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Abstract—For indoor IoT environments, spontaneous device
associations are of particular interest where users establish
a connection in an ad-hoc manner to enable serendipitous
interaction. For instance, between a user’s personal device and
devices the user encounters in the surrounding environment.
Our system for device grouping named DevLoc takes advantage
of ubiquitous light sources around us to perform continuous
device grouping based on the similarity of light signals. To
control the spatial granularity of user’s proximity, we provide
a configuration framework to manage the lighting infrastructure
through customized visible light communication. We support
two modes of device associations to achieve a binding between
different entities: device-to-device and device-to-area allowing
either proximity-based or location-based services. Our device
grouping includes several methods where in general the machine
learning based signal similarity performs best compared to
distance and correlation metrics.

Index Terms—Mobile ad hoc networks, Network services,
Ubiquitous and mobile devices, Similarity measures, Machine
learning approaches

I. INTRODUCTION

We witness a proliferation of wireless devices, such as lap-

tops, mobile phones, tablets, IoT boards, and more. Their wire-

less capabilities enable flexible formation of ad-hoc groups.

Dynamic group association opens up new opportunities for

users to spontaneously share resources or information. We

aim to support two different types of proximity applications

targeted for end users and Internet of Things (IoT). We

highlight three use cases for proximity-based, user-oriented

applications [1]: 1) Alice is a tourist, rides on the subway and

wants to ask locals for the best way to the museum, 2) Bob,

a student lands at his college airport and wants to check if

anyone from his college is currently at the airport and can give

him a ride to campus, and 3) Carol is a manager who wants

to automatically record who is present at her daily meetings

or share data during a meeting with colleagues and customers.

On the other hand, we highlight two use cases for proximity-

based IoT applications: 1) IoT boards upload location-tagged

data that allows data filtering and data merging from multiple

devices at the same area and 2) location-based access policy

for consumer smart home platforms [2], e.g., Amazon Echo

or Google Home. Therefore, we focus on proximity which has

been identified as a group association technique where devices

find one another when they are brought within a close distance

or a dedicated space [3]. Proximity identifies potential group

members and device association refers to the technique that

connect group members.

Our system named DevLoc uses visible light signaling for

continuous device grouping because light sources are ubiqui-

tous around us ensuring practicality. DevLoc relies on Wi-Fi as

the primary communication means in combination with visible

light. Since visible light does not pass through opaque objects,

it is a good candidate to realize distance-bounding wireless

communication compared to the electromagnetic waves of Wi-

Fi which easily penetrate physical barriers. Via visible light

we achieve more fine-granular device associations based on

light bulb coverage which are impossible to recognize with

propagating Wi-Fi. On this basis, we can automatically gener-

ate meaningful data sharing policies among device groups to

define with whom sharing or aggregating data. We offload the

task to specify data sharing policies to lower communication

layers which are typically handled as part of the application

layer in wireless systems used today. Compared to Wi-Fi or

other communication technologies, we justify the use of visible

light by enabling or automating specific use cases based on the

unique characteristic to be sensitive to spatial barriers. This

compensates the downsides of visible light such as lack of

hardware support at mobile devices. We adopt a master-slave

mechanism for light bulbs to minimize the adaption of existing

lighting infrastructure for DevLoc.

In contrast to existing systems for device grouping and

to facilitate applications with different spatial expansion of

proximity, we provide a complete framework to manage the

lighting infrastructure and control the spatial granularity of

device grouping. We overcome the main disadvantage of

location tags [1] that users have no control over the spatial

granularity of proximity where the notion of neighborhood

is entirely dependent on the type of location tag. Therefore,

we enrich the lighting infrastructure by adding light signaling

to the widely used Light-Emitting Diode (LED) lamps in

residential and office settings. Our custom light bulbs integrate

illumination with visible light signaling to automatically link

physically nearby devices via the similarity of light patterns.

