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João Manuel Tavares§ and Rodrigo Veras∗
∗Universidade Federal do Piauı́, Teresina, Brasil

† Mestrado Profissional em Sistema Produtivo/CEETEPS, São Paulo, Brasil
‡ Universidade Federal de Ouro Preto, Minas Gerais, Brasil

§Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial, Departamento de
Engenharia Mecânica, Faculdade de Engenharia, Universidade do Porto, Porto, Portugal

Email: {fsantos, rveras}@ufpi.edu.br, {elineide.silva.inf,lhvogado,marciaito2000}@gmail.com,
andrea@ufop.edu.br, tavares@fe.up.pt

Abstract—A complication caused by diabetes mellitus is the
appearance of lesions in the foot region called Diabetic Foot
Ulcers (DFU). Delayed treatment can lead to infection or ulcer
ischemia, leading to lower limb amputation in an advanced stage.
This article proposes the DFU-VGG, a convolutional neural net-
work (CNN) inspired by convolutional blocks of VGG-19 but with
smaller dense layers and batch normalizations operations. To
specify the DFU-VGG parameters, we fine-tuned seven different
CNN architectures using two image datasets containing 8,250
images with different color, contrast, resolution, and texture
features. The proposed evaluation identifies four classes: none,
ischemia, infection, and both. Our approach achieved 93.45% of
accuracy and an “excellent” Kappa index of 89.24%.

I. INTRODUCTION

An estimated 536.6 million people will live with diabetes
by 2021 [1]. This number is expected to increase by 46% in
2045. This disease can cause many blindness, cardiovascular
disease, kidney failure, and diabetic foot ulcers.

Ulcers result in wounds in the foot region, usually caused by
trauma, repetitive mechanical stress, or continuously applied
mechanical stress. Diabetic foot ulcers (DFU) need proper
treatment, as they can lead to the amputation of infected limbs
in an advanced stage. Thus, an early diagnosis can delay the
development of the disease and prevent adverse scenarios.

Severe injuries can be classified as infection or ischemia.
Infection, Figure 1b, is recognized by the presence of in-
flammation or purulence, as well as increased redness around
the ulcer. Ischemia, Figure 1c, is the inadequate circulation
of blood through the lesion, being visually identified by the
presence of poor reperfusion in the gangrened foot or toes. In
some cases, as in Figure 1d, the ulcer has both ischemia and
infection. However, after treatment, the ulcers reach a healing
state and resemble healthy skin, as shown in Figure 1a.

Monitoring diabetic foot injuries is usually done by vi-
sually inspecting the injured areas and observing the signs
and symptoms of diabetes. Thus, the assessment relies on
the specialist’s subjective criteria. In this context, using a
diagnostic assistance system can support the specialist and
enable automatic monitoring of injuries.

(a) Ulcer in
Healing

(b) Infection (c) Ischemia (d) Infection
and Ischemia

Fig. 1. Examples of diabetic foot ulcer images.

Therefore, this work proposes a neural network for clas-
sifying diabetic foot injuries. To do this, we evaluated and
refined the architecture of seven general-purpose CNNs. The
seven CNNs were analyzed in five different scenarios: (1)
their original architectures, (2) changing the dense layers,
(3) addition of dropout layers (DP), (4) addition of batch
normalization layers (BN), and (5) addition of dropout and
batch normalization.

This article is organized as follows: in Section II recent
works and methodologies on the problem under study are
presented. Section III presents the proposed method, the image
datasets, the applied techniques, and the evaluation metrics
adopted in the development work. In Sections IV, the results
and their discussion are presented. Finally, conclusions and
future work are presented in Section V.

II. RELATED WORKS

The problem of classifying diabetic foot injuries in recent
years has been addressed by some studies in the literature
using automatic methodologies. Table I summarizes the found
works in terms of year of publication, used classification
technique(s), number of images, number of classes, and the
performance achieved, which can be as to accuracy (A),
sensitivity (S), specificity (E), precision (P ) and area under
the curve (AUC).

