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Abstract—Over the last years, mobile applications and their 
corresponding distribution platforms have gained momentum. 
Applications stores allow users to write reviews and ratings about 
the apps, giving feedback to developers. User ratings and reviews 
may help to improve software quality, solve bugs and develop 
new features. However, this data is hard to be handled by an 
individual due to the ever growing amount of textual reviews. 
This paper proposes the use of cognitive computing technologies 
for addressing this challenge, by developing a smart agent able to 
mine bugs reports, feature suggestions and sentiment expressed in 
mobile app reviews. The main contributions of this paper are: the 
design of a cognitive agent for assisting developers in managing 
their interaction with their users, the application of machine 
learning algorithms for bug and feature request detection, and 
the agent implementation in a real scenario. 

Index Terms—cognitive agent, review, app, bugs, suggestions, 
sentiment analysis 

I. INTRODUCTION 

Nowadays, app development for the smart phone ecosystem 
is quite faster and easier than ever [1]. At the time of writing 
this paper, Google Play Store offers over 3.000.000 mobile 
apps, mostly developed by third-party companies, organiza­
tions and individual developers [2]. For mobile product devel­
opers, to maintain their apps in the top of the store rankings 
results crucial, and this is only possible by implementing new 
features and solving bugs regularly [3]. 

However, iOS and Android market platforms only provide 
customer feedback with an average rating of 1 up to 5, and 
sometimes including a short review with the user experience. 
In most cases, this information is not enough to identify the 
reason of a bad acceptance for an app, and consequently a 
bad positioning in the store [4]. This lack of data provided by 
marketplaces about how users feel using an app results in a 
problem for developers [5]. Furthermore, for translating bad 
ratings into good ones, companies should interact with their 
users writing a well-formed response [6]. This response must 
be personalized for better results, and this becomes a problem 
for high number of reviews [7]. 

As the number of reviews increases, reading them and 
getting insight becomes a bigger challenge. This has boosted 
the interest of researchers in applying mining techniques to 
application stores reviews, in order to extract and analyze the 
expressed user opinions and sentiments [8]. 

Mining apps reviews and performing a sentiment or emotion 
analysis enables the obtention of more detailed information 
about the app. This information is useful for identifying how 
users feel. In addition, comparing reviews from a given user 
in similar apps enables the extraction of information about 
users' preferences in related apps, allowing developers to make 
recommendations based on this data. 

This paper proposes the use of cognitive computing [9] to 
address the above challenges. The main contribution of the 
paper is the design and development of a cognitive agent for 
Android devices able to: (i) perform sentiment and emotion 
analysis for Play Store1 apps; (ii) interact with the user 
through voice or text sentences, which are converted into 
specific actions using Natural Language Understanding; (iii) 
write automatic custom replies to Play Store reviews; (iv) 
identify if users mention bugs or propose feature requests; and 
(v) manage and analyze the status of the market of mobile 
applications in a given domain. In addition, this paper also 
describes the implementation and evaluation of the developed 
agent in a real scenario. 

The rest of the paper is organized as follows. Firstly, and 
overview about cognitive computing is given in Sect. II. 
Sect. Ill describes the architecture of the developed system, 
describing the main components and modules; and the features 
and bug classification is explained in Sect. IV. The implemen­
tation of the system in a real scenario and its evaluation is 
described in Sect. V and, finally, the drawn conclusions are 
presented in Sect. VI. 

II. BACKGROUND 

A. Cognitive computing 

Cognitive computing refers to smart systems that learn at 
scale, reason with purpose, and interact with humans and 
other smart systems naturally [9]. Cognitive systems are able 
to learn from incoming data and from their interactions with 
humans, opening new possibilities to produce better products 
taking advantage of the combination of computers' analytic 
capability and encyclopedic knowledge and humans' creativity 
and expertise [10]. 



Over the last few years, the research and commercial interest 
in cognitive computing has considerably grown [11]. The use 
of Natural Language Interface (NLI) [12] has arrived to a 
number of commercial products based on these technologies, 
such as Amazon’s Alexa2, Google’s DialogFlow3, Microsoft’s 
Luis4, IBM’s Watson5, Facebook’s Wit6 and Apple’s SiriKit7. 

