNN frameworks 
[12]—[14], including Caffe, TensorFlow, Torch, CNTK, MXNet, 
etc. Even so, actually focused on embedded platforms, fewer 
contributions have evaluated the efficiency of DNN software 
tools for computer vision at the edge [15]—[18]. All these 
benchmarks extract direct metrics from CNN inference. Al­
though more customized and specific CNN implementations on 
CPU-based embedded systems have been reported [19] [20], a 
generalized study should include popular DL frameworks that 
can operate on a wide range of embedded devices.

In this paper we explain performance of embedded DL in­
ference indirectly through metrics of hardware exploitation that 
can be easily measured, alternatively to such usually followed 
direct approach. The analysis is carried out on a Raspberry 
Pi 3 Model B [21] (RPi), an inexpensive embedded computer 
featuring a 4-core ARM Cortex A-53 CPU. We first report 
the performance achieved by four popular DNN frameworks 
in terms of throughput and CPU utilization when performing 
1000-category image classification. We then correlate these 
performance figures with hardware events registered during 
inference, pointing out the critical aspects at both software and 
hardware level affecting each other. Finally, we show that some 
of the registered hardware events exhibit a strong correlation 
with power consumption as well. Overall, we are setting the 
foundations for the next step in our research, namely the 
development of a methodology for simple empirical modelling 
of DL inference on CPU-based embedded platforms.

II. P e r f o r m a n c e  A n a l y s i s

A. Hardware Platform

All the experiments reported in this paper refers to the Quad 
Core ARM Cortex-A53 1.2GHz 64-bit CPU [22] [23] included
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in the Broadcom BCM2837 System-on-a-Chip (SoC) of the 
Raspberry Pi 3 Model B. Each core of this CPU is in turn 
an ARMv8-A processor capable of independently executing 
instructions.

Cortex-A53 processors exhibit two memory systems, namely 
Level 1 (LI) and Level 2 (L2). The LI memory system 
includes, per core processor, separate instruction and data 
caches (I-cache, D-cache), and a Memory Management Unit 
(MMU). The MMU in turn features one Translation Lookaside 
Buffer (TLB) -  a two-level cache for instruction and data that 
translates between virtual and physical addresses. Instruction 
caching and dynamic branch prediction are also allowed in 
order to increase overall performance and reduce power con­
sumption. The L2 memory system contains a unified cache, 
which is shared between the cores. Specifically, for the SoC of 
the RPi, LI amounts to 32KB whereas L2 comprises 512KB.

Each ARMv8-A core implements the so-called Advanced 
Single Instruction Multiple Data architecture -  commonly 
referred to as ARM NEON technology -  as well as vector 
floating-point (VFP) operations for acceleration [24],

In addition to the SoC, the Raspberry Pi features 1GB 
RAM LPDDR2 900MHz, where we load the CNN weights 
and keep intermediate results while running the networks. The 
non-volatile storage capacity of the system is provided by an 
attached micro-SD card. The operating system is Raspbian [25].

B. Software Frameworks

Caffe [26] implements convolutions as image-to-column 
transformation (im2col) plus General Matrix-Matrix Multipli­
cation (GEMM), using Basic Linear Algebra Subprograms 
(BLAS) as the back-end for GEMM. According to our tests -  
not reported in this paper -  OpenBLAS [9] is the BLAS library 
supported by the RPi CPU, and compatible with Caffe, that 
better leverages the four cores of the ARM Cortex-A5 3. Ten- 
sorFlow [27] expresses computations as static graphs, which 
are built just once and run repeatedly for inference. It makes 
use of the Eigen library [10] to generate efficient parallel code 
for multicore CPUs. We installed pre-built TensorFlow 1.3.0 for 
RPi [28]. This version exploits ARM hardware optimizations 
-  NEON and VFP -  for computational acceleration. OpenCV 
[29] implements a module that allows the use of pre-trained 
models for inference from other frameworks. We took CNN 
model files from Caffe. OpenCV version 3.3.1 was compiled 
to exploit both ARM NEON and VFP optimizations as well. 
Caffe2 [30] is designed to be lightweight, modular and mobile- 
oriented. It also uses static graphs for network definition and 
the Eigen library for matrix calculation. Caffe2 is optimized 
for ARM CPUs with NEON.

C. Inference Performance

One of the consequences of the high computational demand 
of CNN models is that the temperature of the RPi’s ARM 
Cortex-A53 SoC can rapidly increase during inference. This 
forces the CPU frequency, and thereby the throughput, to 
go down. To take this aspect into account, we measured the

TABLE I
Main  parameters defining  the assessed  CNN architectu res .

