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Future Industrial Internet-of-Things (IIoT) systems will require wireless solutions to connect sensors, actuators,

and controllers as part of high data rate feedback-control loops over real-time flows. A key challenge in such

networks is to provide predictable performance and adaptability in response to link quality variations. We

address this challenge by developing RECeiver ORiented Policies (Recorp), which leverages the stability of

IIoT workloads by combining offline policy synthesis and run-time adaptation. Compared to schedules that

service a single flow in a slot, Recorp policies share slots among multiple flows by assigning a coordinator and

a list of flows that may be serviced in the same slot. At run-time, the coordinator will execute one of the flows

depending on which flows the coordinator has already received. A salient feature of Recorp is that it provides

predictable performance: a policy meets the end-to-end reliability and deadline of flows when the link quality

exceeds a user-specified threshold. Experiments show that across IIoT workloads, policies provided a median

increase of 50% to 142% in real-time capacity and a median decrease of 27% to 70% in worst-case latency when

schedules and policies are configured to meet an end-to-end reliability of 99%.
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1 INTRODUCTION
Industrial Internet-of-Things (IIoT) systems are gaining rapid adoption in process control industries

such as oil refineries, chemical plants, and factories. In contrast to prior work that has focused

primarily on low-data rate or energy-efficient applications, we are interested in the next generation

of smart factories expected to use sophisticated powered sensors such as cameras, microphones,

and accelerometers (e.g., [12, 23, 28]). Since such applications will require higher data rates, we need

to develop a versatile wireless solution to connect them with actuators and controllers as part of

feedback-control loops over multihop real-time flows. A practical solution must meet the following

two requirements: (1) must support high data rates, and (2) support real-time communication over

multiple hops. Both requirements must be met, notwithstanding significant variations in the quality

of wireless links common in harsh industrial environments [8, 17].
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Fig. 1. Design space of wireless control solutions.

Let’s examine whether WirelessHART can meet

the requirements of the next generation of IIoT

applications. WirelessHART is the state-of-the-art

standard for industrial wireless communication and

has successfully provided high reliability in a broad

range of industrial settings. At the heart of Wire-

lessHART is Time Slotted Channel Hopping (TSCH)

— aMAC layer that combines TimeDivisionMultiple

Access (TDMA) and channel-hopping in a mesh net-

work. The TSCH data plane relies on a centralized

network manager to generate routes and a trans-

mission schedule for all the flows in the network.

The schedule is represented as a two-dimensional scheduling matrix that specifies the time and

frequency of each transmission. TSCH supports both real-time and best-effort traffic by using two

scheduling strategies whose trade-offs are shown in Figure 1.

To support real-time traffic, a transmission is assigned to a dedicated entry in the schedulingmatrix

and, at run-time, the transmission is performedwithout contention. The reliability of real-time traffic

is ensured by using retransmissions and channel hopping. The number of retransmissions allocated

is usually determined based on the worst-case quality of a link as required to tolerate significant

variations in link quality. Since the scheduling matrix cannot be updated at the rate at which the

link quality varies, the only run-time adaption available is to cancel a link’s retransmissions when

an acknowledgment is received. As a result, it is common for a significant number of slots to remain

unused when a packet is relayed successfully to the next hop before exhausting a link’s allocated

retransmissions. As demonstrated by the experiments in Section 6, protocols that use dedicated

entries cannot handle higher data rates efficiently.

In contrast, best-effort traffic is supported by having multiple transmissions assigned to a shared
entry in the scheduling matrix. At run-time, contention-based techniques are used to arbitrate

which transmissions will be performed. Shared entries provide more opportunities for locally

adapting what transmissions may be performed, resulting in more efficient use of network resources.

Unfortunately, there are no current techniques to effectively analyze the network’s performance

when shared entries are used. The open research question, and the focus of this paper, is whether it
is possible to use shared entries to support higher throughput and respond more effectively to changes
induced by link quality variations while providing performance guarantees.

To answer this question, we propose RECeiver ORiented Policies (Recorp) – a new data plane that

provides higher performance and agility than traditional scheduling solutions that do not use shared

entries. We exploit the typical characteristics of the industrial setting to obtain improvements

in network capacity and latency while providing predictability under prescribed link variability.

Specifically, our approach has the following features:

• Since IIoT workloads consist of sets of real-time flows that are stable for long periods of time,

we compute offline Recorp policies and disseminate them to all nodes. Recorp policies assign

a coordinator and list of candidate flows for each entry in the scheduling matrix. Only one of

the candidate flows will be executed at run-time, depending on which flows the coordinator

has already received. The benefit of this approach is that it enables flows to be dynamically

executed in an entry depending on the successes and failures of transmissions observed

at run-time. As a consequence, Recorp policies can handle variations in link quality more

effectively than schedules.
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• We propose a novel link model in which the quality of the links can vary arbitrarily within

an interval from slot to slot. Our model is motivated by current guidelines for deploying

wireless IIoT networks (e.g., [29]), focusing on ensuring that communication links have a

minimum link quality. The proposed model is well-suited to industrial settings where link

quality may vary widely over short time scales.

• In contrast to best-effort entry sharing approaches that provide no performance guarantees,

we ensure that a constructed Recorp policy will meet a user-specified reliability and deadline

constraint for each flow as long as the quality of all (used) links exceeds a minimum link

quality as specified by our model.

We demonstrate the effectiveness of Recorp through testbed measurements and simulations.

When schedules and Recorp policies are configured to meet the same target end-to-end reliability

of 99%, empirical results show that Recorp policies increased the median real-time capacity by 96%

for a data collection workload. Furthermore, the performance bounds derived analytically were

safe: Recorp policies met all end-to-end reliability and deadline constraints when the minimum link

quality exceeded a user-specified level of 70%. Larger-scale multihop simulations that consider two

topologies indicate that across typical IIoT workloads, policies provided a median increase of 50%

to 142% in the real-time capacity as well as a median decrease of 27% to 70% in worst-case latency.

The remainder of the paper is organized as follows. Section 2 describes the problem formulation

and informally introduces Recorp policies and the challenges associated with their synthesis.

Section 3 describes Recorp’s system and network models, while Section 4 introduces Recorp’s

reliability model. Recorp is described in Section 5. Simulation and testbed experiments evaluating

Recorp’s performance against representative protocols using both dedicated and shared entries are

included in Section 6. Section 7 describes how Recorp handles network dynamics, aperiodic traffic,

and energy efficiency. Recorp is placed in the context of related work in Section 8. We conclude the

paper in Section 9.

2 PROBLEM FORMULATION
In this section, we start by considering the problem of building real-time protocols from a fresh

perspective, discuss how this perspective opens new opportunities for optimization, and then

informally introduce Recorp policies while highlighting the challenges of their synthesis.

Optimization Problem: We consider supporting real-time and reliable communication as a

sequential decision problem. In each slot, the offline policy synthesis procedure uses the current

estimate of the network state to select the actions performed in the current slot. Then, the estimated

network state is updated to reflect the impact of those actions. In this paper, we limit our attention

to myopic (or greedy) policies that maximize the number of flows that may be executed in a slot

while providing prioritization based on the flows’ statically assigned priorities. A myopic policy

selects the optimal actions over a time horizon of one slot, but those decisions may be suboptimal

over longer horizons. Our choice is motivated by the simplicity of myopic policies which can be

synthesized efficiently. The unique aspects of Recorp policies are what actions may be performed

in a slot and how the network state is represented.

Intuition: Schedules and policies differ in the information they use as part of the offline sched-

uling and synthesis process. Consider a star topology with three nodes where the base station is

the receiver of two incoming flows 𝐹0 and 𝐹1. Both flows are released at the beginning of slot 0

with flow 𝐹0 having a higher priority than flow 𝐹1. Since 𝐹0 and 𝐹1 share the same receiver, only

one of them can transmit in the first slot without conflict. In slot 0, both schedules and policies

assign and execute (at run-time) 𝐹0 to enforce prioritization.
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4 Brummet, et al.

Schedules and policies differ in how they account for the outcome of 𝐹0’s transmission. At

run-time, the network is in one of two states, depending on the outcome of 𝐹0’s transmission:

either 𝐹0’s data was relayed successfully to the base station, or it was not. Scheduling approaches

ignore this information and assign a fixed number of retransmissions for 𝐹0, regardless of whether

these retransmissions are successful or not at run-time. However, when we capture both possible

outcomes, there are new opportunities for optimization. Ideally, we would like to transmit 𝐹1 if

𝐹0 has succeeded or otherwise retransmit 𝐹0. Surprisingly, we can achieve this behavior (which is

impossible for scheduling approaches): Offline, both flows 𝐹0 and 𝐹1 are assigned to be candidates
to be executed in slot 1. At run-time, the base station will track the flows from which it has received

packets in the previous slots. As a result, it will know whether 𝐹0 was successful or not at the end

of slot 0, i.e., the star network’s precise state. Using this information, in slot 1, the base station can

request 𝐹1’s packet if it has already received 𝐹0 or, otherwise, it can request a retransmission for

𝐹0. We say that 𝐹0 and 𝐹1 share slot 1 as either flow may execute at run-time depending on the

observed successes and failures.

Actions: This approach can be generalized to multi-hop scenarios by observing that any node

with multiple flows routed through it can act as a coordinator for those flows, not just a base station

in a star topology. A Recorp policy is represented as a matrix whose rows indicate channels and

columns indicate slots. In each entry of the matrix, a Recorp policy may include, at most, one pull.
A pull has two arguments: a coordinator and a service list. A pull is executed by a coordinator that

can dynamically request data (i.e., a pull, henceforth) from a service list of flows depending on

the outcome of previous transmissions. The synthesis procedure determines the nodes that will be

coordinators and the composition of the service list, both of which can change from slot to slot. At

run-time, a coordinator executing a pull requests the packet of the first flow in the service list from

which it has not yet received the packet. The adaptation mechanism is localized, lightweight, and

does not require carrier sense.

State Estimation: A challenge to synthesizing policies is to estimate the network’s state as

pulls are performed. Specifically, we need to know the likelihood that a flow’s packet is located at a

specific node in a given slot. Knowing this information offline is challenging because the quality of

a link is probabilistic, and the likelihood of a successful transmission varies from slot to slot. To

address this challenge, we propose a Threshold Link Reliability (TLR) model. We model the quality

of a link 𝐿𝑄𝑖 (𝑡) in slot 𝑡 used by flow 𝑖 as a Bernoulli variable. TLR allows the quality of the link to

change arbitrarily from slot-to-slot as long as it exceeds a minimum value𝑚 (i.e., 𝐿𝑄𝑖 (𝑡) ≥ 𝑚 ∀ 𝑡 ).
We will show it is possible to provide guarantees on the performance of Recorp when all links

follow the TLR model.

Scalability: Another significant challenge in synthesizing policies is avoiding the state explosion

problem. The critical decision is how to balance the trade-off between the expressiveness of

policies, the performance improvements they provide, and the scalability of the synthesis procedure.

Cognizant of these trade-offs, wemake two important design choices: (1)We limit nodes to operating

on their local states such that their decisions are independent of the state of other nodes. As a

consequence, the probabilities of packets being forwarded across links of a multi-hop flow are

independent. This property reduces the number of states maintained during synthesis since it is

sufficient to capture the interactions of flows locally at each node rather than globally across the

network. (2) The synthesis procedure incrementally constructs policies in a slot-by-slot manner

using a builder and an evaluator. The builder casts the problem of determining the pulls performed

in the current slot as an Integer Linear Program (ILP). In turn, the evaluator applies each pull
selected by the builder to the system state and tracks the state as it evolves from slot to slot. The

iterative nature of the synthesis procedure improves its scalability as it suffices to maintain only

the states associated with the current slot.
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3 SYSTEMMODEL
We base our network model on WirelessHART as it is an open standard developed specifically for

IIoT systems with stringent real-time and reliability requirements [2]. A network consists of a base
station and tens of field devices. Recorp is best-suited for applications that require high data rates

and have a backbone of grid-powered nodes to carry this traffic (e.g., [4, 7, 10]).

A centralized network manager is responsible for synthesizing policies, evaluating their per-

formance, and distributing them across the network. The field devices form a time-synchronized

wireless mesh network that we model as a graph𝐺 (N , E), where N and E represent the devices

(including the base station) and wireless links. The network can be synchronized using a high-

accuracy time synchronization protocol designed for wireless sensor networks (see [32] for a

survey). We will initially assume that the communication graph remains fixed while each link has

a minimum link quality. In Section 7 we will discuss how Recorp can handle node failures and

topology changes, such as adding and removing nodes, by distributing new policies. The network

maintains two trees, an upstream tree and downstream tree, for packet routing to and from the

base station, respectively. We assume that both upstream and downstream trees are spanning trees

consistent to source routing in WirelessHART.