These systems rely on two concepts for performing Natural 
Language Understanding (NLU) operations: intent and entity. 
An intent represents a mapping between what a user says and 
what action should be taken by the agent. An entity, instead, 
is a tool for extracting parameter values from natural language 
inputs [13]. 

B. Dialog Flow 

DialogFlow, previously known as api.ai, is a NLU cloud 
platform owned and maintained by Google. It is a free to 
use conversational platform that supports various languages, 
different programming languages, and has a series of built-in 
integration with other chatbot-based platforms (e.g., Telegram, 
Google Assistant, Amazon Alexa) [13]. 

There are four key concepts involved in any DialogFlow im­
plementation: Agents, Entities, Intents and Contexts. Agents 
can be described as NLU modules for applications. Their 
purpose is to transform natural user language into actionable 
data. This transformation occurs when a user input matches 
one of the intents or domains. Entities represent concepts 
and serve as powerful tool for extracting parameter values 
from natural language inputs. The entities that are used in 
a particular agent will depend on the parameter values that 
are expected to be returned as a result of agent functioning. In 
other words, a developer does not need to create entities for 
every concept mentioned in the agent, being necessary only for 
those that require actionable data. Intents represent a mapping 
between what user says and what action should be taken by 
your software. An intent is composed by several modules. First 
of all, what user says in natural language is required. Then 
it is necessary to set up the corresponding action, and the 
response, which is provided by the external application service. 
Finally, contexts are designed for passing on information from 
previous conversations or external sources, such as user profile 
or device information. Also, they can be used to manage 
conversation flow. 

In addition, DialogFlow provides machine learning capa­
bilities, a tool that allows agents to understand user inputs 
in natural language and convert them into structured data, 
extracting relevant parameters. In the DialogFlow terminology, 
the developed agent uses machine learning algorithms to match 
user requests to specific intents and uses entities to extract 
relevant data from them. The agent learns both from the data 
is provided in it and from the language models developed by 

2Amazon’s Alexa (https://developer.amazon.com/alexa) 
3Google’s DialogFlow (https://developers.google.com/actions/dialogflow) 
4Microsoft’s Luis (https://www.luis.ai) 
5IBM’s Watson (https://www.ibm.com/watson) 
6Facebook’s Wit (https://wit.ai) 
7Apple’s SiriKit (https://developer.apple.com/sirikit) 

DialogFlow. Based on this data, it builds a model for making 
decisions on which intent should be triggered by a user input 
and what data needs to be extracted. The model is unique per 
agent. 

I I I . ARCHITECTURE 

The proposed architecture can be divided into three groups: 
the server side; the DialogFlow agent; and, lastly the mobile 
smart agent. The complete global architecture of the system 
is shown in Fig. 1. 

A. Server 

Server side section is composed by several modules. At 
first, we have the controller class from where every request 
made to the server is handled. This controller adapts the input 
parameters to the final components which will carry out single 
functionalities. 

All the requests are received through the A P I webhook, 
that is linked to the DialogFlow agent. An A P I REST has 
been defined and implemented in Flask. It provides methods 
for extending easily the functionality of cognitive agent. This 
A P I acts as a controller that redirects to the corresponding 
module depending on the application workflow, as shown in 
in Table I . 

The controller interacts with three submodules. The Play 
Store module is formed by all the procedures required for 
app info extraction from Google Play website. Scrapping and 
filter tasks are performed inside this component. Afterwards, 
the Senpy module is responsible for connecting with the 
sentiments and emotions analysis. In this class we can find 
some functions to adapt and process the response received 
from Senpy service, an online sentiment and emotion analysis 
service [14] described in [14]. Finally, the last module is 
composed by bug and features classifiers which are previously 
trained. Each of these components interacts with external 
applications, like Google Play, Senpy or Slack by extracting 
relevant information from their website, or using other A P I 
REST services. 

Some of the information obtained inside these modules is 
saved in a database, such as recent analysis carried out or the 
trained classifiers pickles, in order to cache most requested 
information and speed up the communication process between 
the smart agent and the server. 

