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Abstract—The automatic detection of gait anomalies can lead
to systems that can be used for fall detection and prevention. In
this paper, we present a gait anomaly detection system based on
the Matrix Profile (MP) algorithm. The MP algorithm is exact,
parameter free, simple and efficient, making it a perfect candidate
for on the edge deployment. We propose a gait anomaly detection
system that is able to adapt to an individual’s gait pattern
and successfully detect anomalous steps with short latency. To
evaluate the system we record a small database of enacted
anomalous steps. The results show the system outperforms a
more complex Neural Network baseline.

Index Terms—gait, anomaly, matrix profile, fall detection, edge

I. INTRODUCTION

Certain neurological disorders reflect on an individual’s
ability to maintain stable gait. This can lead to falls and cause
significant physical, emotional and financial setbacks for the
individual and their family, as well as a burden to health-care
providers [1], [2]. Even though 46% of neurological patients
fall at least once a year, potential predictors of falls are poorly
investigated and understood [3].

There are two general approaches to analyzing the causes
of falls: fall risk assessment through clinical investigations
[3]–[6], and computerized gait analysis [1], [2], [7]–[9]. In
[3], the authors distinguish fallers from non-fallers among
neurological patients, based on spatio-temporal, variability and
asymmetry gait parameters. Similarly, [7] make a retrospective
classification between fallers and non-fallers among patients
with Multiple Sclerosis based on accelerometer and gyroscope
data, applying deep learning models. The desire is to develop
early, automatic prediction of missteps that might cause falling
and a way to intervene and prevent it.

The wrong step in one’s gait is an anomaly, or outlier, in
the sequence of normal steps [10]–[12]. Detecting anomalies
in streaming data is a challenging task: (i) the stream is
infinite, which makes storing the entire stream impossible;
(ii) the stream contains mostly normal instances and much
less anomalies; and (iii) streaming data evolves over time,
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imposing the need for adaptation [11], [13]. When dealing
with anomalies in gait, there’s an additional challenge in that
there is both interpersonal variability, i.e. each person’s gait is
unique, as well as intrapersonal variability as one’s gait is not
set in stone.

Solving the problem requires a robust algorithm that will
work on streaming data, in an unsupervised and automated
fashion, and that will be able to detect the anomaly with
the highest possible accuracy as early as possible, a problem
termed early classification of time series [14]. Many anomaly
detection algorithms exists, supervised and unsupervised, yet
the vast majority of them are unsuitable for real-time streaming
applications [15]. Moreover, algorithms operating on small
data, e.g. shapelets [16], are still in its nascence.

In this paper, we present a gait anomaly detection system
based on the Matrix Profile (MP) algorithm [17]. The MP algo-
rithm is exact, simple and parameter free, with low complexity.
Additionally, it is shaplet-based and thus interpretable [18]. We
first explore the plausibility of using the MP as a basis for a
gait anomaly detection system and then develop it’s design. To
evaluate the system’s performance we record a small database
of enacted anomalous steps. Finally, we compare the proposed
system to a more complex Neural Network baseline.

II. MATRIX PROFILE

The following definitions of the MP are slightly modified
from [17], [19] and [20], in favor of mathematical correctness
and conciseness. A time series T = {tk}nk=1 is a sequence
of n real values. The sub-sequence of m consecutive terms of
T, starting from the position i, where 1 ≤ i ≤ n − m + 1,
will be denoted by Ti,m. Thus, Ti,m = {tk}i+m

k=i . The
sub-sequences will be compared using the z-normalized Eu-
cledian distance. An all-subsequences set AT of a time
series T is an ordered set of all possible sub-sequences of
T obtained by sliding a window of length m across T:
AT = {T1,m,T2,m, . . . ,Tn−m+1,m}. The matrix profile
(MP) is a vector of length n−m+1 corresponding to all-sub-
sequences set, whose i-th location is the distance of the sub-
sequence Ti,m, to its nearest neighbor, under z-normalized
Euclidean Distance.
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TABLE I
DATASET OF ANOMALOUS STEPS RECORDED FOR THE ANALYSIS.

Pathology recordings ok ab duration [min]
Antalgic 7 156 42 6.61
Ataxic 4 82 27 3.90
Diplegic 6 139 36 6.05
Hemiplegic 5 100 28 6.61
Hyperkinetic 4 95 30 4.04
Parkinsonian 4 100 30 4.07
Slap 5 105 37 4.59
Steppage 9 185 58 7.05
Trendelenburg 4 85 30 4.13
Total 48 1047 318 44.60

Note that trivial matches are avoided, that is the sub-
sequences that overlap at least in the half length with Ti,m

are not taken into account in computing the i-th component
of the matrix profile of T ( [17]). Given a time series T, the
sub-sequence Ti,m is said to be the discord of T if Ti,m has
the largest distance to its nearest (non-trivial) match.