At the physical layer, WirelessHART adopts the 802.15.4 standard with up to 16 channels. This

paper focuses on receiver-initiated communication, where a node requests data from a neighbor

and receives a response within the same 10𝑚𝑠 slot.

We use real-time flows as a communication primitive. The following parameters characterize a

real-time flow 𝐹𝑖 : phase 𝜎𝑖 , period 𝑃𝑖 , deadline 𝐷𝑖 , end-to-end target reliability requirement 𝑇𝑖 , and

static priority 𝑖 where lower values have higher priority. The k𝑡ℎ instance of flow 𝐹𝑖 , 𝐽𝑖,𝑘 , is released

at time 𝑟𝑖,𝑘 = 𝜙𝑖 + 𝑘 ∗ 𝑃𝑖 and has an absolute deadline 𝑑𝑖,𝑘 = 𝑟𝑖,𝑘 + 𝐷𝑖 . We assume 𝐷𝑖 ≤ 𝑃𝑖 , which

implies only one instance of a flow is released at a time. Consequently, to simplify the notation, we

will use 𝐽𝑖 to refer to the instance of flow 𝐹𝑖 that is currently released. The variable F denotes the

set of flows in the network. A flow 𝑖 has a forwarding path Γ𝑖 that is used by all of its instances.

During the execution of an instance, only one of the links on the Γ𝑖 is active and considered for

scheduling. We will use the notation 𝐿𝑄𝑖 (𝑡) to refer to the link quality of the currently active link

at time 𝑡 .

A Recorp policy 𝜋 is a scheduling matrix whose number of slots is equal to the hyperperiod of

the flow’s periods. The policy may be represented as a two-dimensional matrix such that the rows

indicate channels, the columns indicate slots, and the entries that represent actions. An action may

be either a pull or a sleep. A policy is well-formed if it satisfies the following constraints: (1) Each

node transmits or receives at most once in an entry to avoid intra-network interference. (2) The

hop-by-hop packet forwarding precedence constraints are maintained such that senders receive

packets before forwarding them. (3) Nodes do not perform consecutive transmissions using the

same channel. (4) Each flow instance is delivered to its destination before its absolute deadline and

meets its reliability constraint.

4 RELIABILITY MODEL
The wireless communications community has developed a wide range of probabilistic models to

model link quality (e.g., [19, 25]). Examples span the complexity-accuracy trade-off from simple

models such as Gilbert-Elliott [19] to more complex models that use multi-level Markov Chains

(e.g., [25]) to distinguish between the short-term and long-term behavior of wireless links. However,

these models usually focus on the “average-case” behavior of links. Guarantees on the end-to-end

reliability of flows should hold even as links deviate from their average-case behavior. Furthermore,
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Description Symbol

Set of nodes N
Set of flows F

Flow i 𝐹𝑖
Period of flow 𝑖 𝑃𝑖
Deadline of flow 𝑖 𝐷𝑖
Phase of flow 𝑖 𝜙𝑖

Target end-to-end reliability of flow 𝑖 𝑇𝑖
Path of flow 𝑖 Γ𝑖

Quality of the active link of flow 𝑖 𝐿𝑄𝑖
Instance 𝑘 of flow 𝑖 𝐽𝑖,𝑘 (or simply 𝐽𝑖 )

Release time of 𝐽𝑖,𝑘 𝑟𝑖,𝑘
Absolute deadline of 𝐽𝑖,𝑘 𝑑𝑖,𝑘

Link quality of the active link of 𝐽𝑖,𝑘 𝐿𝑄𝑖
Policy 𝜋

Service list of the pull in slot 𝑡 (and channel 𝑐) 𝑠𝑟𝑣 (𝑡) (or 𝑠𝑟𝑣 (𝑡, 𝑐))
Set of all possible states Ψ

Transition matrix M
Reliability of instance 𝐽𝑖 𝑅𝑖

Lower-bound on reliability of 𝐽𝑖 𝑅𝑖
Table 1. Summary of key notations.

a practical model must require little tuning, preferably having reasonable default values for its

parameters that fit the rules-of-thumb engineers use to deploy real wireless networks.

To address the above challenges, we propose the Threshold Link Reliability (TLR) model. We

model the likelihood that a single pull for flow 𝑖 is successful (including both the pull request and

the response containing the data) as a Bernoulli variable 𝐿𝑄𝑖 (𝑡). We assume that consecutive pulls

performed over the same or different links are independent. Empirical studies suggest that this

property holds when channel hopping is used [21, 24]. A minimum Packet Delivery Rate (PDR)

𝑚 lower bounds the values of 𝐿𝑄𝑖 (𝑡) such that𝑚 ≤ 𝐿𝑄𝑖 (𝑡) ∀𝑖 ∈ F , 𝑡 ∈ N. A strength of TLR is

that aside from the lower bound𝑚 on link quality, we make no assumptions regarding how the
quality of a link varies from slot to slot. This characteristic makes TLR widely applicable to networks

experiencing significant link quality variations. TLR can be integrated with existing guidelines for

deploying IIoT wireless networks. For example, Emerson engineers suggest that WirelessHART

networks should be deployed to provide a minimum link quality between 60–70% [29]. Accordingly,

in this paper, we set𝑚 to either 60% or 70%.

On a more technical note, it is important to note that TLR does not require the transmissions

in an actual network deployment to be independent – we only require that there is a TLR model

that lower bounds the behavior of the deployed network. Specifically, we require that a Bernoulli

distribution lower bounds the distribution of consecutive packet losses in the network. Thus, by

selecting an appropriate value for𝑚, it is possible to find a model for which the assumption of

independence holds, albeit at the cost of increased pessimism regarding the quality of links.

The end-to-end reliability 𝑅𝑖 of a flow 𝑖 depends on both the likelihood of successfully relaying

a packet over the links of its path as well as the links of other flows it shares entries with. For

instance, returning to our running example, the probability the packet released by 𝐹1 reaches its

destination is dependent not only on the quality of its link but also 𝐹0’s link since 𝐹1 is conditionally
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Policy BuilderPolicy Evaluator
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Policy

Offline synthesis 

Runtime adaptation

Unschedulable

Routes
Min. Link
Quality

Fig. 2. Design of Recorp.

attempted depending on the success of 𝐹0. One might assume that finding a lower bound on 𝑅𝑖
under the TLR model only requires considering the case when all links exhibit their worst link

quality in all slots (i.e., 𝐿𝑄𝑖 (𝑡) =𝑚 ∀𝑖 ∈ F , 𝑡 ∈ N). While we will show that this approach provides

a safe lower bound for Recorp policies, this property does not hold for all policies that use shared
slots. Consider, for example, the two flows 𝐹0 and 𝐹1. Suppose these flows are scheduled using the

following simple (non-Recorp) policy. In the first slot, 𝐹0 will be executed. In the next slot, 𝐹1 will

be executed only if 𝐹0 failed in the first slot; otherwise, the base station sleeps. Under this policy,

the probability that 𝐹1 is attempted will decrease as the link quality increases since increasing the

link’s quality will increase the probability that 𝐹0 is successful in the first slot. As a consequence,

the end-to-end reliability of 𝐹1 will drop as the link becomes more reliable. Therefore, for policies

such as Recorp that share slots, it is essential to prove that they do not exhibit such pathological

behavior. Theorem 2 demonstrates that Recorp policies do not exhibit this behavior.

5 DESIGN
Recorp is a practical and effective solution for IIoT applications that require predictable, real-

time, and reliable communication in dynamic wireless environments (see Figure 2). Central to our

approach is Recorp policies. The policy synthesis procedure runs on the network manager and has

as inputs the workload, routing information, and a user-specified minimum link quality threshold

𝑚. If the synthesis procedure is successful, the constructed policy guarantees probabilistically that

all flows will meet their real-time and reliability constraints as long as the quality of all links meets

or exceeds𝑚. The synthesis procedure fails when the workload is unschedulable, i.e., when a policy

that meets both the real-time and reliability constraints of all flows cannot be found. Note that

this case is unlikely to arise in practice since an application’s workload specification is known a

priori, and the designer can validate that the workload remains unschedulable during the system’s

deployment. If the synthesis procedure is successful, the manager disseminates the generated policy

to all nodes. During the operation of the network, some links may fall below the minimum link

quality threshold𝑚. Since Recorp provides no guarantees under this regime, a new policy should

be constructed after either changing the flows’ routes to avoid low-quality links or by lowering𝑚.

The separation between offline synthesis and run-time adaptation is essential to building agile

networks. The run-time adaptation is lightweight: when a node is the coordinator of a pull, it can
execute any of the flows included in its service list without requiring global consensus. In contrast,

policy synthesis is computationally expensive and ensures the global invariant that no transmission

conflicts occur regardless of coordinators’ local decisions.
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We will formalize the semantics of Recorp policies and discuss their run-time adaptation mech-

anism in Section 5.1. After, we will consider synthesizing Recorp policies in a scalable manner.

We will start by considering the problem of synthesizing policies for a data collection workload

in a star topology in Section 5.2. In Section 5.3, we will extend our approach to handle general

workloads and topologies.

5.1 Recorp Policies and Their Run-time Adaptation

A

B C

𝐹0 𝐹1

(a) Topology

(BA) (CA)Trace 3 x  (CA)  x

(CA)Trace 2 (BA) x  (BA)  x

(CA)Trace 1 (BA)

TXC(J1)Spec TXC(J1)TXB(J0) TXB(J0)

0 1 2 3

(b) Schedule

(BA) (CA)Trace 3

(BA)Trace 2 (BA)  (BA) (CA)

(CA)Trace 1 (BA)

PLA(J0,J1)Spec PLA(J1)PLA(J0) PLA(J0,J1)

0 1 2 3

(c) Recorp policy

Fig. 3. A schedule and policy for the topology shown in Figure 3a are constructed. At run-time, schedules and
policies behave differently depending on observed successes (green background) or failures (red background).
The traces show how schedules and policies adapt run-time behavior in response to successes and failures.
Notably, the schedule drops packets in traces 2 and 3 (indicated by white “x”-es) while the policy drops no
packets.

A Recorp policy is represented as a scheduling matrix with a sleep or a pull action in each entry.

A sleep action indicates that no action is taken in a slot and channel. A pull has two arguments: a

coordinator and a service list. The coordinator is the node that executes the action at run-time, and

the service list includes the instances that may be executed in that slot and channel. The instances

in the service list are ordered according to the priority of their flows. At run-time, only one of the

candidate flows in the service list will be executed. Any node can become a coordinator, and the

coordinators can change from slot to slot. The execution of a policy is cyclic, with nodes returning

to the policy’s beginning upon reaching its end.

A coordinator executes a pull at run-time by considering the instances in the service list in

priority order. For each instance, the coordinator checks whether it has received the instance’s

packet. If the coordinator has already received the instance, it will consider the next instance in the

service list. Otherwise, it will request the instance’s packet from the coordinator’s neighbor through

which the instance is routed. Upon receiving a request, the neighbor may or may not have the

packet (the latter case can happen when the packet was dropped at a previous hop). If the neighbor

has the packet, it includes it in its response to the coordinator. Otherwise, the neighbor marks the

packet as dropped in its response. In response to receiving either response, the coordinator marks

the instance as successfully executed. The invariant maintained by the execution of a pull is, at most,
one instance from the service list is executed in a slot. Note that the request or the response may not

be delivered since links are unreliable. We account for this by having an instance be included in the

service list of several pulls performed by the coordinator. As discussed in Section 5.2, an instance is

included in the service list of sufficient pulls to meet the flow’s target end-to-end reliability, given

the TLR’s minimum reliability threshold.