Besides that, we preserve user privacy by comparing low-

level context such as surrounding light signals instead of

higher-level context like ambient sound. Users may not be

comfortable with the idea of sharing context with strangers,

even if doing so increases their access to timely and relevant

information [4]. Our generated light patterns are ephemeral,
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unpredictable nonces associated with a location like a shared

pool of entropy between all users at a given location at a

given time [1]. The two key properties of light patterns for

device grouping are: 1) reproducibility that two measurements

at the same place and time yield tags matching with high

probability, and 2) unpredictability that an adversary not at a

specific place or time is unable to produce a tag that matches

the tag measured at that location at that time.

Our key contributions are summarized as follows:

1) We design and develop DevLoc for efficient device

grouping based on visible light signaling. We can adapt

the lighting infrastructure based on a custom light bulb

to control the spatial granularity of user’s proximity.

2) We evaluate the physical channel of VLC regarding a

real-world deployment of DevLoc. In addition, we per-

form two simulations for static device-to-device group-

ing and dynamic device-to-area grouping where we

analyze the performance of signal comparison methods.

II. RELATED WORK

DevLoc is related to the areas of device pairing, device

coupling, device association, and device grouping. Our device

grouping is a guidance technique based on proximity in the

real world without human interaction. For an overview, the

work of [5] categorizes techniques for device associations in

the following way: 1) guidance techniques where users act

in the real world in order to connect devices via contact,

alignment, 2) input focuses on user actions such as trigger

commands, entering data, or direct manipulation, 3) enrollment

is based on one-time registration of devices with an identity,

and 4) matching describes approaches where users compare

output of the involved devices to confirm a connection.

To infer close proximity of users, visible light positioning

[6]–[8] is out of scope because we are not interested in

the user’s position to protect the user’s privacy. Instead, we

use context information such as ambient light patterns to

recognize nearby devices due to the distance-restricted nature

of light. In this context, to detect the proximity of devices,

other approaches use radio signals [9], ambient audio [10],

ambient noise and luminosity [11], accelerometer data caused

by hand shaking [12], gait cycle detection of moving users

[13], and magnetometer readings of very close devices [14].

The existing work aims to connect mainly two devices whereas

DevLoc enables group associations and thereby we are able to

flexibly control the granularity of device’s proximity. Group

association is not just an extension of pairwise association

with more users [3]. Instead, many people expect that group

association is a single-step procedure rather than multiple

pairings. The user study of [3] reveals that close proximity is

popular for groupwise associations, but also not rated highly

for simplicity.

III. DEVLOC SYSTEM FOR DEVICE GROUPING

We introduce the DevLoc framework for device grouping in

Fig. 1(a) where radio-based communication like Wi-Fi covers

larger areas and penetrates spatial barriers such as walls, doors.
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(a) System overview of DevLoc combining Wi-Fi routers and light
bulbs for device associations among users and IoT boards.
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(b) DevLoc implements the proposed framework on our customized
LocalVLC system [15] to enable visible light signaling for device
grouping. We show the deployed 3D-printed light bulb together with
the hardware platform.

Fig. 1: DevLoc for seamless device association

We enrich those with visible light signaling to control the spa-

tial granularity of device’s proximity based on the master-slave

principle of the light bulbs covering larger rooms or across

multiple rooms. The different colors at the light bulbs refer to

different light patterns used for device associations. The dotted

red circles highlight the association among different entities:

a) device-to-device using solely the device’s light signals for

signal comparison or b) device-to-area using the device’s light

signal and an area’s reference light signal for signal matching.

DevLoc aims to associate user’s mobile devices like tablets,

smartphones, laptops, and static IoT boards for data sharing

and aggregation. Our custom light bulb in Fig. 1(b) inspired

by [16]–[18] is a central part of DevLoc which establishes

a Wi-Fi link to the lighting configuration framework and

emits light patterns at a high frequency, invisible for human

eyes, to seamlessly group devices. This allows us to replace

existing illumination infrastructure and we are able to limit

the problem of light pollution, at which different visible lights

are overlapping for illumination and communication. Our light

bulbs to realize device grouping are an implementation choice

and not fundamental to the system design. In the following,

we describe the setup and working principle of DevLoc.



