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Abstract—Robust functionality of autonomous driving vehicles
relies on their ability to detect obstables and various scenarios on
the road. This can be only achieved by applying robust, fast and
efficient AI-based signal processing to radar data. In this work we
present an empirical investigation on the question, whether one
can apply artificial neural networks (ANNs) directly to frequency
modulated continuous wave (FMCW) radar raw data. We show
that preproceessing is not necessary if one has enough raw data.
In our experiment we have data of 153 648 frames collected with
a 60 GHz FMCW radar. We compare systematically the options
of preprocessing the data using variational autoencoder, applying
traditional preprocessing or omit data-preprocessing and apply
ANN directly to raw data. We show that the last option results
in 28% faster signal processing and highest accuracy. This is
a promising result, since it enables edge computing and direct
signal processing at the sensor level.

Index Terms—Artificial neural networks, Data preprocessing,
Radar applications.

I. INTRODUCTION

In recent years, Artificial Neural Networks (ANN) have
been used to extract relevant information from data. These
networks have been proven to provide high accuracy results
for classification tasks using multiple input data types, such
as images or parameters [1]. At the same time, numerous
ANN structures have been developed to adapt to specific tasks,
such as image classification and target detection. As a result
of this, ANN structures become more complex and integrate
capabilities to further study data for deeper analysis.

This work is a result of a collaboration between the projects ”KI-Flex”
(project number 16ES1027), funded by the German Federal Ministry of
Education and Research (BMBF) within the funding program Microelectronic
from Germany innovation driver, and the project ”TEACHING” (project
number 871385) funded by the Horizon 2020 program.

In most cases, the input data requires to be preprocessed
before feeding it into an ANN to filter irrelevant data, as
well as transform the data into a more explicit format or to
execute a first feature extraction [2]–[4]. The selection of the
preprocessing technique depends on the input data type as well
as the purpose of the application. In the case of frequency
modulated continuous wave (FMCW) radar sensors, the raw
data is often preprocessed to extract the Rangle-Doppler Map
(RDM) or Rangle-Angle Map (RAM) [3]. These formats
are often selected due to their easy feature representation
in contrast with the raw radar data. However, recent works
have proven it is possible to execute this preprocessing using
an ANN [5]. As a result, the efficiency and accuracy of
transforming radar data in contrast to the use of raw data when
using ANN models is not obvious and has not been reported
in the literature so far. Therefore, we will focus in this paper
on studying the effect of preprocessing the radar data prior
to applying it to an ANN. Consequently, it will be discussed
under which conditions these preprocessing techniques may
be relevant or when it is better to train an ANN model using
the raw data assuming the ANN will be able to execute the
data preprocessing at the same time it classifies it.

II. STATE OF THE ART

Traditionally, radar data is preprocessed in order to extract
high level features from the detected targets, such as range and
speed. The most popular technique to extract these features is
the generation of the RDM using a double Fourier transfor-
mation to study the different samples measured by each of
the antennas of the radar sensor [3]. This data can be further
preprocessed to extract the RAM from each of the detected
clusters in the RDM using the beamforming algorithm [6] or
MUSIC algorithm [7] among others.
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However, the effect of different preprocessing techniques
in the overall performance is not always clear. Qi Z. et
al. [8] investigated, in the domain of computational fluid
mechanics, the effect of different preprocessing techniques
on the prediction accuracy of non-isothermal indoor airflow
distributions. Multiple preprocessing techniques were applied
to the initial data to compare the effect on the output result
from the ANN. They found out that most of the possi-
ble preprocessing techniques (standardization, normalization,
proportion and nondimensionalization among others) led to
similar results. However, they concluded it was neccesary to
preprocess the data since the results achieved in the manuscript
with unprocessed data were not comparable to preprocessed
data.

In the specific case of radar sensors, as the ones studied in
this manuscript, researchers have worked on trying to execute
the radar data preprocessing using ANNs to benefit from
the acceleration immanent to ANNs when using emerging
devices such as Tensor Processing Units (TPU) or high-
power Graphic Processing Units (GPU). Stadelmayer T. et
al. [5] followed this research line to develop a parametric
Convolutional Neural Network (CNN) that is able to mimic
the traditional preprocessing technique applied to raw radar
data to extract the RDM. This CNN is based on a 2D sinc
or a 2D wavelet filter kernel to extract features from the
raw data. This technique was applied to human activity data
that was later classified. As a result of this, they achieved
a classification accuracy of 98.8% in comparison with a
traditional CNN based on preprocessed data, which achieved
a 93.2% accuracy. Our investigation determines the limits and
characteristics of different preprocessing techniques.

III. DESIGN OF COMPARISON

We compare three different preprocessing approaches on a
radar dataset recorded with a moving data collection platform
whose task was to follow a preceding target as shown in Fig. 1.
The only input for the autonomous vehicle is the information
obtained by the radar sensor. Detecting the distance to the
vehicle in front, which determines the speed, is much easier
than determining the angle in which the vehicle is located,
which correlates with the steering position. Therefore, we will
focus exclusively on angle determination in this study.

A. Dataset Description

Valtl J. et al. [9] recorded multiple datasets with a FMCW
radar on various scenarios with a recording setup as shown
in Fig. 1. Using these datasets we investigate the need of
preprocessing. The dataset consists of 153 648 frames in
total and contains recordings of different days and times and
environment conditions. Each frame includes the raw radar
data from two horizontally aligned antennas and a label. The
radar operation parameters are chosen to be 64 chirps per
frame and 128 samples per chirp. Each sample value coming
from the ADC is within the boundaries of [0, 1]. The label
of the frame is the current steering, which is predicted by
the NN. The steering correlates with the position of the prior

vehicle, but is not directly the angle of arrival under which
it is detected. The steering value for each frame is within the
boundaries of [-1, 1] representing left and right steering.