The proposed adaptation mechanism is sufficiently lightweight to run within 10 ms slots, as

specified by WirelessHART. The memory usage is proportional to the number of flows routed

through a node, which is small. Equally important, the adaptation mechanism does not employ

carrier sensing and, instead, relies on receiver-initiated pulls.
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To illustrate the differences between Recorp policies and schedules, consider a star topology (see

Figure 3a). In this example, two flows – 𝐹0 and 𝐹1 – relay data from 𝐵 and 𝐶 to the sink 𝐴. In slot

0, instances 𝐽0 and 𝐽1 are released from flows 𝐹0 and 𝐹1, respectively. WirelessHART requires the

construction of a schedule with two transmissions for each instance (see Figure 3b). Three traces

that differ in the pattern of packet losses observed at run-time are also included in the figure. The

only run-time adaptation mechanism available in schedules is to cancel scheduled transmissions

whose data has already been delivered. The notation TX𝐵(𝐽0) indicates that 𝐵 transmits 𝐽0’s packet

to 𝐴. The synthesized Recorp policy is shown in Figure 3c and uses the notation PL𝐴(𝐽0, 𝐽1) to

indicate a pull with 𝐴 as the coordinator and {𝐽0, 𝐽1} as the service list.
To highlight several differences between policies and schedules, consider trace 2, where there

are failures in slots 0 and 1. For this trace, the schedule included in Figure 3b cannot successfully

deliver 𝐽0’s packet because it is allocated only a single retransmission. In contrast, the Recorp policy

included in Figure 3c can successfully deliver 𝐽0’s packet. The policy includes 𝐽0 in the service list

of the pulls in slots 0, 1, and 2. At run-time, 𝐽0’s transmission in slots 0 and 1 fails, but 𝐽0 will be

delivered in slot 2. In slot 3, the policy successfully executes 𝐽1. A similar scenario is included in

trace 3, where 𝐽1’s packets cannot be delivered by schedules but are successfully delivered using a

Recorp policy. Traces 2 and 3 highlight the flexibility of Recorp policies to improve reliability by

dynamically reallocating retransmissions based on the successes and failures observed at run-time.

A key property of the run-time adaptation mechanism that we will leverage during policy

synthesis is the following:

Theorem 1. The execution of Recorp actions on a node is not affected by the actions of other nodes.

Proof. Consider the execution of a pull by a node 𝑅. A pull’s behavior depends on what instances
are included in the service list and the local state of the node. Since the service list is fixed once the

policy is constructed, the only way another node may affect 𝑅’s state is by directly modifying its

state, which does not happen. □

5.2 Synthesizing Recorp Policies for Data Collection on Star Topologies
As a starting point, let us consider the problem of constructing Recorp policies for a star topology

where all flows have the base station as the destination (see Figure 3a for an example). This setup

simplifies the synthesis of policies in two regards: (1) The base station will be the coordinator of

all pulls. Therefore, we only have to focus on determining the service list of each pull. (2) Since
all flows have the base station as the destination, there will be no transmission conflicts, and a

(different) single channel can be used in each slot. We will generalize our approach to general

multi-hop topologies and workloads in the next section.

The policy synthesis procedure involves two key components – an evaluator and a builder (see
Figure 2). The policy is synthesized incrementally by alternating the execution of the builder and
evaluator in each slot.

• The builder determines the pulls that will be executed in each slot. The builder maintains

an active list that contains all of the instances that have been released but have not yet met

their end-to-end reliability. In a slot 𝑡 , the builder checks whether an instance 𝐽𝑖,𝑘 is released

(i.e., when 𝑟𝑖,𝑘 = 𝑡 ) and, if this is the case, 𝐽𝑖,𝑘 is added to the active list. If the active list is not
empty in 𝑡 , a pull having the base station as coordinator and the instances in the active list as
its service list is assigned in the entry 𝑡 of the matrix.

• The evaluatormaintains the likelihood that each instance in the active list has been delivered

to the base station. The probabilities are updated incrementally to reflect the execution of

the pull provided by the builder in slot 𝑡 .

, Vol. 1, No. 1, Article . Publication date: June 2018.



10 Brummet, et al.

• At the end of slot 𝑡 , the builder removes all instances whose reliability exceeds their end-to-end

reliability targets from the active list.

In the remainder of the section, we will answer the question of how to estimate the reliability

of flows given the sequence of pulls determined by the builder. This problem can be modeled at

a high level as a Markov Decision Process (MDP) whose transitions depend on the likelihood of

successfully executing pulls. Let Ψ be the set of all possible states. A state 𝑠 (𝑠 ∈ Ψ) is represented
as a vector of size |F |, where the 𝑖𝑡ℎ entry represents the state of instance 𝐽𝑖 . The state of an

instance 𝐽𝑖 may be S or F, indicating whether the base station requested 𝐽𝑖 ’s data and received a

reply successfully. The reply may either include a flow’s packet or an indication that it has been

dropped on a previous hop. A direct encoding of this information would require 𝑂 (2 |F |) states,
which is not practical when there are numerous flows. To avoid state explosion, we propose the

following mechanism. We bound the length of the active list maintained by a coordinator. This

requires a simple modification to the builder: an instance is added to the active list until it reaches
the user-specified maximum size. The additional instances that are released when the active list is

full are added to an inactive list. The inactive list includes instances that are released but not

yet active. When an instance completes, the size of the active list decreases by one, and the highest

priority instance from the inactive list is moved to the active list.
With this modification, the maximum number of states a coordinator maintains is reduced to

𝑂 (2 |active list |). Additionally, we observe that the likelihood an instance is executed depends on

its index in the service list. If the index of an instance in the service list exceeds 3 or 4, then the

instance is unlikely to be executed. Accordingly, we also cap the maximum size of the service
list. The service list of a pull is then a subset of the active list. In our experiments, we constrain

|active list| ≤ 10 and |service list| ≤ 4 except where otherwise stated.

End-to-endReliabilityUsing Instantaneous LinkQuality: Let us start by deriving amethod

for computing the end-to-end reliability of flows under the assumption that there is an omniscient

oracle that can provide the instantaneous probability of a successful pull for all links in a slot

𝑡 . We will use the notation 𝑳𝑸𝑡 to represent the link quality of all links in slot 𝑡 . Later, we will

relax this requirement by constraining links to follow the TLR model i.e., their link quality is

lower bounded by𝑚 (i.e., 𝐿𝑄𝑖 (𝑡) ≥ 𝑚). Under this assumption, we will show that the worst-case

end-to-end reliability of a flow occurs when the quality of all links is equal to𝑚 in all slots.

The actions of the MDP are the pulls that the builder assigns in each slot. Initially, the system is

in a state 𝑠0, in which the base station has not received the data from any of the flows. Consider the

execution of a pull with service list 𝑠𝑟𝑣 in slot 𝑡 . To account for the impact of executing the pull
on the state of the system, we construct a transition matrixM𝑠𝑟 𝑣 (𝑡 ) of size 2

|active list | × 2
|active list |

using Algorithm 1. Let 𝐽𝑖 be an instance included in the service list 𝑠𝑟𝑣 (not necessarily as the head

of the list). According to the semantics of pulls, 𝐽𝑖 will be executed in any 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 state where the

𝑖𝑡ℎ entry of the vector is a failure (i.e., 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 [𝑖] = F) and the execution of all instances 𝐽 𝑗 with

higher priority than 𝐽𝑖 in the service list 𝑠𝑟𝑣 have already succeeded (i.e., 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 [ 𝑗] = S). From
such a 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 state, there are two possible outgoing transitions depending on whether the pull is
successful or not. If the execution of 𝐽𝑖 fails, then the system remains in the same state (see line 7,

Algorithm 1). Accordingly, the entryM𝑠𝑟 𝑣 (𝑡 ) [𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡] is set to 1 - 𝐿𝑄𝑖 (𝑡), where 𝐿𝑄𝑖 (𝑡) is
the probability of performing a successful pull over the link used by flow 𝑖 in slot 𝑡 . Conversely, if the
execution of 𝐽𝑖 succeeds, the system transitions from the 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 state to a 𝑛𝑒𝑥𝑡 state. The entries of

the 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 and the 𝑛𝑒𝑥𝑡 states are the same, except for the entry associated with the 𝐽𝑖 element for

which 𝑛𝑒𝑥𝑡 [𝑖] = S (see line 12, Algorithm 1). In this case, we setM𝑠𝑟 𝑣 (𝑡 ) [𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝑛𝑒𝑥𝑡] = 𝐿𝑄𝑖 (𝑡).
If a sleep is assigned slot 𝑡 , then the state of the system does not change.
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1: Procedure BuildTransitionMatrix(𝑠𝑟 𝑣 (𝑡 ) , 𝑳𝑸𝑡 )

2: M𝑠𝑟𝑣 (𝑡 ) = 𝑰

3: for current in Ψ do
4: for 𝐽𝑖 in 𝑠𝑟 𝑣 do
5: Let 𝑖 be the flow id of 𝐽𝑖

6: if current[𝑖] = F then
/* the execution fails */

7: M𝑠𝑟𝑣 [current, current] = 1 - 𝐿𝑄𝑖 (𝑡 )

/* the execution is successful */

8: next = onSuccess(current, 𝑖)

9: M𝑠𝑟𝑣 (𝑡 ) [current, next] = 𝐿𝑄𝑖 (𝑡 )
10: break

11: return M𝑠𝑟𝑣 (𝑡 )

12: Procedure onSuccess(state, 𝑖)
/* the next_state is the same as current except for the entry for 𝐽𝑖 becomes S */

13: next_state[𝑗] = state[𝑗] ∀𝑗 ≠ 𝑖
14: next_state[𝑖] = S
15: return next_state

Algorithm 1: Computes the transition matrix M𝑠𝑟 𝑣 (𝑡 ) given the service list 𝑠𝑟𝑣 of a pull and a snapshot

of current link 𝑳𝑸𝑡

After executing 𝑡 pulls, the probability of each state is given by the vector 𝑷 𝑡 :

𝑷 𝑡 = 𝒔𝑇
0
M𝑠𝑟 𝑣 (0)M𝑠𝑟 𝑣 (1) · · ·M𝑠𝑟 𝑣 (𝑡 ) (1)

where 𝒔0 is the initial state of the system and M𝑠𝑟 𝑣 (𝑡 ′) is the transition matrix associated with the

pull that has 𝑠𝑟𝑣 (𝑡 ′) as its service list and is executed in slot 𝑡 ′ (0 ≤ 𝑡 ′ ≤ 𝑡 ). Equation 1 describes

the evolution of the system as a discrete-time Markov Chain (MC) that is parametric and time

inhomogeneous. The structure ofM𝑠𝑟 𝑣 (𝑡 ′) depends on the service list and its values depends on

the quality of all links in slot 𝑡 ′.
The end-to-end reliability 𝑅𝑖 of instance 𝐽𝑖 after executing 𝑡 pulls is computed by summing

up the probability of each state 𝑠 (𝑠 ∈ Ψ) such that 𝑠 [𝑖] is S. Leveraging the properties of matrix

multiplication, 𝑅𝑖 may be written as:

𝑅𝑖,𝑡 = 𝑷 𝑡𝝌 𝑖 (2)

where, 𝝌 𝑖 is a vector such that 𝝌 𝑖 [𝑘] = 1 for any state 𝑠 such that 𝑠 [𝑘] = S and 𝝌 𝑖 [𝑘] = 0 otherwise.

End-to-end reliability under TLR: Computing 𝑅𝑖,𝑡 requires that we know the instantaneous

quality of all links in any slot 𝑡 . It is infeasible to have access to this information during the synthesis

of a policy. In the following, we will derive a lower bound 𝑅𝑖,𝑡 on 𝑅𝑖,𝑡 . To this end, we will construct

a new MC with transition matrix M̂𝑠𝑟 𝑣 (𝑡 ) that is computed by considering each transition matrix

M𝑠𝑟 𝑣 (𝑡 ) and replacing each link quality variable 𝐿𝑄𝑖 (𝑡) with its lower-bound𝑚. We claim that a

lower bound on the end-to-end reliability of a flow 𝑅𝑖,𝑡 is:

𝑅𝑖,𝑡 ≥ 𝑅𝑖,𝑡 = ̂𝑷 𝑡𝝌 𝑖 = 𝒔𝑇
0
M̂𝑠𝑟 𝑣 (0)M̂𝑠𝑟 𝑣 (1) · · · M̂𝑠𝑟 𝑣 (𝑡 )𝝌 𝑖 (3)

The following theorem implies that to compute a lower-bound on the reliability of a flow, it is

sufficient to consider only the case when all links perform their worst.