The DialogFlow module acts as an intermediary between 
the logic hosted by the Google server and the smart mo­
bile agent. All this behaviour is orchestrated by an Agent 
remotely configured using the DialogFlow web interface. This 
component is responsible for interpreting the request made 
by the smartphone, translating the voice clip into a text 
sentence, identifying the meaning of the query and extracting 
the relevant parameters with pattern recognition and carry 
out the consequent action. This action might be as simple 
as replying with a simple text string, or more complex and 
require to communicate with the A P I webhook to use other 
modules (e.g. detect users’ reviews mentioning a bug). 

https://developer.amazon.com/alexa
https://developers.google.com/actions/dialogflow
https://www.luis.ai
https://www.ibm.com/watson
https://wit.ai
https://developer.apple.com/sirikit


Fig. 1: Global architecture of the system developed 

Method Route Params Description 

GET 

POST 

POST 

GET 

/getAppInfo 

/analyze 

/classify 

/checkQueue 

appName 

appName 
analysisType 
maxReviews 

appName 
classificationType 
maxReviews 

taskId 

Retrieve complete information about the app requested. This 
information is scraped from the Play Store website and 
inserted in a JSON file. 

Perform an analysis for specified application, obtaining the 
information form Play Store if necessary. Analysis types are 
sentiments and emotions. 

Perform a classification for specified application, obtaining 
the information form Play Store if necessary. Classification 
types are bugs and features. 

Check a task status inside the server queue in case it requires 
a long execution time and the DialogFlow agent throws a 
request timeout exception. 

TABLE I: API REST 

B. DialogFlow agent 
Then, we are going to introduce the structure of the Di-

alogFlow agent, explaining the intents and events implemented 
to carry out the client requests. This aids to understand the 
basic model of the agent and its architecture. 

Intents refer to actions that our agent will execute. These 
intents could have dependencies from previous interactions 
with the agent, so it’s necessary to contextualize each one 
of them. The intents handled by the agent are: 

Analyze: Reflects the analysis action. The agent receives 
• 

the analysis type and the application desired to be 
analyzed as input parameters, offering the Senpy [14] 
analysis result as output. This intent uses the webhook 

option enabled because it needs to interact with the 
developed server. 
Classify: it represents the bug or feature classifier call, 

• 

being necessary to communicate with the remote server. 
The input parameters are the classification type and 
the application in case it can’t be extracted from the 
conversational context. 

Every intent is prepared for being summoned with missing 
parameters, training the DialogFlow agent to request those 
that are mandatory, or package them inside the conversation 
context, from where the system can extract them. For example, 
if the classify intent is called like Would you kindly perform 
a sentiments analysis for WhatsApp application, the system 



collects the app name parameter and the analysis type for a 
while, in case future requests have these values empty. After­
wards, if we ask the agent Could you perform a bug classifier, 
The bot will extract the missing app name parameter from the 
context, referring to the last app used in the conversational 
process. 

This humanizes the natural language understanding and 
accelerates the conversation, interacting with the bot through 
real natural sentences instead of sending simple commands or 
instructions to a robot. 

Entities refer to the element which represents concepts 
involved in the intent event triggering. The entities defined 
for the agent are: 

App: refers to the application that wants to be processed, 
• 

the name of any application available in the Google Play 
marketplace. This entity remains at session context since 
it can be different for every user session. 
Analysis Type: refers to the analysis types that can 

• 

be performed. The value is bounded, being possible 
to run a sentiments or emotions analysis exclusively. 
The scalability offered by our architecture based on the 
defined A P I enables us to add more analysis types in the 
future. 
Classifier Type: specify which type of trained classifier 

• 

would you like to call. The available values for this 
attribute are also limited to the detection of mentions 
about bugs or feature requests. 

The agent has also enabled the Small Talk bundle, that 
includes predefined phrases to the most popular requests, what 
makes the bot to look more like a human [10]. 
C. Client 

The client module is developed through an Android appli­
cation that receives user requests and redirects them directly to 
the DialogFlow agent. This behaviour is implemented through 
the DialogFlow extension library, which provides us all the 
needed methods to talk with the DialogFlow service. 

The application is structured in several modules.The main 
module manages the voice and text inputs from users in a 
chat bot interface, and is linked to DialogFlow, representing 
the response obtained from the DalogFlow server. The second 
module provides support to developers, and allows them to 
define automatic responses for the applications they have 
published in the play Store. Finally, there is an analysis module 
that review the top free apps in the Play Store marketplace 
This analysis shows an evolution of the app sentiment over 
time. This provides users insight about which product trends 
for succeeding in the app market 

I V . FEATURE AND BUG CLASSIFIER 

The idea for the proposed architecture is to train a model 
that can then be used for prediction. In this way, the server 
controller can insert review inputs and extract the classification 
result without the need of creating, training and testing the 
model at each iteration. This enables the interaction with the 
classification module in a fast and efficient manner. 