Fig. 1. Data recording setup with used 60 GHz FMCW radar.

For all tests 15 115 consecutive frames of one single take
are used.

The remaining 138 533 frames, which will be referred to as
the Aset or a subset of it, are split in a training and validation
dataset. Where the split into training and validation is always
performed with the ratio 3:1.

B. Three Different Networks with Different Stages of Prepro-
cessing

The different networks are supposed to handle the same
tasks, where one network is given the data following the
traditional data processing pipeline, another approach uses a
variational autoencoder (VAR) to replace the preprocessing
and the third approach processes the data with no preprocess-
ing.

All networks are trained with the same set of hyperparam-
eters, that can be found in the following table, except for the
loss function of the VAR during its training with the decoder.

TABLE I
HYPERPARAMETERS

hyper parameter value
optimizer adam
loss function mean absolute error
learning rate 1 · 10−4

decay 5 · 10−7

early stopping true
minimum delta 10−10

patience 5
batch size 512
epochs 300

Especially the hyper parameters that lead to a termination of
the training process were chosen in such a way that there is no
substantial improvement after about 30 epochs, so that early
stopping, after a patience of 5 epochs, with less improvement
than the minimum delta, is triggered. The exact values were
determined experimentally within the course of several test
runs.
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Fig. 2. Traditional preprocessing pipeline.
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Fig. 3. Architechture of network with RAM or RAW as input.

1) Traditional RDM and RAM as Input: With this tradi-
tional approach all raw data gets passed through the prepro-
cessing pipeline shown in Fig. 2. The RDM for each antenna is
achieved by two Fast Fourier Transformations (FFTs). From
the RDMs of multiple antennas the RAM is computed. Its
output is the input of the ANN, whose architecture is shown
in Fig. 3.

2) VAR to Overcome RDM and RAM Computation: At first
a VAR is trained on the entire Aset where the latent dimension
is chosen to be 30. The architecture of the encoder is shown
in Fig. 4. The VAR learns to reconstruct the raw data that it is
given as an input. Training with the entire Aset is legitimate
as the encoding part of the VAR will act as a replacement of
the traditional RDM and RAM computation and its training is
independent of the later prediction with the regression block.

The setup and selection of hyperparameters for the VAR are
given and explained in detail in [10].

Once the VAR is trained to reconstruct the raw data with
the decoder, the weights of the encoder are frozen and the
regression block is trained and used to predict the label. During
training of the regression block, the entire Aset is not always

used, but only a subset, as shown in Fig. 5, to investigate the
performance of the regression block with limited amount of
samples.

3) RAW as Input: The last approach is to train a NN that
does not require any preprocessing on the data, but only takes
the raw data as an input to predict the label. In fact we use the
same architecture as the one for the RAM network and only
rearrange the dimensions of the RAW data so that the number
of antennas represents the dimension of the filter channel.

IV. EXPERIMENTAL RESULTS

The following results are the average of 3 different runs,
initializing different networks, with randomly selected splits
of the datasets.

The prediction quality q of the networks describes their
performance and is expressed through the following formula:

q =

∑N
n |pn − yn|

N
, (1)

where N is the amount of frames considered for the evaluation.
The distance of the output prediction pn of the network for
each frame n and the corresponding correct label yn are
averaged over the entire evaluation dataset, which for all tests
consists of the same data, as described in III-A.

Fig. 5 depicts the networks performance dependency on the
amount of samples that were used during the training.

The following table shows the network size and the com-
putation time to evaluate the test dataset. The evaluation time
of the traditional approach includes the computation of the
RDM and the RAM. Both the network size and the runtime of
the networks, the VAR-encoder + regression block on the one
hand and the RAW-direct-input on the other hand are similar
since the network structure is almost the same, except that in
the VAR-endocer the preprocessing is learned a priori, which
makes it perform especially well already with a small number
of available samples.

V. CONCLUSION

The results in Fig. 5 clearly show in which scenario which
topology is most suitable, depending on the amount of avail-
able training data. In case of extremely few training data being
available a convolutional autoencoder gives the best results
though due to its bottleneck at the latent space there seems
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Fig. 4. Architecture of the VAR with the decoder to reconstruct the raw data and the regression block to predict the label.
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Fig. 5. Dependency of the prediction quality q and the amount of available
training and validation samples.

TABLE II
NETWORK SIZE AND EVALUATION TIME OF THE PROPOSED METHODS.

Network architecture /
its input

NN size
in MB

evaluation time
in seconds

(RDM & RAM) → NN 0.75 42.0
RAW 1.243 30.4
VAR +
encoder

decoder 1.2 + 1.8 —
regression block 1.2 + 0.013 30.3

to be a glass ceiling that can not be overcome independent of
the amount of available training data. Whereas the traditional
approach with the computation of the RDM and RAM leads
to better results, if more training data is available. In case of
the availability of a very large amount of training data, the
approach to directly forward it to the NN without any sort of
preprocessing leads to the best results in terms of error and
execution time.

In terms of speed the methods that are purely ANN based
are 28% faster than the traditional data processing pipeline
which further emphasises the advantages of pure NN based
algorithms, especially as an increase of performance has to be
expected for TPUs, thus accelerating ANN approaches even
more.

Regarding the size of the networks, models that work on
preprocessed data are smaller due to the dimension loss during
the preprocessing. The encoder of the VAR on the other hand
is rather large as its supposed to extract the features of the
preprocessing.

A limitation of this investigation is its restriction of only
considering a single dataset, which will be tackled in a follow-
up paper.
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