Theorem 2. Consider a star topology that has node 𝐴 as a base station and a set of flows F =

{𝐹0, 𝐹1, . . . 𝐹𝑁 } that have 𝐴 as destination. Let 𝐿𝑄0 (𝑡), 𝐿𝑄1 (𝑡), . . .𝐿𝑄𝑁 (𝑡) be the quality of the links
used by each flow in slot 𝑡 such that𝑚 ≤ 𝐿𝑄𝑖 (𝑡) ≤ 1 for all flows 𝐹𝑖 (𝐹𝑖 ∈ F ) and all slots 𝑡 (𝑡 ∈ N).
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Under these assumptions, the reliability 𝑅𝑖,𝑡 of an instance 𝐽𝑖 after executing 𝑡 pulls of the Recorp policy
𝜋 is lower bounded by 𝑅𝑖,𝑡 .

Proof. See Section 10. □
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Fig. 4. Estimating the state of the network and lower-bounds on the end-to-end reliability.

Let us return to our running example of the construction and execution of the policy shown in

Figure 3c. In Figure 4, we will illustrate how the end-to-end reliability of flows will be estimated

for this example. The workload includes two flows – 𝐹0 and 𝐹1 – with phases 𝜙0 = 0 and 𝜙1 = 1.

Accordingly, instances 𝐽0 and 𝐽1 are released in slots 0 and 1. We will evaluate the estimated state of

the network ̂𝑷 𝑡 and the lower-bounds on the reliability of each flow as the policy is executed. Given

that the workload involves only two flows, the possible states of the systems are Ψ = {FF, SF, FS, SS}.
Each state encodes whether the base station 𝐴 has received the data of 𝐽0 and 𝐽1. In any slot 𝑡 ,

the probability vector ̂𝑷 𝑡 is the likelihood that the network is in a state FF, SF, FS, and SS (in that

order). The lower bound on the reliability of instance 𝐽0 is 𝑅0,𝑡 = ̂𝑷 𝑡 [SF] + ̂𝑷 𝑡 [SS] = ̂𝑷 𝑡 𝜒0, where

𝝌
0
= [0, 1, 0, 1]. Similarly, 𝑅1,𝑡 = ̂𝑷 𝑡 [FS] + ̂𝑷 𝑡 [SS] = ̂𝑷 𝑡𝝌 1

, where 𝝌
1
= [0, 0, 1, 1].

Initially, the system is in state 𝒔0 = [1, 0, 0, 0]𝑇 i.e., 𝒔0 [FF] = 1 and the likelihood of the remaining

states is zero. The action PL𝐴(𝐽0) is executed in slot 0. The evaluator constructs the matrix M̂0 to

account for the impact of executing the pull on the state of the system. After executing the pull,
the state of the network is ̂𝑷 0 = 𝒔𝑇

0
M̂0. The reliability of 𝐽0 after executing PL𝐴(𝐽0) is 𝑅0,0 = ̂𝑷 0𝝌 0

=

̂𝑷 0 [SF] + ̂𝑷 0 [SS] = 0.7. Figure 4 shows the states of the MC after the execution of each pull. The
transition matrices associated with each pull are included at the bottom of the figure. The reliability

of flows is evaluated in a similar manner in the remaining slots.

5.3 Synthesizing Recorp Policies for General Topologies
In this section, we extend the results from the previous subsection to general workloads and

topologies. Doing so requires that we determine both a coordinator and a service list for each

pull. The builder must assign coordinators and service lists such that no transmission and channel
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conflicts occur. The evaluator must provide lower bounds on the reliability of the flows as they

interact across multiple hops. A naive evaluation that simply keeps track of when a coordinator

received packets from all combinations of flows does not scale. We will start by discussing how a

scalable evaluator may be built and then extend the builder.

A

B

C

D

Fig. 5. Multi-hop example.

5.3.1 The Multi-hop Evaluator. The key insight to building a scal-

able evaluator is to require coordinator nodes to operate indepen-
dently. Consider a multi-hop flow 𝐹2 shown in Figure 5 whose data

is forwarded using the path Γ2 = {𝐷,𝐶, 𝐵,𝐴}. To forward 𝐹2’s data,

a policy must include a sequence of pulls that have the nodes 𝐶 ,
𝐵, and 𝐴 as coordinators and include 𝐹2 as part of their service

lists. A simple approach to ensure that coordinators operate inde-

pendently is to use an approach similar to the Phase Modification

Protocol [5], where a multi-hop flow is divided into single-hop

subflows flows and allocate 𝛿2 = 𝐷2/|Γ2 | slots for the execution of

each flow. The first subflow 𝐹2,1 from 𝐷 to 𝐶 is released 𝜙2,1 = 𝜙2

and must complete with 𝛿2 slots. The second subflow 𝐹2,2 from𝐶 to

𝐵 is released at 𝜙2,2 = 𝜙2 + 𝛿2 and it must complete within 𝛿2 slots.

The remainder of the subflows are set up in a similar fashion. To

ensure that coordinators operate independently, it is essential that each subflow releases a packet

regardless of whether the previous subflow delivered it successfully or unsuccessfully to the next

hop. By taking advantage of the independence, we can use the single-hop evaluator described in

the previous section to evaluate the reliability of each subflow. Then, the end-to-end reliability of

the original flow is simply the product of the reliability of each subflow (due to independence).

The drawback of this approach is that each subflow is allocated an equal number of slots which

can be problematic when the workload of nodes is not uniform. To address this issue, we first

convert the end-to-end target reliability of 𝑇𝑖 into a local reliability target that each subflow must

meet:

𝑇
1

|Γ𝑖 |
𝑖

(4)

where |Γ𝑖 | is the length of 𝐹𝑖 ’s path measured in hops. Each subflow is then allowed to release the

earliest slot in which all subflows associated with the previous hops of the original flow have met

the local reliability target. Notably, different subflows may need to be executed a different number

of times to meet their local target reliability to handle non-uniform workloads effectively.

5.3.2 The Multi-hop Builder. The optimization problem can be formulated as an Integer Linear

Program (ILP). The ILP includes three types of variables. For each node 𝑅 (𝑅 ∈ N ), the variable

𝑁𝑅 (𝑁𝑅 ∈ {0, 1}) indicates whether 𝑅 is the coordinator of a pull. For each released instance 𝐽𝑖 , the

variable 𝐼𝑖 (𝐼𝑖 ∈ {0, 1}) indicates whether its associated active link will be added to a service list.

Finally, variable 𝐶𝑅,𝑐ℎ (𝐶𝑅,𝑐ℎ ∈ {0, 1}) indicates whether 𝑅 will use channel 𝑐ℎ to communicate. The

ILP solution is converted into a set of pulls as follows: for each node 𝑅 such that 𝑁𝑅 = 1, we add a

pull that has 𝑅 as the coordinator and a service list with all instances 𝐽𝑖 where 𝐼𝑖 = 1 and 𝑅 is the

receiver of the active link of 𝐽𝑖 . The pull is assigned to the entry in the matrix for the current slot

and the channel 𝑐ℎ for which 𝐶𝑅,𝑐ℎ = 1. We let A be the union of the active list of all nodes.
A well-formed policy must ensure that no transmission conflicts will be introduced at run-time.

Consider a pull that has 𝑅 as a coordinator and services instance 𝐽𝑖 . Let (𝑆𝑅) be the active link of

𝐽𝑖 , where 𝑆 = 𝑠𝑟𝑐 (𝐽𝑖 ) and 𝑅 = 𝑑𝑠𝑡 (𝐽𝑖 ). If 𝐽𝑖 will be assigned in the current slot (i.e., 𝐼𝑖 = 1), then 𝑆

cannot be a coordinator for any other instance since this would require 𝑆 to transmit and receive

in the same slot. We enforce this using the following constraint:
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Si = Sj Ri = Rj 

(a) Same link

Si = Rj Ri = Sj 

(b) Opposite link

Ri = Rj 

SjSi

(c) Common Recv

Si = Sj 

RjRi

(d) Common Sender

Ri = Sj 

RjSi

(e) Recv/sender

Si = Rj 

SjRi

(f) Sender/Recv

Fig. 6. Possible ways two instances may share at least one node. Green cases have no transmission conflict
while red cases do.

𝑁𝑆 ≤ (1 − 𝐼𝑖 ) ∀𝐼𝑖 ∈ A : 𝑆 = 𝑠𝑟𝑐 (𝐽𝑖 ) (5)

A similar constraint must also be included for the receiver 𝑅. If node 𝑅 is not a coordinator (i.e.,

𝑁𝑅 = 0), then 𝐽𝑖 cannot be assigned and 𝐼𝑖 = 0. Conversely, if 𝑅 is selected as a coordinator, instance

𝐽𝑖 may (or may not) be assigned (i.e., 𝐼𝑖 ≤ 𝑁𝑅 = 1) depending on the objective of the optimization,

which we will discuss later in this section. These aspects are captured by the following constraint:

𝐼𝑖 ≤ 𝑁𝑅 ∀𝐼𝑖 ∈ A : 𝑅 = 𝑑𝑠𝑡 (𝐽𝑖 ) (6)

The above constraints avoid all transmission conflicts with one exception. Consider the case

when two instances 𝐽𝑖 and 𝐽 𝑗 share the same sender but have different receivers. An assignment that

respects constraints 5 and 6 is for both instances to be assigned in the current slot (i.e., 𝐼𝑖 = 𝐼 𝑗 = 1).

However, this would result in a conflict, since the common sender can only transmit one packet in

a slot. To avoid this situation, we introduce the following constraint:

𝐼𝑖 + 𝐼 𝑗 − 1 ≤ 𝑁𝑆 (7)

∀𝐼𝑖 , 𝐼 𝑗 ∈ A : 𝑆 = 𝑠𝑟𝑐 (𝐽𝑖 ) = 𝑠𝑟𝑐 (𝐽 𝑗 ) & 𝑑𝑠𝑡 (𝐽𝑖 ) ≠ 𝑑𝑠𝑡 (𝐽 𝑗 )

Theorem 3. Constraints 5, 6, and 7 ensure that the execution of pulls will result in no node receiving
or transmitting more than once in a time slot.

Proof. To prove Theorem 3 holds it is sufficient to consider whether two arbitrary flow instances

may conflict. Accordingly, there are six cases to be considered as depicted in Figure 6 where two

instances 𝐽𝑖 and 𝐽 𝑗 share at least a node.

Case 1 – Same link (see Figure 6a:) If 𝐼𝑖 = 𝐼 𝑗 = 1, then 𝑁𝑅𝑖 = 𝑁𝑅 𝑗
= 1 due to constraint 6. In this

case, both 𝐽𝑖 and 𝐽 𝑗 will be serviced as part of the same Recorp operation that is coordinated by

node 𝑅 = 𝑅𝑖 = 𝑅 𝑗 . At run-time, the coordinator 𝑅 will pull either 𝐽𝑖 or 𝐽 𝑗 (but not both) depending

on its local state. Note that this is one the cases Recorp exploits to adapt and improve performance.
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Case 2 – Opposite link (see Figure 6b:) Executing 𝐽𝑖 and 𝐽 𝑗 in the same slot would result in a

conflict since one of the common nodes would have to be both a sender and a receiver. We will prove

by contradiction that 𝐽𝑖 and 𝐽 𝑗 will not be assigned in the same slot. Assume that 𝐼𝑖 = 𝐼 𝑗 = 1 and,

without loss of generality, that the common node is 𝑁 = 𝑆𝑖 = 𝑅 𝑗 . Since Since 𝐼 𝑗 = 1, then 𝑁𝑅 𝑗
= 1

due to constraint 6. Also, since 𝐼𝑖 = 1, then 𝑁𝑆𝑖 = 0 due to constraint 5. This is a contradiction since

𝑁𝑅 𝑗
= 𝑁𝑆𝑖 and 𝑅 𝑗 and 𝑆𝑖 refer to the same node. The proofs for the cases given in Figures 6e and 6f

are similar.

Case 3 – Common receiver (see Figure 6c): The common receiver case is similar to the same link

case with the exception that the senders for both 𝐽𝑖 and 𝐽 𝑗 are different. Note that this is one the

cases Recorp exploits to adapt and improve performance.