In the whole algorithm there is only one parameter to set –
the length of the sub-sequence. In our application scenario, this
would correspond to the length of a single step. Extracting the
motif, i.e. reoccurring pattern, and discord from our generated
gait data set means extracting the normal and anomalous step,
correspondingly. We used the STAMP (Scalable Time series
Anytime Matrix Profile) [17] and STOMP (Scalable Time
series Ordered-search Matrix Profile) [17], [21] algorithms
for generating the matrix profile and detecting both motif and
discord of particular time series.

III. DATASET

We recorded a small dataset that includes anomalous steps
dispersed amidst normal walking patterns by a single male
subject on a hard surface. The anomalous steps were meant to
mimic pathological step patterns from different disorders. In
total 9 pathological step patterns were included in the dataset
as shown in Table I. The recording protocol comprised of
walking a straight line of around 10 steps and acting out
a pathological step pattern in the middle. Each recording
contains around 4 stretches of 10 steps.

We recorded the data using a Shimmer Inertial Measurement
Unit (IMU) sensor placed on the foot of the subject that
records accelerometer and gyroscope signals in the 3 axes
[23]. All the data was annotated in a two-step process: (i)
steps were automatically segmented, q.v. Sec V-A, and (ii)
the segments were manually corrected and labeled with three
labels: “ok” for a normal step, “ab” for an anomalous step.

IV. PLAUSIBILITY

We first explore the plausibility of using the MP for anoma-
lous gait detection by implementing a naı̈ve algorithm shown
in Fig. 1. In it, signal samples are accumulated in a Frame
buffer, which is updated at a specified hop length analogous
to a sliding window. As new samples are added to the Frame
buffer, the oldest ones are transferred to a larger History buffer.
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Fig. 1. Architecture of the naı̈ve implementation of a MP-based anomaly
detection algorithm.

Fig. 2. Visualization of the functioning of the naı̈ve algorithm for a sample
acceleration signal from the database (top plot) in which there are 7 normal
steps followed by 2 anomalous steps and then 3 more normal steps. The
contents of the Frame and History buffers are highlighted in violet and green.
The MP discord is calculated for each update of the Frame Buffer (bottom
plot) and is compared to a threshold (green) raising an alarm if it goes above
(red lines).

The contents of these two buffers overlap up to the specified
exclusion zone for the MP algorithm (25%).

For each update of the Frame and History buffers, the MP
is calculated by using the Frame buffer to query the History
buffer. The value for the MP is then compared to a discord
threshold and if larger the system activates an Anomaly alarm.
The Frame buffer size, i.e. the subsequence length m, and the
discord threshold are the two critical system parameters.

Fig. 2 shows a qualitative inspection of the naı̈ve algorithm
for a sample acceleration signal. We can see that the algorithm
does indeed successfully detect the onset of anomalous steps
raising an alarm, thus validating the approach.

V. MP-BASED GAIT ANOMALY DETECTION SYSTEM

In the results from the naı̈ve implementation, we can see that
there is a problem at the start of the signal, where it generates
false alarms. This is because at this point in time the History
Buffer does not contain any step signatures. Based on our
inspection, we designed an improved MP system architecture
in which we integrate step detection, shown in Fig. 3. The
input sensor signals are now forwarded from the Frame buffer
and accumulated in a Current step buffer. The step detection
module analyses the contents of the Current step buffer on
each update, and upon detecting the start of a new step it
moves the contents of the Current step buffer to the History
buffer.
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Fig. 3. Architecture of the MP step based anomaly detection algorithm.
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Fig. 4. Block schematic of the step detection algorithm (top), and step
detection results for a sample signal (bottom).

The MP is calculated for each update of the Current step
buffer, but only if the Step detection module has detected a step
has started. In this case, the subsequence length m changes
and is equal to the length of the signal stored in the Current
step buffer.

A. Step detection algorithm

The block schematic of our step detection algorithm is
shown in the top plot of Fig. 4. It is based on an adaptive
threshold that’s used to detect crossings of the maximum
amplitude envelope of the input signal. Offsets are applied to
the crossings to account for the step onset and release below
the threshold. The amplitude envelope is calculated with a
wide 100 ms window that also acts as a low-pass filter. The
threshold is adaptive and is recalculated with each update of
the History buffer from the maximum value of the envelope
signal stored in the History buffer. In fact, setting the step
segmentation threshold high initially, let’s the algorithm adapt
only when actual steps are buffered in the History buffer. The
results from using it on the sample signal are shown in the
bottom plot. In a subset of experiments we determined that
the L∞ 1D projection of the gyroscope signal gives the best
step segmentation results.

VI. EXPERIMENTS

We conducted a set of experiments to optimize and evaluate
the proposed system.

Fig. 5. Visualization of the functioning of the MP-based baseline system for
gait anomaly detection.

Plausibility. As with the naı̈ve implementation, we qualita-
tively evaluated our MP-based gait anomaly detection system
with sample signals from our database.

Sensor signal. We analyzed the performance of the MP
algorithm when the three different axes of the gyroscope and
accelerometer signals are used, and their L1, L2 and L∞
norms.