A. Control the Spatial Granularity of Device Associations

The first task of the administrator is to specify the geogra-

phic structure of the device associations by selecting proximity

areas. For example, such as in Fig. 1(a) via room numbers

for area one and region names like corridor for area five.

Initially each light bulb and Wi-Fi router registers itself at

the lighting configuration framework running at the backend.

Hence, DevLoc knows the light bulbs for all defined areas

and randomly chooses for each region one of the light bulbs

as master light bulb and the remaining light bulbs act as

slaves. We randomly generate a light pattern adapting over

time for each master light bulb and the slave light bulb(s)

simply broadcast the same light pattern given from the master

light bulb. On this basis, we can flexibly define the spatial

granularity of device proximity based on the master-slave

mechanism of our light bulbs by changing the groups of light

bulbs covering different areas. For instance, we cover larger

regions by using the same light pattern in different rooms

which are semantically the same area such as area one in

Fig. 1(a) covering two rooms compared to other areas limited

by the room boundaries. The achievable spatial granularity of

device associations is defined by the size of rooms and regions

like corridors, and the number and distribution of light bulbs.

For the most fine-granular proximity, each light bulb works on

its own as master light bulb without any slave light bulbs. Our

custom light bulb provides a communication range of up to

10 m. The master-slave mechanism of our light bulbs ensures

a minimum of technical adaptions on existing illumination

because only the master light bulbs need computing power to

perform the device associations. The slave light bulbs require

only a Wi-Fi connection to receive the commands from the

master light bulb to broadcast a specific light pattern.

B. Triggering Device Associations

We combine Wi-Fi routers and our custom light bulbs for

triggering device associations. The second task of the admin-

istrator is to specify one Wi-Fi router for each master light

bulb which continuously monitors the wireless connections

of the Wi-Fi router. Due to the larger Wi-Fi coverage the

binding is 1:m meaning one router is linked to multiple master

light bulbs. If there are no device groups yet and in case

of changes on the Wi-Fi connections, each linked master

light bulb requests the continuously broadcasted light pattern

received from the client(s) and initiates the device association

to infer which devices are in the same light communication

range instead of being only in the same Wi-Fi coverage. In

case of a new Wi-Fi client, the master light bulb performs the

signal comparison to infer the matching device group without

affecting other devices. When a Wi-Fi device disappears at

the router the master light bulb removes this single client

from existing device groups. Besides that, the mobility of

user’s also affects the triggering of device associations. In

case of static users it is sufficiently to observe the Wi-Fi

connections for device grouping. However, for users moving

between different areas but still connected to the same Wi-

Fi router we need to manually start the device grouping for

current device groups via a predefined period like every few

seconds. We do not use signal strength changes of the user’s

Wi-Fi connection to update the device association because it

is sensitive to reflections and shadowing due to moving and

static objects, location and distance of users to the router, and

layout and material of the building. The Wi-Fi signal strength

can change unexpectedly and gives excessive false positives

and false negatives causing frequent device association updates

which decrease the user experience.

C. Entities for Device Association: Device and Area

As illustrated in Fig. 1(a), the third and last task of the

administrator is to define the mode of device associations

for each master light bulb depending on the desired ap-

plication using location-based services (LBS) or proximity-

based services (PBS). Device-to-device association for PBS

and device-to-area association for LBS. LBS are based upon

the absolute position of a user to answer the question “where

we are?”. In contrast, PBS are based upon context information

to find co-location with other points of interest to answer

the question “who are we with?”. The goal of LBS and

PBS is to improve the users’ daily lives by providing a

personalized service to enable sharing of location information

and location-aware information retrieval. We identify three

main differences between device-to-device and device-to-area

associations: 1) trigger point in time of the device grouping, 2)

required number of clients for device association, and 3) signal

comparison among different entities influencing the associated

binding either device-to-device or device-to-area.

In case of device-to-device associations, triggering the de-

vice grouping requires at least two connected clients at the

router which is linked to one or multiple master light bulbs.