Case 4 – Common sender (see Figure 6d): Executing 𝐽𝑖 and 𝐽 𝑗 in the same slot would result in a

conflict since 𝑆 = 𝑆𝑖 = 𝑆 𝑗 would have to transmit two packets in the same slot. We will prove by

contradiction that this cannot happen. Assume that 𝐼𝑖 = 𝐼 𝑗 = 1. Since 𝐼𝑖 = 1, then 𝑁𝑆𝑖 = 0 according

to constraint 5. However, 𝐼𝑖 + 𝐼 𝑗 − 1 = 1 ≤ 𝑁𝑆𝑖 due to constraint 7, which is a contraction. □

The next set of constraints ensures that each pull is assigned a unique channel. We accomplish

this by introducing𝐶𝑅,𝑐ℎ to indicate whether coordinator 𝑅 uses channel 𝑐ℎ (𝑐ℎ = 1 . . . 𝐾 ), where 𝐾

is the number of channels. The selection of channels is subject to the constraints:∑︁
𝑅∈N

𝐶𝑅,𝑐ℎ ≤ 1 ∀𝑐ℎ ∈ 1 . . . 𝐾 (8)

𝐾∑︁
𝑐ℎ=1

𝐶𝑅,𝑐ℎ = 𝑁𝑅 (9)

A requirement of the TLR model described in Section 4 is that coordinators must switch chan-

nels between pulls to ensure independence between transmissions. We enforce this property by

introducing additional constraints to prevent coordinators from using the same channel.

To enforce the prioritization of instances, we set the optimization objective to be:

𝑖< |A |∑︁
𝑖=0

2
|A |−𝑖 𝐼𝑖 (10)

The objective function ensures that a flow 𝐹𝑖 will be assigned over lower priority flows unless there

is a higher priority flow with a conflict with 𝐹𝑖 .

6 EXPERIMENTS
Our experiments demonstrate the efficacy of Recorp to support higher performance and agility

than traditional scheduling approaches. We focus on the next generation of smart factories that

will use sophisticated sensors that are grid-powered and require higher data rates than current IIoT

systems. Specifically, we are interested in answering the following questions:

• Does Recorp improve the real-time capacity in typical IIoT workloads?

• Does Recorp provide safe reliability guarantees as the quality of links varies significantly?

• Can Recorp synthesize policies in a timely manner?

6.1 Methodology
We compare Recorp policies against three baselines. First, we compare two scheduling approaches

that do not share entries. To provide a fair comparison between schedules and policies, we first

construct schedules (Sched) using the same ILP formulation as Recorp policies but without allowing

entries to be shared. This is accomplished by adding to the ILP an additional constraint that the
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size of the service list is one . We also compare against the conflict aware least laxity first scheduler

(CLLF) [35]. CLLF has been shown to produce near-optimal schedules and constitutes the current

state-of-the-art scheduler. Similar to Sched, CLLF also does not share entries. Second, we compare

against the Flow Centric Policy (FCP) [6], which allows entry sharing only among the links of a
single flow, whereas Recorp can share entries across multiple flows. Sched, CLLF, and FCP utilize

sender-initiated transmissions, while Recorp utilizes receiver-initiated pulls.

Unless stated otherwise, we use𝑚 = 70% as suggested by Emerson’s guide to deploying Wire-

lessHART networks. In simulations, we set the probability of a successful transmission to equal𝑚.

The number of retransmissions used by Recorp, Sched, CLLF, and FCP is configured to achieve a

99% end-to-end reliability for all flows. The period and deadline are equal, and the phases are 0

in all workloads. Flow priorities are assigned such that flows with shorter deadlines have higher

priority. To break ties, flows with longer routes are assigned a higher priority. The remaining ties

are broken arbitrarily.

We quantify the performance of protocols using max flows scheduled, real-time capacity, and
response time. The max flows scheduled measures the maximum number of flows that can be

supported without missing the deadlines or reliability requirements of any flows. The real-time

capacity is the highest rate at which flows can release packets withoutmissing deadlines or reliability

constraints. The response time is the maximum latency of all instances of a flow as measured from

the time when an instance is released until it is delivered to its destination.

6.2 Simulations
We use a discrete event simulator to control𝑚 in the TLR model precisely, which is impractical on

a testbed. The simulator determines the success or failure of transmitting a packet and receiving

the acknowledgment over a link by drawing from a Binomial distribution whose change of success

can be configured. Unless stated otherwise, all links are configured to have the same success chance

of𝑚. All simulations are either single-hop or performed on one of the following two topologies:

a 41-node, 6-hop diameter topology with an average of 5.5 links per node derived from a testbed

deployed at Washington University in St. Louis (WashU topology) [3] and an 85-node, 6-hop

diameter topology with an average of 10.4 links per node derived from the Indriya testbed (Indriya

topology) [14]. In simulations, we used settings consistent with 802.15.4: the number of channels

was set to sixteen and we used 10 ms slots sufficiently large to transmit a packet and receive an

acknowledgment.

6.2.1 Star Topology. We compare Recorp and Sched in the practically important case of star

topologies. In star topologies, for the workloads we consider, Sched, CLLF, and FCP perform

identically and, therefore, we only report the results of Sched. In this experiment, we consider

workloads consisting of flows that have a period and deadline of 100 slots. We increase the number

of flows until the workload becomes unschedulable under both Recorp and Sched.
Performance in Star Topologies: Figure 7a plots the max response time of all scheduled flows

as the number of flows in the workload is increased. We configure Sched and Recorp to have an

end-to-end reliability of 99% for each flow when𝑚 = 60% and𝑚 = 70%. The figure indicates the

max response time increased until each protocol reached its real-time capacity, as indicated by the

vertical line in the figure. When𝑚 = 70%, Recorp supports 63 flows without missing deadlines

compared to only 25 flows supported by Sched. This represents a real-time capacity improvement

of 2.52 times at𝑚 = 70% and 3.25 times at𝑚 = 60%.

Impact of the Service List Size: Schedules and Recorp policies differ in how many instances

can share an entry, which can be controlled by constraining the size of the service list. Schedules

provide no sharing and are limited to a service list size of one. In contrast, Recorp policies allow

, Vol. 1, No. 1, Article . Publication date: June 2018.



Recorp: Receiver-Oriented Policies for Industrial Wireless Networks 17

0 10 20 30 40 50 60
Number of flows

0

20

40

60

80

100

M
ax

 re
sp

on
se

 ti
m

e 
(s

lo
ts

)

3.25x increase

2.52x increase

Recorp 60% Recorp 70% Sched 60% Sched 70%Recorp 60% Recorp 70% Sched 60% Sched 70%

(a) Max response time and real-time capacity

1/Sched 2 3 4 5 6 7+
Service list size

0

10

20

30

40

50

60

70

M
ax

 fl
ow

s s
ch

ed
ul

ed

1.00x

1.64x

2.08x
2.32x 2.40x 2.48x 2.52x

(b) Size Impact of service list on schedulability

Fig. 7. Simulations on star topologies.

multiple flows to be included in the service list to share an entry. Figure 7b plots the maximum

number of flows scheduled as the service list size is varied when𝑚 = 70%. When the size of the

service list is one, Recorp behaves like Sched. As we allow more flows to potentially share a slot,

the number of flows scheduled increases. However, there are diminishing returns; most of the

benefit is observed when the service list is capped at 4 to 6 flows. No meaningful improvement in

the real-time capacity may be observed after increasing the service list size beyond 7 flows. Based

on this result, we set the maximum service list size to 4 for all remaining experiments. These results

indicate that it is sufficient to share slots across only a few flows to gain most of the benefits of using
Recorp policies.

6.2.2 Multihop Topology. To provide a comprehensive comparison between Recorp, Sched, CLLF,
and FCP, we consider four typical workloads: data collection, data dissemination, a mix of data

collection and dissemination, and route through the base station. The results presented in this

section are obtained from 100 simulation runs for each workload type on each multihop topology.

In all runs, the node closest to the center of the target topology is selected as the base station. In

each run, we generate 50 flows whose sources and destinations are picked as follows:

• Data Collection (COL): Flows are randomly generated from the nodes to the same base

station.

• Data Dissemination (DIS): Flows are randomly generated from the same base station to

nodes.

• Data Collection and Dissemination (MIX): Each flow is randomly selected to use either

COL or DIS

• Route Through the Base Station (RTB): The source and destination of flows are selected

at random, but the routes are constrained to pass through the base station.

Each flow is assigned at random to one of three flow classes whose periods and deadlines maintain

a 1:2:5 ratio. For example, if Class 1 has a period of 100𝑚𝑠 , then Class 2 has a period of 200𝑚𝑠 ,

and Class 3 has a period of 500𝑚𝑠 . We refer to the period of Class 1 as the base period. In a run,

the base period of the flows is decreased until the workload is unschedulable. The results of a run

are obtained for the smallest base period for which the workload is schedulable.

Real-time Capacity and Response Time: Figures 8a and 8b plot the distribution of the ob-

served real-time capacities for the WashU and Indriya topologies, respectively. FCP provides a

median improvement over Sched and CLLF only for the RTB workload. Moreover, the improvement

is minor, with FCP increasing real-time capacity by only 1.15 pkt/s and 1.16 pkt/s over CLLF for the
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Fig. 8. Real-time capacity results.

RTB workload in the WashU and Indriya topologies, respectively. The improvement over Schedwas
similar. For the other workloads where the base station is the source/destination, FCP has worse

performance since sharing within a flow reduces only the utilization of the intermediary nodes

on a flow’s path, but not on the source and destination nodes. In contrast, Recorp outperforms all

other protocols. For example, Recorp outperforms the overall next best protocol, CLLF, by a median

margin of 28.74 pkt/s, 18.63 pkt/s, 19.05 pkt/s, and 5.94 pkt/s in the WashU topology and 30.00

pkt/s, 14.96 pkt/s, 16.67 pkt/s, and 4.97 pkt/s in the Indriya topology for the COL, DIS, MIX, and

RTB workloads, respectively. Together these results correspond to a median increase in real-time

capacity over CLLF of between 50% and 142% across each workload and topology. Moreover, Recorp

outperforms both Sched and FCP by similar amounts across all workloads and topologies.

Figures 9a and 9b show the distribution of the response times of each flow class from the previous

experiment for the MIX workload (including all runs). Consistent with the real-time capacity for the

MIX workload, FCP underperforms both Sched and CLLF with one exception. For both topologies,

FCP provides a slightly lower median response time than CLLF for Class 2. The reason for this, and

the reason that CLLF has a higher response time than Sched across all workloads and topologies,

is due CLLF making scheduling decisions as a function of remaining conflict-aware laxity. The

consequence of this approach is that CLLF occasionally allows lower priority flows to preempt

higher priority flows. In contrast, Recorp maintains deadline-monotonic prioritization and reduces

the response time for all classes in both topologies, with particularly good performance for the

middle and lowest priority flow classes. Specifically, Recorp decreased the median response time in

the WashU topology by 0.11 s, 0.40 s, and 2.50 s and in the Indriya topology by 0.13 s, 0.48 s, and

2.32 s over the next best protocol, Sched, for flow Class 1, Class 2, and Class 3, respectively. Similar

trends and performance differences were observed for the other workloads under all topologies,

with one exception. FCP slightly outperformed Sched in the RTB workload across flow classes and

topologies. However, Recorp still significantly outperformed Sched, CLLF, and FCP. These results
indicate Recorp policies can significantly improve real-time capacity and response times for common
IIoT workloads.

Synthesis Time: Next, we turn our attention to the feasibility of synthesizing policies. Typical

IIoT systems have workloads that are stable for tens of minutes, which justifies synthesizing Recorp

policies. We divided the total time to synthesize a policy into two categories: the time the evaluator
spends managing the system state and the time the builder spends solving ILPs to determine the

pulls in each slot. Figures 10a and 10b plot the distribution of the execution times for each workload
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Fig. 9. Response time per flow class.
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Fig. 10. Synthesis time.

under the WashU and Indriya topologies, respectively. The median total synthesis time is below

93 𝑠 for all workloads and both topologies. The synthesis time of the route through the base station

is significantly higher than the other workloads, as flows tend to have longer paths. This results

in more states to be managed and longer schedules. The builder tends to be the most expensive,

followed by the evaluator. We plan to explore ways to reduce the synthesis time further. These

results indicate that it is feasible to synthesize policies within 1–3 minutes for realistic networks.
Threshold Link ReliabilityModel Evaluation:Next, consider Recorp’s reliability guarantees.

Recorp uses a safe lower bound on a flow’s end-to-end reliability under the TLR model (i.e., when

the link quality of a flow exceeds 𝑚) described in Theorem 2. We are interested in providing

simulated and empirical evidence that the lower bound is safe. Additionally, when the link quality

degrades below𝑚, Recorp provides no performance guarantees. However, the end-to-end reliability

of flows should degrade gracefully as link quality falls below𝑚.