Analyzing the works indicated in Table I, one can realize
that the approaches, in the majority, combine neural networks
with data augmentation techniques. Furthermore, there is no
standard regarding the number of images, the number of
classes, or the choice of evaluation metrics.978-1-6654-9578-3/22/$31.00 ©2022 IEEE



TABLE I
SUMMARY OF THE IDENTIFIED STATE-OF-THE-ART WORKS.

Work Classification technique(s) Images Classes Performance(%)
[2] Neural Networks, Bayesian Classifiers 113 5 A: 91.50
[3] SVM 100 2 S: 73.30 S: 94.60
[4] DFUNet 1,423 2 A: 92.50
[5] DFU-QUTNet, SVM, KNN 754 2 P: 95.40
[6] InceptionV3, ResNet50, InceptionResNetV2,

SVM
1,459 2 A Isc: 90.00

A Inf: 73.00
[7] Neural Networks, Naive bayes, Neural Net-

works, Decision tree
15,762 2 A Isc: 97.90

A Inf: 99.60
[8] DFU SPNet 1,679 2 A: 96.40
[9] AlexNet, Sliding window, MLP 400 3 A max: 91.90

A average: 87.70
[10] BiT-ResNeXt50 15,683 4 AUC: 88.49

P: 60.53

III. MATERIALS AND METHODS

This section presents the DFU-VGG, a CNN capable of
classifying four patterns of diabetic foot ulcers. We refined
seven CNN architectures, evaluated different combinations of
fully connected layers, and the use of dropout and batch
normalization operations.

A. Proposed Method

DFU-VGG is a convolutional neural network that uses
VGG-19 as a backbone. Batch normalization operations were
introduced after convolutional blocks. In addition, we opted for
new dense layers with lower dimensionality. Figure 2 presents
the changes made to the VGG-19 architecture that led to DFU-
VGG.

Fig. 2. Changes done to the original architecture of VGG-19 for the effective
classification of diabetic foot ulcers.

B. Image dataset

In the experiments, we used the public image dataset of
diabetic foot ulcers named Diabetic Foot Ulcer (DFU) in two
versions: 2020 and 2021. The images of patients’ feet with
DFU at Lancashire Teaching Hospitals were captured for five
years with three cameras after debridement (removing necrotic
and devitalized tissue). The image diagnosis (ground truth)
was developed with the help of two specialist physicians. The
images were captured centered on the lesion area and had
different dimensions; the smallest has 34×31 pixels, while the
largest has 1103×1127 pixels.

The images were split into four classes: (1) none, containing
images of healthy skin, ulcers in the process of recovery,

and ulcers without infection or ischemia; (2) infection; (3)
ischemia; and (4) both, with ulcers images containing infection
and ischemia at the same time. The DFU 2020 and DFU 2021
datasets contain 3,833 images of the none class, 253 ischemia,
3,334 infections, and 830 both.

C. Data augmentation

It is common sense that CNNs need a large amount of
data to be properly trained because they have millions of
parameters. Even a tiny CNN requires thousands of images to
be trained. One of the possibilities to reduce CNN overfitting
and improve the generalization of the trained models is the
application of data augmentation techniques.

In this way, we use the data augmentation operations
provided by the Keras API. In this strategy, operations on
images are applied randomly and at runtime. Our experiments
used the following parameters: rotation interval was 40º; shear,
zoom, vertical, and horizontal, translation interval was equal
to 0.2; we applied vertical and horizontal flip. In addition, we
apply the reflection fill technique to replace the black pixels
resulting from rotation and translation operations. Finally, we
normalized the image pixels to range from 0 to 1. Applying
this set of operations generated an image dataset 20 times
larger than the initial.

D. Evaluated Architectures

We evaluated CNNs models developed for the ImageNet
Large Scale Visual Recognition Challenge. Kornblith et
al. [11] concluded that the better the performance of a CNN
in the ImageNet dataset, the better the transfer of learning
to other datasets. The evaluated architectures are indicated in
Table II, being referred in terms of topological depth of the
network, number of parameters, and year of publication.

TABLE II
OVERVIEW OF THE EVALUATED DEEP LEARNING MODELS.