To match a Wi-Fi client to a device group, the master light bulb

randomly chooses one client from each existing device group

for signal comparison. The established binding between nearby

clients lacks the information in which specific geographic

region the clients are positioned. Hence, we can only realize

PBS like data sharing among close users. LBS are not feasible

such as indoor localization of a single or group of users.

On the other hand for device-to-area associations, the master

light bulb(s) start the device grouping immediately after the

client connected to the Wi-Fi router and compare the client’s

signal to the area’s reference signal. We establish a direct

binding between the device and area, and hence we know

which device is in which region and at the same time which

other devices are nearby. Via LBS including PBS we are

able to offer more user services. In addition, there is no

restriction in terms of the number of connected clients, e.g.,

to have at least two connected clients for device-to-device

binding. Device-to-device grouping provides less location-

specific information compared to the device-to-area grouping.

D. Generation and Detection of Light Patterns

Our custom light bulb broadcasts random light patterns for

device grouping. We independently generate a random series

of light on and off periods and merge them afterwards to a



light pattern. The duration of each light on and off period is

in the range of [1, 5] ms. The minimum duration is defined

via the fastest sampling rate achievable by the hardware of

our light receiver, how fast the photodiode can be sampled.

We determine the maximum duration of each light on and

off period by avoiding unpleasant visual experience where

light flickering effects are visible. The sender periodically

broadcasts the light pattern for a limited time period. The

length of the light pattern must be a multiple of two to be

able to distinguish different light patterns, i.e., after each light

on period appears a light off period. To improve the detection

rate of light patterns at the light receiver, we check for each

light on and off series if the time periods are sufficiently

diverse that each duration is more than 10 % different from

the other periods. Our light receiver samples the raw light

signal via a photodiode and receives the voltage in mV where

a higher voltage indicates a light on period and a lower voltage

indicates a light off period.

How to detect cycles in the light signal? To find repeating

patterns, we apply the cycle detection algorithm from [13]

on our light pattern. The algorithm achieves a reliable signal

segmentation based on normalization and supports signal

similarity of arbitrary co-aligned sensor data. The algorithm’s

input is a vector of voltage amplitudes z = (z1, ..., zn) and the

output is a sequence of consecutive light signal cycles. We uti-

lize auto-correlation and distance calculation to find repetitive

signal parts. The auto-correlation is efficiently calculated via

the Wiener-Khinchin theorem [19] with complexity n · log(n)
FR(f) = FFT [z]

S(f) = FR(f) · F ∗R(f) ∗ =̂ conjugate

R(τ) = IFFT [S(f)]

where z are the voltage amplitudes. The resulting auto-

correlation R(τ) leads to m non-ambiguous local maxima

ζ = arg max(R(τ)) = {ζ1, ..., ζi..., ζm}. We calculate the

distances between all local maxima and a mean distance

δmean =

⌈∑m−1
i=1 ζi+1 − ζi

m− 1

⌉

where δmean can be used to select minima indices from z which

represent signal cycles. To be specific, each local maxima

defines a start point and δmean a search range to find the local

minima

μ = {μ1, ...μi, ..., μm−1}
μi = arg min(zζi , zζi+1, ..., zζi+δmean

)

Every μj represents the index of a minimum in z limited to the

range of δmean. The indices in μ are used to split the voltage

amplitude z into light patterns

Z = {Z1, ..., Zi, ..., Zq}
Zi = (zμ i

2

, ..., zμi
, ..., zμ i+1

2
−1) with i = {2, 4, ..., q}

This method works reliably only for simple light patterns

with a maximum length of six on and off periods. Hence,

we introduce our own method to detect light patterns taking

into account the period of each light on and off phase. We

summarize the light signal into a list of periods

ẑ = {(s1, d1), ..., (sn, dn)}
where sn ∈ {0, 1} describes whether the light is on or off and

di ∈ Z specifies the duration of each period. We merge similar

signal parts with a difference smaller than 10 % because the

light sender introduced a 10 % dissimilarity among the light

on and off periods to enhance the robustness of signal cycle

detection. The remaining unique signal parts define the parts

of the signal pattern together with the length. We overlay the

light signal with a time window defined by the pattern length

to identify the light pattern. We don’t know the start position

of the light pattern resulting in m = len(ẑ)/2 + 1 possible

candidates as light pattern.