To this end, we simulated a representative MIX workload Recorp policy on the WashU topology

with𝑚 = 70%. We varied the link quality from 50% to 100% in increments of 5%. For each setting, we

simulated 1,000,000 hyperperiods and recorded each flow instance’s outcome in each hyperperiod,

delivering their data successfully or otherwise. For each instance, we computed the probability

of delivering its data and plotted the distribution of all instances as “Simulated” in Figure 11.
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Additionally, we used the evaluator to compute the lower bound on each instance’s reliability. We

plotted the worst-case reliability across all instances in the same figure as “Predicted worst case”. The

worst-case bounds computed by the evaluator are smaller than those predicted through simulations

for all test link qualities indicating that they are safe (i.e., Theorem 2 holds). As expected, when

link quality exceeds𝑚 = 70%, all instances had reliability above their target end-to-end reliability

of 99%. When the link quality is below𝑚 = 70%, Recorp provides no guarantees regarding the

reliability of flows. Nevertheless, the results indicate that the reliability of flows degrades gracefully

as link quality deteriorates. In the next section, we additionally validate the safety of the TLR model

on a real testbed.
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Fig. 11. PDR at different link qualities for a representative MIX workload in the WashU topology for𝑚 = 70%

6.3 Testbed Results
We evaluated Recorp and the baselines on a testbed of 16 TelosB motes deployed at the Univesity

of Iowa (See Figure 12b). At the beginning of each protocol’s hyperperiod 3 slots are reserved

for a broadcast graph that is used to control traffic and time synchronization. When a parent

broadcasts a packet, it includes its current time in the packet. The children detect the start-of-frame

delimiter upon receiving the packet and adjust their clocks to match their parent’s. We consider

a data collection workload that involves ten flows with equal periods whose routes are included

in Figure 12a. We configured Recorp, Sched, and FCP to provide an end-to-end reliability of 99%

when𝑚 = 70%. We did not consider CLLF in this experiment since CLLF provided nearly identical

performance to Sched. The experiments use 802.15.4 channels 11, 12, 13, and 14, which overlap

with the 802.11g WiFi network co-located in the building. We have evaluated the performance of

Recorp with and without additional interference generated by a laptop near the base station, which

transmitted ping packets at a rate of 1.5 Mbps. When no interference was present, all flows met

their end-to-end reliability, and the quality of the links exceeded𝑚 = 70%. In the following, we will

focus on when interference was present to evaluate Recorp’s ability to adapt in an environment

with significant link quality variation. We organized our experiments into multiple runs, each run

consisting of running the schedule/policy of each protocol for one hyperperiod and storing the

outcome of each transmission to flash at the end of the run. The reported results were obtained

from releasing 10,000 packets for each protocol (i.e., 10,000 runs) over approximately 6 hours.

Real-time Capacity and Reliability: We determined the maximum rates of the ten data

collection flows that can be supported using Recorp, Sched, and FCP. Recorp provides a real-

time capacity of 38.46 pkt/s compared to 19.6 pkt/s and 18.2 pkt/s provided by Sched and FCP,
respectively. The real-time capacity of Recorp is 96% higher than Sched. This result is consistent
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Fig. 13. Evaluating the safety of the reliability bound.

with the multihop experiments where Recorp significantly outperforms the baselines. Next, we

will evaluate whether the improved capacity comes at the cost of lower reliability.

We computed the packet delivery rate (PDR) over sliding windows of 100 runs. In Figure 13a, we

plot the fraction of windows that met the end-to-end reliability target of 99% for each protocol.

The lowest reliability was observed for FCP’s flow 2. We found that the root cause behind the

lower performance of FCP is the contention-based mechanism used to arbitrate access to the

entries shared by the links of a flow. FCP prioritizes the transmission of nodes closer to the flow’s

destination by having them transmit at the beginning of the slot while the other nodes only

transmit after clear channel assessment (CCA) indicates the slot is not used. In the presence of

WiFi interference, CCA was not a robust indicator of transmissions. This experience highlights the

potential advantage of using receiver-initiated pulls over contention-based approaches that rely on

CCA.

Recorp policies guarantee probabilistically that the end-to-end reliability constraints are met

as long as the quality of all used links exceeds a minimum packet reception rate 𝑚. When the

quality of the links falls below 𝑚, we provide no guarantees on the end-to-end reliability of

flows. We evaluate whether our guarantee holds as follows. Based on the trace of successes and
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failures observed during the experiment, we fit a Bernoulli 𝑃𝑚 random variable to lower bound the

observed failure distributions. Accordingly, Recorp’s analytical bounds on flow reliability hold only

if 𝑃𝑚 ≥ 𝑃𝑚 = 70%. Figure 13b classifies each window of 100 runs into the following cases:

(1) Case 𝑃𝑚 ≥ 70%, E2E Met: For 86% of the windows, the minimum link quality met or exceeded

70% (i.e., 70% =𝑚 ≤ 𝑃𝑚). Over all these windows, Recorp policies indeed guaranteed that the

end-to-end reliability of all flows exceeded the 99% target.

(2) Case 𝑃𝑚 ≥ 70%, E2E Miss: There are no cases where the minimum link quality exceeds 70%,

and the flows do not meet the target 99% reliability. These first two cases demonstrate that the

TLR model is safe since no flows miss their end-to-end reliability targets when the minimum

link quality is met.

(3) Case 𝑃𝑚 < 70%: When the actual link quality falls below the minimum link quality of

𝑚 = 70%, we provide no guarantees on the flow’s reliability. Out of the 14% of windows

where 𝑃𝑚 < 70%, in 12%, the end-to-end reliability is met, while for the other 2%, it is not.

These experiments show that Recorp policies can significantly improve real-time capacity while
meeting the end-to-end reliability of flows as the quality of links fluctuates above the minimum link
quality𝑚.

Effective Adaptation: To analyze Recorp’s ability to adapt to variations in link quality, we

consider the trace of Sched and Recorp for flow 10, which exhibits the lowest link reliability and

highest variability in our experiments. Figure 14 plots the end-to-end reliability (after retrans-

missions), the parameter 𝑃𝑚 of a Bernoulli distribution that is fitted to account for the burst of

failures observed empirically in each window, and the maximum number transmissions used by

Sched and Recorp over a trace of 4000 𝑠 . Notably, the end-to-end reliability of Sched and Recorp is

similar during this time frame (Figures 14a and 14b). Recorp achieves a similar level of end-to-end

reliability by performing more retransmissions, as it is clear from comparing Figures 14e and 14f.

Sched uses 3 – 4 maximum retransmissions over the course of the hour but notably still briefly

missed the end-to-end PDR target. In contrast, Recorp uses between 3 – 7 retransmissions to combat

a slightly lower link quality it experienced and did not miss the end-to-end PDR target over the

interval. Remarkably, Recorp can (almost) double the number of retransmissions that may be used

for flow 10 over Sched without degrading the performance of other flows. These results indicate

that Recorp can provide higher agility than schedules by using its lightweight and local run-time
adaptation mechanism to reallocate retransmissions in response to variations in link quality.

7 DISCUSSION
7.1 Deployment
Wireless networks that support IIoT applications require careful planning and deployment. The

deployment process usually involves profiling the quality of links and the interference on all 16

channels. The collected statistics are used to ensure that there are redundant routes that connect

each node to the base station whose link quality exceeds the 𝑚 threshold of the TLR model.

Consistent with Emerson’s guide for deploying WirelessHART networks, the value of𝑚 is usually

set to 60% – 70%. Additionally, the channels that have consistently poor reliability are usually

blacklisted [22].

7.2 Handling Network Dynamics
Recorp’s design focuses on supporting the communication needs of IIoT applications with long-

running real-time flows. The network manager uses the current set of flows to build a policy that

meets a flow’s end-to-end reliability as long as the link quality exceeds𝑚. This approach makes it

feasible to run the same policy for prolonged periods of time without modification. However, the
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Fig. 14. Performance of Recorp and Sched on flow 10 over time.

industrial environment may change and lead to node and link failures. The primary mechanism used

by Recorp to adapt to topology changes and node failures is to synthesize new policies. However,

the frequency with which new policies need to be synthesized can be reduced by integrating

Recorp with multi-hop routing techniques (e.g., [11, 34]) to allow Recorp to tolerate some link or

node failures without having to reconstruct policies. In the following, we describe a centralized

management and control plane that can detect and adapt to node failures and topology changes

using an approach similar to WirelessHART.

The network manager uses three different types of specialized flows to implement the control

plane. These specialized flows are periodic, but unlike regular flows, they have a higher priority

the regular flows and require different mechanisms to allocate their slots. A dissemination flow is

used to disseminate policies to all nodes after its synthesis. A dissemination flow reserves a single

slot during which the base station floods a packet to all the nodes. An efficient approach to handle

this type of communication is to use GLOSSY floods [18]. A join flow reserves a single slot during

which all nodes wait to listen to a fixed channel for nodes to request joining the network. A node

wanting to join will use CSMA techniques to broadcasts its request to join the network. All nodes

receiving the request will forward it to the base station using a report flow. A report flow is used to

inform the network manager about the status of nodes and links. A report flow is set up from each

leaf node in the upstream graph to the base station. As the packet of a report flow is forwarded,

nodes along the paths may append to the payload node and link health information to be delivered

to the network manager. Each node along the path is provided a fixed number of bytes that they

may use. As described next, node and link failure reports are prioritized while the remaining space

is used for the quality of links that are not currently part of the routing tree. Node and link health

reports can also be piggy-backed onto periodic traffic to improve network agility.

Each node collects statistics about the bursts of packet losses within a window of slots to assess

the quality of links currently in use. As described in Section 6.3, a node uses this information to fit

a Binomial distribution whose chance of success 𝑃𝑠 is sufficiently large to account for the observed

burst. On the one hand, if 𝑃𝑠 < 𝑚, the TLR assumptions are violated, and the network manager is

notified immediately about the link failure. Accordingly, this information is included in the report

flow. On the other hand, if 𝑃𝑠 ≥ 𝑚, the TLR assumptions are not violated. This information is

not as urgent to the network’s operation and is included in a control packet only if there is room
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available. This approach can also be extended to collect statistics of links that are currently not in

use. However, a node should only use the reception of the data packets (ignoring the pull requests)

to estimate the one-way link quality between itself and the packet’s sender. This information should

be included infrequently in control packets to allow the network manager to update the upstream

and downstream graphs.

Recorp allows nodes to join or leave the network dynamically. A node wanting to join the

network first listens to a fixed channel until it receives the packet of a report flow that allows it to

synchronize with the network and learn the join flows’ parameters. When the join flow is released,

the node broadcasts a request to join the network, which is routed to the network manager using

the next available report flow. Upon receiving a join request, the network manager updates the

upstream and downstream graphs to include the new node and starts the synthesis of a new policy.

When the synthesis is complete, the policy is disseminated to all nodes, including the new node. A

node leaving the network uses a report flow to send its request to the base station.

7.3 Handling Other Traffic
Recorp is optimized for improving the performance of real-time flows that are expected to carry

the bulk of the traffic in IIoT applications. However, other types of traffic may also exist. For

example, IIoT applications may benefit from supporting even-triggered emergency communication

in response to unsafe situations or failures. Recorp can support emergency communication using

techniques proposed in [26]: each slot is modified such that emergency traffic is transmitted at the

beginning of the slot. In contrast, regular traffic is transmitted after a short delay. Other examples

of traffic include aperiodic communication. The simplest solution for handling these transmissions

is to dedicate slots for their transmission periodically. Transmissions during these slots are done

using typical CSMA/CA techniques. This approach reserves a portion of the bandwidth for other

types of traffic. Moreover, it is straightforward to account for these additional slots in our analysis.

7.4 High Data-Rates and Energy Efficiency
Recorp is designed for IIoT applications that require high data rates and usually use grid-powered

nodes. Our simulation and testbed results are performed using the IEEE 802.15.4 physical layer.

The standard supports a maximum packet size of 128 bytes and a maximum data rate of 250 kbps.

Under these settings, the maximum real-time capacity from the testbed experiments equates to

only approximately 39 Kbps. While this data rate may be able to meet the real-time and reliability

requirements of some high data rate sensors such as torque and temperature sensors with update

rates on the order of 10 – 500 ms [43], it is unlikely to be sufficient for microphones and cameras. For

this type of application, Recorp can be used unmodified with IEEE 802.15.4a UWB. IEEE 802.15.4a

provides a significantly higher data rate of 27.24 Mbps and some UWB radios (e.g., DWM1001)

support packets as large as 1024 bytes. In future work, we will explore using other physical layers

to extend Recorp’s applicability further.