GoogLeNet ResNet-50 SqueezeNet-vl.l
Model Repository [31H33] [34]—[36] [37]—[39]

Top-1 (%) accuracya 69.2±0.4 72.6±0.1 58.3±0.0
Top-5 (%) accuracy3 89.0±0.1 91.0±0.0 80.0±0.1

Input size 1x224x224x3 1x224x224x3 1x227x227x3
#Outputs 1000 1000 1000

#Conv. layers 57 53 26
#Fully-Conn. layers 0

#weights ~7.0M ~25.6M ~1.2M
#MACs ~1.6G ~3.9G ~396k

a Accuracy measured over the validation set of the ImageNet ILSVRC 2012 dataset, 
without any data augmentation. Random initialization of weights leads to small 
deviations in accuracy even if it is the same model but trained on each framework.

following four performance metrics after each processed image 
over a long period -  6 minutes -  of continuous inference:

• Throughput. It is calculated as the inverse value of the 
total time required per image when batch size is set to 1 -  
this includes the time required to read and pre-processing 
the image, perform the inference, extract the metrics and 
save the results.

• CPU utilization. It was measured by using the Python 
p s u t i l  library.

• CPU frequency and temperature. We used the 
vcgencm d tool to check the variations of the SoC’s 
temperature and frequency caused by the CNN-based 
inference. Although the ARM Cortex-A53 CPU ideally 
operates at a maximum frequency of 1.2 GHz, the chip 
temperature can alter the instantaneous CPU frequency.

To identify performance trends on each DL framework, 
these metrics were measured for three CNNs with different 
architectures capable of recognizing 1000 image categories, 
namely SqueezeNet [40], GoogLeNet [41], and ResNet-50 
[42]. We used pre-trained implementations of these models 
provided by each framework [31]—[39]. Table I summarizes 
main architectural and operational aspects of them. Python was 
the coding language we used since it is the language through 
which all of the network definitions are available for all of 
the frameworks. Furthermore, all these DL tools use single­
precision floating-point data format (float32).

Fig. 1 depicts the temporal evolution of the metrics above 
defined when performing image recognition with SqueezeNet. 
Fig. 2 shows the average values of CPU utilization and through­
put for all the cases during the 6-minute period inference. The 
following aspects must be emphasized:

• CPU utilization is quite stable for each framework over 
the inference period, but its average varies significantly 
among frameworks. Caffe reaches the highest value for 
the three network models tested.

• There are different patterns of temperature evolution. 
When the temperature is approaching 80°C, the processor 
protects itself by downclocking, which in turn decreases 
the throughput. This has a great impact on the total number 
of processed images over the test period.

• In spite of the fact that Caffe is apparently the framework 
making the most of the CPU, its throughput is the lowest
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Figure 1. Extracted performance metrics when running SqueezeNet. Similar trends are observed for GoogLeNet and ResNet-50.
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Figure 2. Average values of CPU utilization (a) and throughput (b) during a 
6-minute period of continuous inference.

for the three CNNs. (Actually, we have observed this 
seeming contradiction for still two more models, namely 
Network-in-Network [43] and MobileNet [44].)

Next, we delve into the details of hardware exploitation in 
order to elucidate the underlying reasons for this behavior, in 
particular for the contradiction arising in Caffe between CPU 
utilization and throughput.

III. H a r d w a r e  E x p l o i t a t i o n  A n a l y s is

A. Methodology
We extracted statistics on the processing load and memory 

usage of the CPU for the four analyzed frameworks when per­
forming inference with SqueezeNet, GoogLeNet and ResNet- 
50. For the sake of a fair comparison, we set a fixed number of 
images, N  =  50, to be processed in all cases. Otherwise, the 
resulting metrics would be biased by the different inference 
pace of each framework. These 50 images were randomly

taken from the ImageNet dataset [45] -  using different input 
images does not change the quantitative outcomes of our study. 
The targeted parameters were obtained from the p e r f  tool 
[46], which gathers data through counters and event monitors 
provided by the Performance Monitoring Unit (PMU) included 
in the Cortex-A53 processor. In particular, we gathered data 
related to PMU hardware events [47]. In order to dismiss 
statistics related to the load of the CNN model weights -  
our analysis is focused on inference processing - , a two- 
phase approach was carried out. Firstly, we collected statistics 
when running the whole inference script (si). Secondly, we 
singled out the counts associated with the creation and load 
of the model architecture ($2). Thus, the statistics employed to 
compare hardware performance are derived as (s i —S2 ) / N,  i.e., 
statistics that represent per-image performance. In order to re­
duce estimation errors -  keep in mind that p e r f  provides count 
estimates - , we averaged the values from 5 measurements.

B. Experimental Results and Discussion

Fig. 3 depicts the most representative parameters among all 
the gathered statistics. Let us carefully examine them. First, 
note that the particular coding techniques and libraries making 
up Caffe render, for the RPi’s CPU, the highest number of 
instructions (Fig. 3(a)) and demand the highest number of 
memory accesses (Fig. 3(c)) in all cases. The processor does 
its best to cope with these requirements. That’s why the rates 
of instructions per second (Fig. 3(b)) and memory access per 
second (Fig. 3(d)) are also the highest for Caffe, which in turn 
explains the fact that this framework reaches the highest value 
of CPU utilization mentioned in Section II-C. However, even 
executing more instructions per second and fetching more data 
per second than any other framework, Caffe attains the lowest 
throughput due to its notably greater demand of processing 
and memory as a whole. We must also point out that Caffe 
is the framework for which the CPU applies branch prediction 
more extensively (Fig. 3(k)). This means that the processor
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Figure 3. Hardware event statistics registered for 50 images consecutively inferred.