CNN Depth Parameters Year Reference
VGG-16 23 138,357,544 2014 [12]
VGG-19 26 143,667,240 2014 [12]
ResNet50 168 25,636,712 2015 [13]
InceptionV3 159 23,851,784 2016 [14]
DenseNet201 201 20,242,984 2017 [15]
MobileNetV2 88 3,538,984 2018 [16]
EfficientNetB0 240 5,330,571 2019 [17]

E. Transfer Learning

The transfer learning technique is widely applied when it is
not desired (or is not feasible) to train all the parameters of a
CNN from scratch.

After analyzing the shallow fine-tuning (SFT) and deep
fine-tuning (DFT) approaches, we chose to use the DFT. The
DFT approach refines all parameters of the CNN, from the
shallowest to the deepest layers. Although it has a higher
computational cost and requires a more significant amount of
data than SFT, it can benefit applications where the problem
domain is different from that used in network training. In
the case of this work, in particular, the natural photographic



images from the ImageNet dataset and the images of diabetic
foot ulcers are from very different domains.

F. Dropout and batch normalization

Overfitting and extended training time are two critical
challenges in CNNs. Dropout and batch normalization are two
well-recognized strategies to tackle these challenges.

The dropout is a regularization technique. Its main feature
is to disable, temporarily, some neurons. This effect provides
the equivalent of different training architectures since different
neurons will be disabled during the training (in other itera-
tions). The use of dropout tends to reduce CNN complexity
and overfitting.

The time for a network to converge depends on initializing
the hyperparameters and using small learning rates. Also, a
layer depends on previous layers, so minor modifications in
one layer can be intensified as they flow to the subsequent
layers. Batch normalization normalizes the input of each layer
of the network. Thus, the training time can be reduced to allow
higher learning rates.

G. Evaluation Metrics

To evaluate the performance of CNNs, we calculated the
metrics Accuracy (A), Precision (P ), Recall (R), F1-score (F )
from the confusion matrix values.

In addition, we calculate the kappa index (K). This index
considers all elements of the confusion matrix, not just those
on the main diagonal, which occurs, for example, with the
accuracy of the global classification. In this way, it adequately
represents the confusion matrix and is commonly used as an
appropriate evaluation measure.

The K values are between 0 and 1 and could qualified in
five “status”: K ≤ 0.2: Bad; 0.2 < K ≤ 0.4: Fair; 0.4 <
K ≤ 0.6: Good; 0.6 < K ≤ 0.8: Very Good and K > 0.8:
Excellent [18].

IV. RESULTS AND DISCUSSION

The CNNs in their original settings were fine-tuned with
input images with 224×224 pixels. The training of networks
in all configurations was performed with 500 epochs.

We applied the stratified k-fold cross-validation technique
with k=5. A confusion matrix was computed for each fold,
and the arithmetic average and standard deviation of the five
folds achieved from each evaluated CNN was calculated.
In addition, Kappa (K) was multiplied by 100 to facilitate
understanding of the table. Table III presents the better results
for the five evaluated scenarios (one per line).

Initially, we fine-tuned the VGG-16, VGG-19, InceptionV3,
ResNet50, DenseNet201, MobileNetV2 and EfficientNetB0
networks in their original configurations. The first row of the
table shows that DenseNet201 achieved the best results in all
used metrics.

The second row presents the best result of the second
experiment. In this experiment, we preserved the CNNs con-
volutional layers, inserted a Global Average Pooling layer,
and then the fully connected layers in two scenarios: (1) a

connected layer with the number of neurons assuming the
following values: 256, 512, and 1024, and (2) two fully
connected layers with configurations of 512-256, 1024-256
and 1024-512 neurons. These configurations led to fewer
neurons than original CNNs and, consequently, to a smaller
number of weights to be trained. VGG-19 with a dense layer
of 512 neurons obtained the best results and a slight standard
deviation, indicating CNNs stability in classifying diabetic foot
ulcers.

The third row presents the best result of the third experi-
ment. After each block of dense layers, we inserted a dropout
layer. Although the Kappa values could be considered “excel-
lent”, and there has been a gain in training time, the results
obtained were lower than those obtained without dropout.