One of the limitations of Recorp is its potentially high energy usage. Indeed, an entry in the

scheduling matrix using the Sched protocol will involve at most two nodes using their radios.

In contrast, a Recorp pull may involve as many as five nodes for a service list of size four. The

nodes in the service list size must turn on their radio for a short duration to determine whether the

coordinator will request information from them. As a result, the real-time capacity and response time

improvements offered by Recorp come with the cost of additional energy consumption. However,

industrial applications that require higher data rates usually use grid-powered sensors. Additionally,

many applications use a powered backbone to carry high data-rate traffic while including some

battery-powered nodes (e.g., [4, 7, 10]). Recorp can be configured in such scenarios to use service

lists size of size one on battery-operated devices to achieve the same energy consumption level as
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existing scheduling approaches. Moreover, Recorp could use larger service list sizes for the powered

nodes to provide higher throughput and lower latency.

8 RELATEDWORK
Due to its predictability, TDMA has become the de facto standard for IIoT systems. There are

many scheduling algorithms to construct TDMA schedules (e.g., [16, 31, 35, 37, 39]). However,

a common weakness of TDMA protocols is their lack of adaptability to network dynamics. To

address this limitation, various techniques to handle variations in link quality, topology changes,

and fluctuations in workloads have been proposed (e.g. [13, 20, 30]). In this paper, we focus on

handling variations in link quality, as they are common in harsh industrial environments [8, 17].

Our work is complementary to and may be integrated with techniques designed to handle other

types of network dynamics.

Researchers have considered various approaches to combining CSMA and TDMA into hybrid

protocols, ultimately sacrificing either flexibility or predictability. A common approach to combine

CSMA and TDMA is to have each protocol run in different slots. This approach is adopted in indus-

trial standards such as WirelessHART [2] and ISA100.11a [1]. However, predictable performance

cannot be provided for the traffic carried in CSMA slots. Another alternative is to dynamically reuse

slots (e.g., [33]) or transmit high-priority traffic (e.g., [27]) by selecting primary and secondary slot

owners. In this approach, slot owners are given preference to transmit and send data using a short

initial back-off. If a slot owner does not have any data to transmit, other nodes may contend for its

use after some additional delay. A generalization of this scheme is prioritized MACs that divide

a slot into sub-slots to provide different levels of priority [36]. However, none of these protocols

provide analytical bounds on their performance. In contrast to the above approaches that involve

carrier sensing, our policies rely on receiver-initiated polling and the local state of nodes to adapt.

We expect policies to be less brittle in practice than solutions that use carrier sense as they do not

require tight time synchronization for adaptation.

Several distributed protocols for constructing TSCH schedules that support best-effort [15, 40]

and real-time [42] traffic have been proposed. Our work is complementary since these works focus

primarily on handling workload changes while we focus on adapting to variations in link quality

over short time scales. These protocols can’t adapt at the time scales required to handle link quality

variations due to their communication overheads. Our approach combines offline policy synthesis

with local adaptation performed at run-time. This approach can effectively handle changes over

short time scales as the adaptation process is local and lightweight.

Transient link failures are common in wireless networks [9, 38] and even more prevalent in harsh

industrial environments [8, 17]. The state-of-the-art is to schedule a fixed number of retransmissions

for each link, potentially using different channels. Little consideration is usually given to selecting

the correct number of retransmissions based on link quality. Recently, some work has been done

to tune the number of retransmissions based on the burstiness of links [30, 41]. While this is

a step in the right direction, the fundamental problem is that links are treated in isolation and

provisioned to handle worst-case behavior in a fixed manner. As a result, retransmissions cannot

be redistributed across links as needed at run-time. A notable exception is our prior work [6],

which proposes a technique to share transmissions among the links of a flow at run-time. However,

this technique’s performance benefits are sensitive to the length of flows, with the most benefit

occurring in large multi-hop networks uncommon in practice. Our experiments show that this

approach is only effective when flows are routed through the base station and not for the more

common data collection and dissemination scenarios. By enabling entries to be shared across flows,
we can significantly reduce the number of slots needed by flows to meet their end-to-end reliability,

resulting in significant performance improvements.
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9 CONCLUSIONS
Recorp is a practical and effective solution for IIoT applications that require predictable, real-time,

and reliable communication in dynamic wireless environments. We leverage the stability of IIoT

workloads and the improving resources of wireless nodes to build a solution that combines offline

policy construction and run-time adaptation. A Recorp policy assigns a Recorp operation to each

slot and channel, which specifies a coordinator that will arbitrate channel access and a list of flows

that may be serviced. At run-time, the coordinator dynamically executes the flows in the service

list from which it has not received a packet. The advantage of Recorp is that nodes can locally

reallocate the retransmissions of flows in response to variations in link quality and, as a result,

provide higher performance than scheduling approaches.

The synthesis of policies required us to address two key challenges: handling the state explosion

problem and providing predictable performance as the quality of links varies. We developed a

practical approach to synthesize policies iteratively. In each slot, the builder employs an ILP program

to determine the Recorp operations that will be performed in the current slot. Based on the selected

operations, the evaluator determines a lower-bound on the end-to-end reliability of each flow to

determine if it met its target end-to-end reliability. A key advantage of Recorp is that it provides

guarantees when slots are shared under a realistic model of wireless communication. Specifically,

we guarantee that a constructed Recorp policy will meet a user-specified reliability and deadline

constraint for each flow as long as the quality of all (used) links exceeds a minimum link quality.

We have extensively evaluated the performance of Recorp through both simulations and testbed

experiments. Our results indicate that due to their increased agility, Recorp policies can significantly

improve real-time capacity (median 50% – 142%) and reduce worst-case response time (median

27% – 70%) while meeting a specified end-to-end reliability. These trends hold across typical

IIoT workloads, including data collection, data dissemination, and route through the base station.

Additionally, we showed empirically that our theoretical guarantees of real-time performance and

reliability hold even in the presence of significant interference.
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10 PROOF OF THEOREM 2
In this section, we prove Theorem 2. Before proving the theorem though, we will introduce some

definitions and lemmas. We will illustrate their use using a single-hop scenario with two flows 𝐹0

and 𝐹1 (F = {𝐹0, 𝐹1}) that relay data to the base station (see Figure 3a). In the following, we let

𝑁 = |F |. We consider the execution of two generic instances – 𝐽0 and 𝐽1 – of these flows .

Under the considered example, the state of the system is represented as a vector where the 𝑖𝑡ℎ

entry indicates whether the currently released instance of flow 𝑖 was received successfully (S) or
not (F) by the base station. Accordingly, the states of our example are FF, SF, FS, and SS. There are
four possible pulls that may be performed in a slot 𝑡 : PL𝐴(𝐽0), PL𝐴(𝐽1), PL𝐴(𝐽0, 𝐽1), and PL𝐴(𝐽1, 𝐽0).

Note that the builder described in Section 5.2 would never assign PL𝐴(𝐽1, 𝐽0) as it strictly enforces

prioritization among flows. Nevertheless, the theorem and lemmas presented in this section apply

to a broader class of builders that allow priority inversions and may assign PL𝐴(𝐽1, 𝐽0). For each

pull, we construct an associated transition matrix according to Algorithm 1:

• M0 – the transition matrix associated with PL𝐴(𝐽0)

• M1 – the transition matrix associated with PL𝐴(𝐽1)

• M0,1 – the transition matrix associated with PL𝐴(𝐽0, 𝐽1)

• M1,0 – the transition matrix associated with PL𝐴(𝐽1, 𝐽0)

Each of the matrices for the considered example are included in Figure 15. Note that all of the

transition matrices depend on the quality of the links 𝐿𝑄0 (𝑡) and 𝐿𝑄1 (𝑡) at time 𝑡 .

FF SF FS SS©« ª®¬
1 − 𝐿𝑄0 (𝑡 ) 𝐿𝑄0 (𝑡 ) 0 0 FF

0 1 0 0 SF
0 0 1 − 𝐿𝑄0 (𝑡 ) 𝐿𝑄0 (𝑡 ) FS
0 0 0 1 SS

(a)M0

FF SF FS SS©« ª®¬
1 − 𝐿𝑄1 (𝑡 ) 0 𝐿𝑄1 (𝑡 ) 0 FF

0 1 − 𝐿𝑄1 (𝑡 ) 0 𝐿𝑄1 (𝑡 ) SF
0 0 1 0 FS
0 0 0 1 SS

(b)M1

FF SF FS SS©« ª®¬
1 − 𝐿𝑄0 (𝑡 ) 𝐿𝑄0 (𝑡 ) 0 0 FF

0 1 − 𝐿𝑄1 (𝑡 ) 0 𝐿𝑄1 (𝑡 ) SF
0 0 1 − 𝐿𝑄0 (𝑡 ) 𝐿𝑄0 (𝑡 ) FS
0 0 0 1 SS

(c) M0,1

FF SF FS SS©« ª®¬
1 − 𝐿𝑄1 (𝑡 ) 0 𝐿𝑄1 (𝑡 ) 0 FF

0 1 − 𝐿𝑄1 (𝑡 ) 0 𝐿𝑄1 (𝑡 ) SF
0 0 1 − 𝐿𝑄0 (𝑡 ) 𝐿𝑄0 (𝑡 ) FS
0 0 0 1 SS

(d)M1,0

Fig. 15. Possible transition matrices when two flows are active

According to Equation 1, the network state after executing 𝑡 pulls is:

𝑷 𝑡 = 𝑠
𝑇
0
M𝑠𝑟 𝑣 (0)M𝑠𝑟 𝑣 (1) · · ·M𝑠𝑟 𝑣 (𝑡 )

where 𝑠0 is an initial state and M𝑠𝑟 𝑣 (𝑡 ′) is the transition matrix associated with the pull performed

in slot 𝑡 ′, 0 ≤ 𝑡 ′ ≤ 𝑡 , and in our example is equal to either M0, M1, M0,1 or M1,0. This equation

describes the state evolution of a Markov Chain (MC) over time. Note that unlike traditional MCs,

the transition matrix of this MC is parametric and the value of those parameters change over time.

The transition matrices have a special structure which we will characterize next. We impose a

partial order on the states that reflects how the network changes its state in response to a successful

pulls (see procedure onSuccess() of Algorithm 1).

Definition 4. We say the states 𝑠1 and 𝑠2 are partially ordered, 𝑠1 ⪯ 𝑠2, if and only if the following

is true:

𝑠1 [𝑘] = S ⇒ 𝑠2 [𝑘] = S ∀𝑘 ∈ [0, 𝑁 )
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The partial order induced by ⪯ in our example is: FF ⪯ SF ⪯ SS and FF ⪯ FS ⪯ SS. The states SF
and FS are not comparable. Relating ⪯ to the onSuccess() method, the ordering FF ⪯ SF implies

that there is a service list 𝑠𝑟𝑣 (e.g., 𝑠𝑟𝑣 = {𝐽0} or 𝑠𝑟𝑣 = {𝐽0, 𝐽1}) such that onSuccess(FF, 𝐽0) = SF. We

make two observations of this partial order:

Lemma 5. 𝑠1 ⪯ onSuccess(𝑠1, 𝐽𝑘 ) for all instances 𝐽𝑘 .

Proof. onSuccess can change only the 𝑘𝑡ℎ entry in 𝑠1 to S. If 𝑠1 [𝑘] = S then the partial order

holds as the state will not change (i.e. 𝑠1 = onSuccess(𝑠1, 𝐽𝑘 )). If 𝑠1 [𝑘] = F, then the 𝑘𝑡ℎ entry in

𝑠1 will change to S and all other entries will stay the same. This also does not violate the partial

order. □

Lemma 6. If 𝑠1 ⪯ 𝑠2, then onSuccess(𝑠1, 𝐽𝑘 ) ⪯ onSuccess(𝑠2, 𝐽𝑘 ), for all instances 𝐽𝑘 .

Proof. onSuccess can change only the 𝑘𝑡ℎ entry of a state so there are four possibilities. (1)

If 𝑠1 [𝑘] = S and 𝑠2 [𝑘] = S then 𝑠1 = onSuccess(𝑠1, 𝐽𝑘 ) and 𝑠2 = onSuccess(𝑠2, 𝐽𝑘 ). Therefore,
onSuccess(𝑠1, 𝐽𝑘 ) ⪯ onSuccess(𝑠2, 𝐽𝑘 ). (2) If 𝑠1 [𝑘] = F and 𝑠2 [𝑘] = F the 𝑘𝑡ℎ entry of 𝑠1 and 𝑠2 will

change to S and all other entries will stay the same. Therefore, onSuccess(𝑠1, 𝐽𝑘 ) ⪯ onSuccess(𝑠2, 𝐽𝑘 ).