E. Implementation Details of DevLoc

We use the small, low-cost, single-board computer Beagle-

Bone Black as system and development platform. We have

implemented two Linux kernel modules to broadcast light

patterns at the light bulb and receive light patterns at the

user’s mobile device. We use MQTT for the communication

among light bulbs. Each master light bulb subscribes to the

central backend to receive the configured light pattern which

is further published to the slave light bulb(s). In addition, we

take advantage of Python twisted, an event-driven network

programming framework where we provide short callbacks to

receive and send data between light bulbs and user clients.

IV. EVALUATION OF DEVICE ASSOCIATIONS VIA DEVLOC

We evaluate the physical channel of VLC with respect to

a real-world deployment of DevLoc including the impact of

ambient light and the field of view (FoV) at the receiver’s pho-

todiode. In addition, to analyze the performance of DevLoc in

varying environments, we simulate two different environments

with static and moving users to identify for each case the best

working device grouping in terms of high detection accuracy

and low runtime.

A. Properties of VLC Physical Channel

Regarding a real-world deployment of DevLoc, we have

evaluated in [15] the impact of ambient light at VLC by using

two different LEDs as VLC transmitter, an omnidirectional

LED with a weak light signal and a directional LED with

a strong, beaming light signal. The results have shown that

the directional LED is less influenced by the ambient light

compared to the omnidirectional LED. Nevertheless, with a

stronger ambient light similar to an active light source or

direct sunlight the performance to detect signal patterns using

the directional LED drops significantly. In contrast, the om-

nidirectional LED only works reliably at a low ambient light

intensity. In addition, we measure the FoV at the photodiode

of the receiver. The omnidirectional LED obtains a range of

165°–50° and the directional LED achieves a FoV of 175°–

5°. As future work, we plan to enhance the robustness of
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Fig. 2: We use our university lab as simulation environment

for device associations which consists of 24 rooms with

different sizes. We take real traces of the Wi-Fi and Bluetooth

environment at different positions over the university lab for

comparison with device localization.

DevLoc by analyzing the effect of overlapping light patterns

from different light bulbs whether we are able to separate and

identify the different signals. We will adopt the algorithm in

[20] which uses orthogonal codes to detect and isolate adjacent

light sources, e.g., light markers for object identification.

B. Simulation Settings for Device Association

We evaluate DevLoc via a dedicated simulator running two

different simulations with static and dynamic users. To support

this, we have previously identified the best working parameters

for device grouping which are summarized and italicized in

Table I. We perform a trace-driven simulation with persisted

environment data from our university lab as shown in Fig. 2.

Thereby, we compute statistical features (min, max, median,

var, std, mean, sum, length) and time-series tailored features

via tsfresh [21] for light patterns. To enable the simulations,

each grouping client uses three different real traces: Wi-Fi

and Bluetooth scans, and random light patterns with varying

length. We achieve a realistic simulation by imitating the

network latency between the grouping server and the clients by

a random waiting time before each client sends the requested

environment data to the grouping server. Thereby, we choose

a random start within the sensing range for light patterns, Wi-

Fi and Bluetooth scans, and we randomly select a sampling

period within the identified best working sampling ranges.

C. Static Device-to-Device Simulation of Device Grouping

Simulation settings In the static simulation no user is

moving and each user remains in the same room. The grouping

server waits until all devices are connected and starts the

device grouping. Table I shows the parameters for the static

simulation. We perform the device grouping using random

light patterns with a varying length ∈ {2, 4, 6, 8, 10} and

for at least two users up to ten users.