executes instructions before knowing for sure whether they 
will be finally executed or not. If the prediction was correct, 
the result is available sooner, thereby accelerating inference. 
In the case of Caffe, the performance of the CPU in terms of 
branch prediction is poor (Fig. 3(1)), adding up instructions

uselessly executed. Concerning cache exploitation, Caffe is 
distinctively good at loading data at LI (Fig. 3(e)) which will 
be successfully fetched later on (Fig. 3(f)). The exploitation of 
L2 and TLB by Caffe is also notable (Figs. 3(g)-3(j)) -  note that 
the OpenBLAS library, exploited by Caffe, is highly oriented
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Figure 5. Alignment between throughput and one hardware metric for the 12 
combinations of assessed frameworks and networks. Note the logarithmic scale 
in the x-axis.

to this accomplishment [8]. This suggests that the main reason 
for the poor coupling between Caffe and this CPU could be 
a poor mapping between the high-level instructions in Caffe’s 
source code and the processor’s instruction set.

With respect to the other three frameworks, there are also 
differences to be highlighted. The instruction reduction with re­
spect to Caffe showed in Fig. 3(a) suggests a better exploitation 
of the ARM SIMD instruction set. In fact, these frameworks 
leverage the ARM hardware optimizations by compilation. Ten- 
sorFlow stands out as the most efficient framework, requiring 
the minimum number of instructions and memory accesses to 
complete the inference (Fig. 3(a) and Fig. 3(c), respectively). 
This characteristic, in conjunction with high rates of instruc­
tion execution and memory access (Fig. 3(b) and Fig. 3(d), 
respectively), enable the highest average throughput achieved 
by TensorFlow for GoogLeNet and ResNet-50; OpenCV is the 
best option for SqueezeNet (see Fig. 2(b)). The most effective 
framework in terms of branch prediction is Caffe2. Regarding 
cache memory exploitation, TensorFlow and Caffe2 present a 
similar performance. OpenCV makes a poor use of LI but is

TABLE H
Pearson  correlation  coefficient betw een  instantaneous power

CONSUMPTION AND THREE HARDWARE METRICS FOR GOOGLENET.

L l-d  cache loads /sec L2-d cache loads /sec Instructions /sec
Caffe 0.85 0.72 0.94

TensorFlow 0.95 0.88 0.92
OpenCV 0.89 0.66 0.89

Caffe2 0.82 0.79 0.80

the best by far on exploiting L2 (Figs. 3(e)-3(h)).
Concerning the differences between the three studied CNN 

architectures, number of executed instructions in Fig. 3(a) 
exhibit a concordance with the number of MAC operations 
reported in Table I -  although each framework depicting a 
distinctive relationship, as explained above. Likewise, the more 
weights the network has (Table I), the more data memory ac­
cesses it requires (Fig. 3(c)). In addition, the extracted hardware 
metrics have a remarkable correlation with throughput for all 
the networks as highlighted in Fig. 5, where previously reported 
values are scattered showing a nearly linear pattern.

C. Power Consumption
Besides explaining throughput and CPU usage as discussed, 

the statistics extracted with the p e r f  tool also exhibit corre­
lation with power consumption. Fig. 4 depicts instantaneous 
power measured with a Keysight N6705C DC Power Ana­
lyzer vs. three hardware metrics simultaneously sampled every 
10 milliseconds. This figure correspond to four consecutive 
GoogLeNet inferences running on Caffe. Similar results have 
been obtained for the other frameworks and networks. Table II 
summarizes the Pearson correlation coefficients between these 
metrics and power consumption for each framework running 
GoogLeNet. Note that the coefficients are greater than 0.66 
in all cases, reaching a value of 0.95 for LI D-cache accesses 
during inference on TensorFlow. Taking into account the impor­
tance of power consumption in embedded vision applications,
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its relevance in optimization loops [48], and how difficult its 
direct measurement is -  supply pins must be accessible and 
special equipment like the aforementioned power analyzer is 
required the proposed hardware metrics constitute a simple 
way to characterize embedded platforms.

IV. C o n c l u s i o n

An optimal selection of DL software framework and DNN 
architecture for a particular embedded hardware platform def­
initely make a difference in terms of performance. Specific 
coding strategies and acceleration libraries implemented by 
the frameworks exploit the underlying hardware in diverse 
manners, giving rise to a wide range of inference rates and 
power profiling even on the same network model. Instead of 
a direct modelling of the expected performance and power 
consumption of DL frameworks and DNNs on a particular 
CPU-based platform, we propose to carry out such modelling 
through metrics of hardware exploitation. These metrics can 
be easily extracted through standard tools. In this paper we 
present a preliminary study that supports the applicability of 
our proposed approach. Our next step will be to develop a 
performance model based on such metrics and insert it into 
an optimization loop in order to determine the best selection 
according to prescribed specifications.
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