In order to perform the feature and bug classification, four 
machine learning algorithms have been used, trained for binary 
prediction: Logistic Regression [15], Naive Bayes [16], and 
both Linear and Gaussian SVM [17], [18]. This selection is 
done in order to compare the performance of these frequently 
used models. 

The implemented classifiers have been trained and tested 
with a mobile application review dataset [19], obtained from 
[20]. This dataset is composed by reviews previously tagged as 
bug or not bug, and feature or not feature. Said data collection 
offers a supervised dataset composed by multiple reviews 
posted inside the iOS app store. However, this data has been 
extrapolated, using them for Google Play marketplace context. 

Processed data is formed by 3,117 instances corresponding 
to bug reviews, and 1,924 reviews related to feature requests. 
Due to original data distributions, the labelling is not balanced 
in both bugs and features categories. Table I I shows the dataset 
statistics, including the percentage of positive and negative 
classes. 

Category 

Bug 

Not Bug 

Feature request 

Not Feature request 

Size #instances % 

2,740 54% 
3,117 

377 7% 

1,619 32% 
1,914 

295 5% 

TABLE I I : Dataset sizes for supervised learning. 

Information included in this dataset can be divided in two 
types, of which we use in the experiment the following. Firstly, 
the text of the review, which includes a preprocessed version 
with stopwords removed and lemmatization, used verbal tenses 
-present, past and future-, and number of words. Secondly, 
review-oriented metadata; the rating provided by the user. 
Consequently, we feed the learning models with Bag-of-
Words features from the preprocessed text, and a normalized 
representation of the rest of features. 

The training and testing methodology is based in a 10­
fold cross validation using the aforementioned dataset. This 
strategy has also been used to tune model hyper-parameters. 
Bug and feature requests are treated separately, since as 
stated in previous work [20], our experimental results validate 
that this separation greatly enhances the final performance. 
Besides, in order to gain insight into each model, we use 
precision, recall and micro-averaged f-score as metrics. 

Experiment results are summarized in Table I I I . It can be 
seen that, although there is no model that yields the best 
performance on all metric and the two categories, gaussian 
SVM does not reach as good numbers as the rest of the 
classifiers. This could be explained attending to the fact that 
gaussian SVM is the most powerful model, which can also 
lead to overfitting when training will a small number of data 
samples, as it is the case for this experiment (Table II). Also, 
results seem to indicate that linear SVM yields the better 
performance, if attending to all metrics. 

In order to gain further insight into the classification 



Algorithm 

Logistic Regression 

Naive Bayes 

Linear SVM 

Gauss SVM 

Bugs 

Precision 

95.06 

93.65 

94.28 

94.23 

Recall 

92.01 

95.52 

95.00 

94.89 

F1 micro 

89.22 

90.19 

90.70 

90.60 

Feature requests 

Precision 

93.91 

79.71 

91.51 

93.76 

Recall F1 micro 

83.61 81.59 

86.08 78.71 

88.68 83.43 

83.74 81.54 

TABLE I I I : Performance metrics for the four learning models. In bold, the best value for each metric in each data category. 

process, we have extracted most relevant words from both 
categories as computed by the model. When considering bugs, 
those are: annoy, broken, hopefully, responsive, implementa­
tion. For feature requests, the model considers ask, reinstall, 
game, closes, rethink. 

Given that linear S V M has the higher F1 micro in both cat­
egories, we finally select this algorithm to be implemented in 
the developed system architecture. As commented above, this 
model is deployed in the system through pickle serialization. 

V. CASE STUDY 

The proposed scenario consists in a start-up whose business 
activity focuses on developing mobile applications for third 
companies, or by their own initiative. This new company 
is trying to explore the mobile application market, so they 
decided to use the smart agent designed in this work so they 
can study using sentiment analysis techniques how users feel 
about their own applications, and similar apps that directly 
compete with their products. 