Simulation results By using 10-fold cross validation, Ta-

ble II presents the best working device grouping technique

(highlighted in bold) in terms of a fast reasoning and a

reasonable total result, meaning the average over accuracy,

precision, recall, and F1-score. The ML-based device grouping

performs similar or slightly better than the signal similarity

metrics like Spearman and Pearson. In contrast, the device

localization using Bluetooth and Wi-Fi features works far

TABLE I: Settings from parameter estimation (italic) and

simulation parameters (bold) for device grouping

Simulation Parameters

Static &
Dynamic

Similarity metrics Pearson, Spearman

Similarity threshold 0.7

Similarity equalize method DTW

Localization classifiers Content-based filtering,
random forest, SVM

Sampling period localization 5 s

Similarity classifiers Random forest, extra trees,
gradient boosting

Sampling period to train
similarity classifiers

50 ms

Static Light patterns [2, 4, 6, 8, 10]

Users [2, 3, 4, 5, 6, 7, 8, 9, 10]

Dynamic Grouping frequency [10, 20, 30] s

Users [3, 5, 10]

Rooms [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

worse. Regarding the runtime of our device grouping, the

median time to receive data for device grouping is about 1.41 s

which stands for 83.93 % of total time in comparison to the

device grouping with 0.27 s and 16.07 % of the total time.

For a thorough evaluation we further analyze the perfor-

mance using different number of grouping users. We reach

the highest total result of 0.97 with six grouping users because

with less users the grouping signals lack significant patterns

and with more users the noise over the grouping signals

increases leading to a higher error rate for device grouping.

In the following, we show the number of grouping users with

descending total result in brackets, meaning the average over

accuracy, precision, recall, and F1-score: 6 (0.97), 4 (0.94), 3

(0.93), 8 (0.93), 5 (0.92), 9 (0.92), 10 (0.92), 7 (0.92), 2 (0.87).

Moreover, we evaluate the performance of light patterns with

different lengths for device grouping. The light pattern with

four random on and off periods works best compared to a

decrease of 9 % using the worst light pattern with ten random

periods. In detail, we present the average performance of light

patterns with different lengths sorted by descending total result

in brackets: 4 (0.97), 2 (0.95), 6 (0.91), 8 (0.9), 10 (0.88).

D. Dynamic Device-to-Area Simulation of Device Grouping

Simulation settings In comparison to the static simulation,

the users are moving between different rooms in the dynamic

simulation. Fig. 2 shows our simulation environment for device

associations where the rooms are positioned in a rectangular

grid with an intra room distance of 2 m and inter room

distance of 3 m and we calculate the distances among all

room combinations. For each user we calculate a random

path between the rooms using the duration of one simulation

iteration of 20 min and distribute the time as duration of stay

over the rooms using a multinomial distribution. As a result,

the user’s random path is a list of tuples with duration of stay



TABLE II: Best working classifiers and features for device grouping with static and moving users

Simulation Grouping technique Feature type Result Runtime Accuracy Precision Recall F1-score