External signals as reference. We evaluate the possibility
of using preset normal steps from external sources as reference
in the History buffer. This has the potential to ease deployment,
but comes at the cost of curbing adaptation. Here, we make
two subexperiments: 1) extracting the reference from the
diplegic/hemiplegic signals, and 2) using a mix of segments
from all anomalies, 10 s each. For a fair comparison we also
use increased lengths of the History buffer.

Neural Network baseline. To evaluate the comparative
performance of our proposed algorithm we design, train and
optimize a Neural Network baseline system based on recur-
rent LSTM (long short-term memory) layers. The optimized
architecture of the model comprises two layers of bidirectional
LSTMs with a size of 256, followed by a 3-hidden layer
feedforward network, sizes 256, 128, and 64, and a final output
neuron with a linear activation function. All layers in the
network were followed by batch normalization and a dropout
of 0.2. The network was fed 2 s of the Sensor signal.

While for the other experiments we use a smaller subset of
the data for efficiency, here we use a larger proportion to get
a better estimate for in-the-wild performance.

Evaluation metrics. To evaluate the performance of our
proposed system we employed metrics commonly used in bi-
nary classification tasks including the F1 score, ROC (Receiver
Operating Characteristic) and earliness, i.e. the average latency
in seconds needed for the system to raise an alarm upon the
onset of an anomalous step.

VII. RESULTS

Plausibility. Fig. 5 shows the contents of the Current step
and History buffers as well as the calculated MP and detected
alarms for the L1 norm of a sample gyroscope signal. We
can see that indeed the MP algorithm is capable of detecting
anomalous steps, and also and deals efficiently with the start
of the signal.



Fig. 6. Best case F1 - score for different axes and norms from the
accelerometer (top), gyroscope (middle), and both (bottom) signals.

Sensor signal. The F1 results for the accelerometer and
gyroscope signals, across all anomalies, are shown in Fig. 6.
The relative F1 really varies across the anomalies for the
accelerometer signal. For the gyroscope signal they are more
consistent, with the L∞ norm performing better, while using
or adding multiple axes, degrades performance. In the bottom,
we can see that the gyroscope L∞ norm outperforms the
accelerometer L∞ norm, as well as when both signals are
used.

External signal reference. The results from using different
lengths of the History buffer and different signals used as
reference are shown in Fig. 7. Comparing the mean ROC
curves, we can see that on average, there is benefit of using
a mixed signal reference. Closer inspection however, omitted
here for brevity, shows that the results vary by anomaly.

Neural Network baseline. The F1 results comparing the
Neural Network baseline to the proposed model are shown in
the top of Fig. 8. It can be seen that the MP-based algorithm
outperforms the Neural Network baseline by a wide margin.
The Neural Network does provide faster reaction times than
the MP-based system as can be seen in the bottom plot. We
also measured the real-time factor of the two algorithms and
found that it is 10× higher for the Neural Network baseline.
This might point towards possible deployment issues on edge
devices.

Fig. 7. Mean ROC for the MP-based system for different lengths of the
History buffer and different signals used as reference.

Fig. 8. Mean F1 (top) and earliness (bottom) for the MP-based system
compared to the Neural Network baseline.

VIII. CONCLUSION

We propose a gait anomaly detection system based on the
Matrix Profile algorithm. The system relies on lean digital
signal processing to adapt to an individual’s gait pattern and
to successfully detect outliers with low latency. The system
obtains high F1 scores across anomalies, outperforming a more
complex Neural Network baseline. Its low complexity makes
the MP based gait anomaly detection system a good candidate
for edge deployment.
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[8] C. Monoli, J. F. Fuentez-Pérez, N. Cau, P. Capodaglio, M. Galli, and
J. A. Tuhtan, “Land and underwater gait analysis using wearable IMU,”
IEEE Sensors Journal, vol. 21, no. 9, pp. 11 192–11 202, 2021.

[9] Y. Gao, Z. Jiang, W. Ni, Z. L. Vasic, M. Cifrek, M. Du, M. I. Vai,
and S. H. Pun, “A novel gait detection algorithm based on wireless
inertial sensors,” in CMBEBIH 2017: Proceedings of the International
Conference on Medical and Biological Engineering 2017. Springer,
2017, pp. 300–304.

[10] F. E. Grubbs, “Procedures for detecting outlying observations in sam-
ples,” Technometrics, vol. 11, no. 1, pp. 1–21, 1969.

[11] S. Ahmad and S. Purdy, “Real-time anomaly detection for streaming
analytics,” arXiv preprint arXiv:1607.02480, 2016.

[12] M. Munir, S. A. Siddiqui, A. Dengel, and S. Ahmed, “DeepAnT: A deep
learning approach for unsupervised anomaly detection in time series,”
Ieee Access, vol. 7, pp. 1991–2005, 2018.

[13] S. C. Tan, K. M. Ting, and T. F. Liu, “Fast anomaly detection for
streaming data,” in Twenty-second international joint conference on
artificial intelligence IJCAI’11, vol. 2. AAAI Press, 2011, pp. 1511–
1516.
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