(3) If 𝑠1 [𝑘] = S and 𝑠2 [𝑘] = F the assumed partial ordering is violated and therefore the lemma

is not violated. (4) If 𝑠1 [𝑘] = F and 𝑠2 [𝑘] = S then the 𝑘𝑡ℎ entry of 𝑠1 will change to S with all

other entries staying the same and 𝑠2 = onSuccess(𝑠2, 𝐽𝑘 ). Since 𝑠2 [𝑘] = S, onSuccess(𝑠1, 𝐽𝑘 ) ⪯
onSuccess(𝑠2, 𝐽𝑘 ). □

We will use the notationM𝑠𝑟 𝑣 (𝑡 ) [𝑖, 𝑗] to refer to the 𝑖, 𝑗 element of the matrix and M𝑠𝑟 𝑣 (𝑡 ) [𝑖, :]
to refer to the i

𝑡ℎ
row. The values of M𝑠𝑟 𝑣 (𝑡 ) [𝑖, :] include the likelihood of transitioning from 𝑠𝑖 to

another state in Ψ. The values of a row follow one of two patterns: (1) If the current state is 𝑠𝑖 , 𝐽𝑘 is an

instance in the current service list to be executed such that 𝑠𝑖 [𝑘] = F, and 𝑠 𝑗 = onSuccess(𝑠𝑖 , 𝐽𝑘 ), then
all entries in M𝑠𝑟 𝑣 (𝑡 ) [𝑖, :] are zero except for M𝑠𝑟 𝑣 (𝑡 ) [𝑖, 𝑖] = 1 − 𝐿𝑄𝑘 (𝑡) and M𝑠𝑟 𝑣 (𝑡 ) [𝑖, 𝑗] = 𝐿𝑄𝑘 (𝑡).
(2) Otherwise if the current state is 𝑠𝑖 there is only one non-zero entry in M𝑠𝑟 𝑣 (𝑡 ) [𝑖, :] and it is

M𝑠𝑟 𝑣 (𝑡 ) [𝑖, 𝑖] = 1. Based on these observations, we can rewrite M𝑠𝑟 𝑣 (𝑡 ) as:

M𝑠𝑟 𝑣 (𝑡 ) = 𝑰 + 𝐿𝑄0 (𝑡)𝐸0 + 𝐿𝑄1 (𝑡)𝐸1 + · · · + 𝐿𝑄𝑁 (𝑡)𝐸𝑁 = 𝑰 +
𝑁∑︁
𝑖=0

𝐿𝑄𝑖 (𝑡)𝐸𝑖 (11)

where 𝑰 is the identity matrix and matrix 𝐸𝑖 (𝑡) has the following properties: (1) 𝐸𝑖 (𝑡) is upper-
triangular, (2) the entries of 𝐸𝑖 (𝑡) are in {−1, 0, 1} and (3) in each row, 𝐸𝑖 (𝑡) [𝑖, :], there is either
exactly one +1 entry off the diagonal and one -1 entry on the diagonal or all the entries of the row

are zero. As an example, the transition matrix M0,1 may be rewritten as:

M0,1 = 𝑰 + 𝐿𝑄0 (𝑡)𝐸0 (𝑡) + 𝐿𝑄1 (𝑡)𝐸1 (𝑡)

=

©«
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

ª®®®¬ + 𝐿𝑄0 (𝑡)
©«
−1 1 0 0

0 0 0 0

0 0 −1 1

0 0 0 0

ª®®®¬ + 𝐿𝑄1 (𝑡)
©«
0 0 0 0

0 −1 0 1

0 0 0 0

0 0 0 0

ª®®®¬
We now create the following definition to relate the partial ordering to the actual state probabili-

ties and make the following two observations.

Definition 7. A vector 𝒇 given the partial order induced by ⪯, if 𝑠𝑖 ⪯ 𝑠 𝑗 implies 𝒇 [𝑖] ≤ 𝒇 [ 𝑗].

Lemma 8. If 𝒇𝑇 is an increasing vector and M𝑠𝑟 𝑣 (𝑡 ) is a transition matrix , then 𝒈𝑇 = 𝒇𝑇M𝑇
𝑠𝑟𝑣 (𝑡 ) is

also an increasing vector.
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Proof. Consider an arbitrary instance 𝐽𝑘 and let 𝑠𝑖 ⪯ 𝑠 𝑗 , 𝑠𝑎 = onSuccess(𝑠𝑖 , 𝐽𝑘 ), and 𝑠𝑏 =

onSuccess(𝑠 𝑗 , 𝐽𝑘 ). Consider the 𝑖𝑡ℎ and 𝑗𝑡ℎ entries of 𝒈𝑇 :

𝒈𝑇 [𝑖] = 𝒇𝑇 [𝑖] (1 − 𝐿𝑄𝑘 (𝑡)) + 𝒇𝑇 [𝑎]𝐿𝑄𝑘 (𝑡)
𝒈𝑇 [ 𝑗] = 𝒇𝑇 [ 𝑗] (1 − 𝐿𝑄𝑘 (𝑡)) + 𝒇𝑇 [𝑏]𝐿𝑄𝑘 (𝑡)

Notice that 𝒇𝑇 [𝑖] ≤ 𝒇𝑇 [ 𝑗] by definition since 𝑠𝑖 ⪯ 𝑠 𝑗 and 𝒇𝑇 [𝑎] ≤ 𝒇𝑇 [𝑏] by Lemma 6. As a result,

we can conclude 𝒈𝑇 [𝑖] ≤ 𝒈𝑇 [ 𝑗]. Since 𝒈𝑇 [𝑖] ≤ 𝒈𝑇 [ 𝑗] holds for an arbitrary instance 𝐽𝑘 , 𝒈
𝑇
must be

an increasing vector. □

Lemma 9. If 𝒇𝑇 is an increasing vector, 𝒈𝑇 = 𝒇𝑇M𝑇
𝑠𝑟𝑣 (𝑡 ) , and 𝒈′𝑇 = 𝒇𝑇M̂𝑇

𝑠𝑟𝑣 (𝑡 ) with M̂𝑠𝑟 𝑣 (𝑡 ) =

(𝑰 + ∑𝑁
𝑖=0
𝑚𝐸𝑖 (𝑡)) and 𝐿𝑄𝑖 (𝑡) ≥ 𝑚, then 𝒈𝑇 ≥ 𝒈′𝑇 component-wise.

Proof. Consider 𝒈𝑇 − 𝒈′𝑇
:

𝒈𝑇 − 𝒈′𝑇 = 𝒇𝑇M𝑇
𝑠𝑟𝑣 (𝑡 ) − 𝒇𝑇M̂𝑇

𝑠𝑟𝑣 (𝑡 )

= 𝒇𝑇
(
𝑰 +

𝑁∑︁
𝑖=0

𝐿𝑄𝑖 (𝑡)𝐸𝑖 (𝑡)
)𝑇

− 𝒇𝑇
(
𝑰 +

𝑁∑︁
𝑖=0

𝑚𝐸𝑖 (𝑡)
)𝑇

=

(
𝑁∑︁
𝑖=0

(𝐿𝑄𝑖 (𝑡) −𝑚)𝐸𝑖 (𝑡)
)
𝒇

Consider now an arbitrary instance 𝐽𝑘 and state 𝑠𝑖 such that 𝑠𝑎 = onSuccess(𝑠𝑖 , 𝐽𝑘 ). By Lemma 5,

𝑠𝑖 ⪯ 𝑠𝑎 . Since 𝒇 is an increasing vector (because 𝒇𝑇 is an increasing vector), 𝒇 [𝑖] ≤ 𝒇 [𝑎] =⇒ 0 ≤
𝒇 [𝑎] − 𝒇 [𝑖]. Notice that either 𝐸𝑖 (𝑡) [𝑖, 𝑖] = 𝐸𝑖 (𝑡) [𝑖, 𝑎] = 0 or 𝐸𝑖 (𝑡) [𝑖, 𝑖] = −1 and 𝐸𝑖 (𝑡) [𝑖, 𝑎] = 1.

If 𝐸𝑖 (𝑡) [𝑖, 𝑖] = 𝐸𝑖 (𝑡) [𝑖, 𝑎] = 0, then(
𝑁∑︁
𝑖=0

(𝐿𝑄𝑖 (𝑡) −𝑚)𝐸𝑖 (𝑡)
)
[𝑖, :]𝒇 = 0

If instead 𝐸𝑖 (𝑡) [𝑖, 𝑖] = −1 and 𝐸𝑖 (𝑡) [𝑖, 𝑎] = 1 then(
𝑁∑︁
𝑖=0

(𝐿𝑄𝑖 (𝑡) −𝑚)𝐸𝑖 (𝑡)
)
[𝑖, :]𝒇 = (𝐿𝑄𝑖 (𝑡) −𝑚)𝒇 [𝑎] − (𝐿𝑄𝑖 (𝑡) −𝑚)𝒇 [𝑖]

≥ 0

Since this result holds for an arbitrary instance 𝐽𝑘 , 𝒈
𝑇 ≥ 𝒈′𝑇

component-wise. □

We are now prepared to prove Theorem 2 which we reproduce below for convenience.

Theorem 2. Consider a star topology that has node 𝐴 as a base station and a set of flows F =

{𝐹0, 𝐹1, . . . 𝐹𝑁 } that have 𝐴 as destination. Let 𝐿𝑄0 (𝑡), 𝐿𝑄1 (𝑡), . . .𝐿𝑄𝑁 (𝑡) be the quality of the links
used by each flow in slot 𝑡 such that𝑚 ≤ 𝐿𝑄𝑖 (𝑡) ≤ 1 for all flows 𝐹𝑖 (𝐹𝑖 ∈ F ) and all slots 𝑡 (𝑡 ∈ N).
Under these assumptions, the reliability 𝑅𝑖,𝑡 of an instance 𝐽𝑖 after executing 𝑡 pulls of the Recorp policy
𝜋 is lower bounded by 𝑅𝑖,𝑡 .
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Proof. The end-to-end reliability of flow instance 𝐽𝑖 after 𝑡 slots is:

𝑅𝑖,𝑡 = 𝑷 𝑡𝝌 𝑖 = 𝑠
𝑇
0
M𝑠𝑟 𝑣 (0)M𝑠𝑟 𝑣 (1) · · ·M𝑠𝑟 𝑣 (𝑡 )𝝌 𝑖

Since 𝑅𝑖,𝑡 is a number, we can apply the transpose to obtain:

𝑅𝑖,𝑡 = (𝑅𝑖,𝑡 )𝑇

= 𝝌𝑇𝑖 M𝑇
𝑠𝑟𝑣 (0)M

𝑇
𝑠𝑟𝑣 (1) · · ·M

𝑇
𝑠𝑟𝑣 (𝑡 )𝑠0

We observe that 𝝌 𝑖 is an increasing vector by construction, and by extension, 𝝌𝑇𝑖 . By Lemma 9 the

following must be true as a result:

𝑅𝑖,𝑡 = 𝝌𝑇𝑖 M𝑇
𝑠𝑟𝑣 (0)M

𝑇
𝑠𝑟𝑣 (1) · · ·M

𝑇
𝑠𝑟𝑣 (𝑡 )𝑠0

≥ 𝝌𝑇𝑖 M̂𝑇
𝑠𝑟𝑣 (0)M

𝑇
𝑠𝑟𝑣 (1) · · ·M

𝑇
𝑠𝑟𝑣 (𝑡 )𝑠0

As a consequence of Lemma 8, 𝝌𝑇𝑖 M̂𝑇
𝑠𝑟𝑣 (0) is an increasing vector and therefore we can again apply

Lemma 9 to get the following:

𝑅𝑖,𝑡 ≥ 𝝌𝑇𝑖 M̂𝑇
𝑠𝑟𝑣 (0)M̂

𝑇
𝑠𝑟𝑣 (1) · · ·M

𝑇
𝑠𝑟𝑣 (𝑡 )𝑠0

Continuing in this way gives the desired result

𝑅𝑖,𝑡 ≥ 𝝌𝑇𝑖 M̂𝑇
𝑠𝑟𝑣 (0)M̂

𝑇
𝑠𝑟𝑣 (1) · · · M̂

𝑇
𝑠𝑟𝑣 (𝑡 )𝑠0

= 𝑅𝑖,𝑡

□
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