Static Gradient boosting Selected tsfresh .96 4.02 s (8) 1 .94 .94 .94

Gradient boosting Selected statistical .83 0.75 s (4) .89 .81 .81 .8

Gradient boosting Statistical .81 0.45 s (2) 1 .75 .75 .75

Spearman Light pattern .81 0.49 s (3) 1 .75 .75 .75

Spearman Duration of light pattern .81 0.42 s (1) 1 .75 .75 .75

Pearson Light signal .64 2.06 s (5) .25 .77 .79 .76

Random forest Bluetooth .43 2.64 s (7) .34 .48 .52 .38

SVM Wi-Fi .31 2.61 s (6) .32 .2 .44 .26

Dynamic Pearson Duration of light pattern .95 0.46 s (3) 1 .93 .93 .93

Pearson Light pattern .95 0.47 s (4) 1 .93 .93 .93

Pearson Light signal .95 0.28 s (2) .95 .95 .95 .95

Gradient boosting Selected tsfresh .93 1.58 s (8) .9 1 .9 .93

Gradient boosting Selected statistical .93 0.53 s (5) .9 1 .9 .93

Content-based filtering Bluetooth .84 0.59 s (6) .95 .81 .81 .81

Content-based filtering Wi-Fi .84 0.61 s (7) 1 .78 .78 .78

Extra trees Statistical .83 0.26 s (1) .75 1 .75 .83

for each room where the user stays and moves to the next

room if the duration of stay expired. For example, user A has

the random path: [(120, 1), (300, 3), ...] which specifies that

the start position is in room 1 and after 120 s the user moves

to room 3 and stays there for 5 min, and so forth. Thereby,

we randomly create user groups for each room, i.e., at which

simulation time how many users are in the same room. During

the simulation each user chooses a random movement speed

in the range of 1.25 to 1.53 m/s (4.5–5.5 km/h) [22] for each

movement between rooms. If the users are in motion they

are in the corridor and not associated with any room. For

device grouping, each room is associated with unique location-

dependent environment data including Wi-Fi and Bluetooth

scans, and light patterns and acts independently of other

rooms. Table I shows the parameters for dynamic device-to-

area simulation covering grouping frequency, number of users,

and number of rooms.

Simulation results Via 10-fold cross validation, Table II

shows the best working device grouping (highlighted in bold)

with respect to a fast runtime and a reasonable total result,

meaning the average across accuracy, precision, recall, and F1-

score. In contrast to the static simulation, the device grouping

based on similarity metrics works slightly better compared

to ML-based device grouping. The device localization using

Wi-Fi and Bluetooth features achieves a similar result. With

respect to the runtime of our device grouping, the median time

to receive data for device grouping is about 0.43 s (71.67 %

of the total time) in comparison to the device grouping with

0.17 s (28.33 % of the total time). Moreover, we analyze the

performance of device grouping with a varying number of

rooms, sorted after decreasing total result in brackets: 1 (0.99),

2 (0.96), 3 (0.92), 5 (0.9), 6 (0.89), 4 (0.87), 8 (0.84), 7 (0.82),

9 (0.79), 10 (0.76). The device grouping works best with less

rooms because the more rooms the higher the chance that

the user lacks the up-to-date light pattern of the designated

room due to movement or decoding issues. Besides that,

the frequency of device grouping with 20 s works best, the

accuracy of device grouping decreases by 16 % with 30 s and

with a 10 s frequency the accuracy decreases another 8 %.

To sum up, Table II shows two different best working

classifiers and features for device grouping depending on the

use case either for static or moving users. The scenario with

several rooms and moving users is more realistic in practice

and we favor this approach for device association.

V. CONCLUSION

DevLoc is a ready-to-deploy system solution to enable

seamless device grouping based on visible light signaling for

data sharing and aggregation. Our custom light bulb broadcasts

light patterns so that clients detect cycles in the light patterns

for device grouping. Our evaluation of DevLoc via two simu-

lations with a single room and static users and multiple rooms

with moving users reveals that in general the machine learning

based signal similarity performs best compared to distance and

correlation metrics.

To ensure that DevLoc protects the user’s privacy during

device grouping at the light bulb, we will analyze how to apply

fully homomorphic encryption for time-series data where

multiple parties compute whether they are nearby without

learning each other’s inputs. Moreover, by using our Morse-

code inspired modulation scheme from LocalVLC [15], we

plan to encode a location identifier emitted by our custom

light bulb(s) for device grouping and compare the results with

the device grouping via light signal patterns in terms of robust

device grouping in presence of light interference.
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[10] D. Schürmann and S. Sigg, “Secure Communication Based on Ambient
Audio,” Secure Communication Based on Ambient Audio, vol. 12, no. 2,
pp. 358–370, 2013.

[11] M. Miettinen, N. Asokan, T. D. Nguyen, A.-R. Sadeghi, and M. Sob-
hani, “Context-Based Zero-Interaction Pairing and Key Evolution for
Advanced Personal Devices,” in Proceedings of the ACM SIGSAC

Conference on Computer and Communications Security (CCS), 2014,
pp. 880–891.

[12] R. Mayrhofer and H. Gellersen, “Shake Well Before Use: Intuitive
and Secure Pairing of Mobile Devices,” IEEE Transactions on Mobile
Computing, vol. 8, no. 6, pp. 792–806, 2009.
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