The fourth row presents the best result of the fourth exper-
iment. We added batch normalization layers in the VGG-16
and VGG-19 (since the other CNNs have normalization layers
in their original architecture) in each convolutional block and
before the MaxPooling. . VGG-19 networks, with the addition
of the normalization layer, obtained accuracy, precision, recall,
and F1-Score values above 93.45% and Kappa index 89.24%,
which is considered excellent. The normalization layer in
each block of VGG-19 models significantly increased the
classification success rate.

The results of VGG-19 with a fully connected layer with
512 neurons and with the addition of batch normalization
layers were the best ones found in this study. Therefore, this
configuration is the proposed solution model, and we named
it DFU-VGG.

The fifth row presents the best result of the fifth experiment.
Batch normalization layers were added in the sequential net-
works VGG-16 and VGG-19, in each block of convolutional
layers, and before the MaxPooling layers. Dropout layers
were added after MaxPooling layers. We can realize that the
metrics’ values were lower than those of the DFU-VGG (line
four).

Table IV presents the DFU-VGG confusion matrix with the
average of the five folds. It can be observed that 93.60% of
the ischemia images and 91.50% of the infection images were
correctly classified. Among the results, the most worrying
issue is that 7.65% of the images of ulcers with infection were
classified as ulcers without infection and without ischemia,
which would make this percentage of patients left without
adequate treatment, believing that these ulcers were in the
healing process.

Figure 3 shows the heat maps with the activation regions
that DFU-VGG considered most important during feature
extraction and, consequently, classification.

In the activation maps shown (Figure 3), the blue tones mean
low activation and indicate that the corresponding regions are
of minor relevance for the final classification; on the other
hand, the red tones are associated with the regions whose
characteristics most contributed to the classification. Interpret-
ing results from CNNs is still a challenge for researchers,
but the DFU-VGG activation maps indicate that it gives more
importance to regions with ischemia and infection patterns.



TABLE III
CLASSIFICATION RESULTS OBTAINED WITH THE ORIGINAL CNNS (BEST VALUES IN BOLD).

Experiment CNN A(%) P (%) R(%) F (%) K(%)
Original DenseNet201 75.06±0.71 66.58±0.26 75.06±0.71 70.24±0.58 56.03±1.10

FC Layers VGG-19 512 91.40±0.35 91.45±0.37 91.40 ±0.35 91.40±0.37 85.88±0.59
Dropout VGG-19 + DP 88.86±0.40 89.00±0.39 88.86±0.40 88.87±0.41 81.70±0.65

Batch Normalization DFU-VGG 93.45±0.34 93.56±0.30 93.45±0.34 93.46±0.34 89.24±0.58
Dropout + Batch Normalization. VGG-19 92.36±0.56 92.46±0.54 92.36±0.56 92.36±0.56 87.43±0.93

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 3. Ulcer and heat map correspondent with activation regions for classes: none (a, b), infection (c, d), ischemia (e, f) and both (g, h).

TABLE IV
DFU-VGG CONFUSION MATRIX.

Predicted
Actual None Ischemia Infection Both
None 95.17% 4.5% 0.20% 0.07%

Ischemia 7.65% 91.50% 0.42% 0.42%
Infection 1.20% 0.43% 93.60% 4.80%

Both 0.36% 2.40% 3.75% 93.45%

V. CONCLUSIONS AND FUTURE WORK

This work presented a new CNN architecture, based on
VGG-19, to classify diabetic foot ulcers, considering four
classes. We evaluated several CNNs models, fine-tuning
schemes, and other parameters to set up the proposed ap-
proach. We developed a more accurate and robust DFU
classification method than the strategies presented in state-of-
the-art works.

The results obtained were promising, but we believe they
can be improved. In particular, we aim to increase classifi-
cation accuracy and reduce the percentage of infection class
images classified as none. We will carry out experiments
with other CNNs and investigate the formation of multilevel
CNNs. Finally, we intend that specialist physician analyze the
computational results.
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