As discussed previously, it’s desirable to process automat­
ically the feedback obtained from their users and extract 
valuable data from it, such as bugs and crashes encountered, or 
features and improvements that could increase their audience 
opinion. Moreover, it will be great to redirect these results 
to a team management platforms like Trello or Slack, so the 
developer team could stack those reviews and solve it as soon 
as they can. 

In the following, three different scenarios are presented for 
showing how the smart agent can be applied, and including 
some screen captures with the result obtained inside the 
Android app. 

A. Market Explorer 

The start-up is looking for a project management appli­
cation in order to improve their inter-department commu­
nications and track their external project status from their 
smartphones. Therefore, the C I O has decided to explore the 
market looking for applications that are able to solve this 
upcoming idea. For this, he will perform a sentiment and 
emotion analysis for popular team management apps, more 
concretely he will focus on Trello, Slack, Basecamp, Todoist 
and Evernote apps. The main goal is to observe the sentiment 
and emotion on these apps and choose one to incorporate it 
within the activity of the company. To carry out this procedure, 
he will use the chat smart agent. In concrete, the C I O will 

perform a sentiment and emotion analysis for each published 
app and later compare them depending on the results. 

Using the chat module, the user can insert the queries 
through text or voice input format. Figure 2 shows an example 
of the conversation the CIO has inside the proposed scenario. 
The agent accepts multiple input format for queries, so it could 
exist multiple possible dialog flows to obtain the same analysis 
output. The user interface given by the agent is really simple, 
acting as a task assistant answering any user input thanks 
to the DialogFlow platform. After the analysis process, final 
results are grouped in Table IV. The application enables to 
examine more in detail the results obtained by clicking the 
card, being able to extract even the sentiment or emotion of a 
single review, as shown in Figure 3. 

Fig. 2: Sentiment analysis for Trello 

To conclude, observing the results obtained from both 
analysis the CIO has to determine which third-party platform 
is better considered by the Play Store user community. Most of 
the applications have present the same emotion, so generally 
are good applications. On the other hand, the sentiment varies 
depending on the app, probably due to a recent updates that 
users don’t like at all. 



Application 

Trello 

Slack 

Basecamp 

Todoist 

Evernote 

Reviews Sentiment Emotion 

TABLE IV: Results of sentiments and emotions analysis in project management applications 

Fig. 3: Detailed sentiment analysis view 

B. Feature mining 

This section describes a scenario where the start-up receives 
a project plan offer from a well-recognized digital newspaper, 
which requests a second version of their Android mobile app 
named The Guardian. Due to the low budget the company 
had to face the project in the first version, they decided 
to implement only basic functionalities to reach a higher 
audience developing a simple application for smart-phones. 
Now, the company wants to order a second version with 
advanced functionalities to our scenario company, and the 
start-up developer team members are not able to identify in-

teresting improvements or features for the application. For this 
reason, they decided to obtain them from the current published 
version, in order to implement those mostly demanded in the 
Play Store reviews section. 

To carry out this operation, they use the proposed smart 
agent, performing a feature classification over the The 
Guardian application, so they can detect new features and 
improvements without having to read every single comment 
and extract interesting values. So a feature classification is 
run for the app. The feature analysis is executed for a total 
of 30 reviews, considering that this number is enough to 
extract a significant amount of relevant features. The result 
is represented in Fig. 4 

Some of the reviews tagged as features can be checked 
in Table V. It shows the classification result and the value 
obtained from a natural language comprehension, being able 
to detect if the classification output matches with a human 
understands after read that user review. 

As shown, most of the improvements extracted match with 
the classification result. After this process, the developer team 
meet together and brainstorm about the most common features 
demanded by the users, prioritizing those that seems to be 
more interesting for the client. Without usage, the developer 
team would have had to fetch every single review, filter those 
that refer to bugs, user experience, opinion, etc.; and finally 
evaluate their importance in the second version. 

C. Automated reply for bugs detection 

In this scenario, the start-up has just published the second 
version for the digital newspaper introduced in Sect. V-B, and 
the next step is to carry out a maintenance process during 
the first month since launch. The objective is to analyze the 
user experience over the app, extracting relevant comments 
from app reviews and trying to solve the errors detected as 
soon as possible. It seems really tedious to read each review 

5 

5 

5 

5 

5 



Review Classification Result Value 

...by default, it does tend to send quite lot of notifications... Feature Customize notification subscription system 

... however, your news source doesn’t update like CNN, you 
stay on the same old news headline... Feature 

Update more frequently the news title, in 
case an important new come up suddenly. 

Very good, lots of interesting articles, good podcasts, easy to 
read posts and videos... Not Feature None 

TABLE V: Results 

e The Guardian 
News & Magazines 

r * * * * * 
June 12, 2017 

This is a brilliant app. So well engineered, and the 
quality of the content is extremely high. What I 
love about the app itself is the way it prompts you 
with option settings within the app rather than 
switching everything on by default and you as 
the user having to go in a switch things off once 
you've become sufficiently annoyed. It's all so... 
seamless. The quality of the app and the content 
itself has prompted me to pay each month. 
Which as a hardened cynic and tight wad, speaks 
volumes! 

FEATURE 

• • * • • • 
Easily the best news app I've come across on 
Android. Fortunately it's from one of the best 
news sources around & the content is really solid. 
It's nice that a very affordable £2.49 subscription 
for premium access is available to those who 
can't afford to pay more, and that ads are not 
shown to any paving customers. I initially had 

Fig. 4: Features classification details 

and manually filter those that refers to bugs. For this reason, 
the development team think that the developer-oriented section 
included in the proposed smart agent could speed up this task. 

The main objective is to collect the application feedback 
posted in Play Store, to classify it using the bug classifier, and 
finally to answer accordingly to that bug. 

The developer accesses to the developer-oriented tab and 
visualizes which is represented in Fig. 5. We suppose that the 
agent has previously been linked to the Google Play developer 
company account. The input data must be the application 
name and the version that is currently published in production. 
The package name is also mandatory in order to identify the 
application. 

After pressing the SCAN button, the smart agent com­
municates with the Reply to Reviews API, and in case the 
app belongs to the authenticated account, it will obtain all 
the review comments posted in last 15 days. After obtaining 
them, it is necessary to evaluate them calling the remote bug 
classifier. If any review is tagged as a bug, the system will 
randomly extract a friendly response from a bug collection 
replies. The result is shown in Fig. 6. As can be seen, the 
user is complaining about a crash that happens after the 
app log in process, so it is clearly a bug. The system has 
extracted the following recommended answer: We apologize 
for inconvenience, we will try to solve it in the next version. 
Thanks for your patience. 

Fig. 6: Result obtained after retrieving recent app reviews, 
classify them as a bug or not, and finally recommend a suitable 
reply. 

When the REPLY button is pressed, all the recommended 
reviews for reviews classified as bugs will be posted to the Play 
Store endpoint. The reply will also be sent to the author as an 
email, but that process acts regardless of the agent. Anyway, 
the publishing process can take a while until it appears in the 
website. Afterwards, the output will looks like the Fig. 7. 

Fig. 5: Input parameters requested for developer-oriented 
scanning. 

Fig. 7: Automated reply visualization inside Play Store web­
site. 



V I . CONCLUSIONS 

In this paper, a smart agent for Android devices based on 
DialogFlow has been developed. The agent offers a great 
possibility to evaluate and analyze the feedback obtained 
from the Play Store market place using sentiment analysis 
techniques and binary classifiers, revealing interesting data 
about user experience. It also offers an innovative design for 
smart-phone apps, with an intuitive interface that handles voice 
commands to interact with all system components. 

The proposed architecture follows a modular approach 
based on a REST interface of a controller module for extend­
ing the agent capabilities, and exploit the benefits of cognitive 
computing technologies for integrating natural language con­
versations. 

The designed system can be used by freelance developers 
in order to analyze the application market status and track 
the feedback obtained, being able to extract a real meaning 
from user opinions and redirect those feedback directly to 
improvements or error detection tasks. This kind of tool isn’t 
common nowadays, and earn so much time and money to 
newly created company that has limited budget to manually 
analyze their user feedback. 

The high scalability offered by the developed systems raises 
a lot of possible improvements or future work to be done. 
One of these possible lines is to develop new classification 
methods based on the average rating or the user experience 
detection in order to extract even more valuable information 
from app reviews. In addition, it would be also interesting to 
obtain latest application downloaded by the user and develop 
a recommendation system based on application of the same 
category place in a high position inside the ranking. 
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