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   Dear Editor,
Dynamics and digital circuit implementation of the fractional-order

Lorenz  system are  investigated  by  employing  Adomian  decomposi-
tion  method  (ADM).  Dynamics  of  the  fractional-order  Lorenz  sys-
tem  with  derivative  order  and  parameter  varying  is  analyzed  by
means of Lyapunov exponents (LEs), bifurcation diagram, chaos dia-
gram  and  phase  diagram.  Results  show  that  the  fractional-order
Lorenz  system  has  rich  dynamical  behaviors  and  it  is  a  potential
model  for  application.  It  is  also  found  that  the  minimum  order  is
affected by numerical algorithm and time step size. Finally, the frac-
tional-order system is implemented on digital signal processor (DSP).
The  phase  diagrams  generated  by  the  DSP  are  consistent  with  that
generated by simulation.

et al.

Introduction: The  fractional-order  Lorenz  system with  a  new set
of parameters is firstly analyzed by I. Grigorenko and E. Grigorenko
[1],  and  they  reported  that  the  system can  generate  chaos  when  the
total  order  is  2.91  by  a  numerical  method  they  derived.  Unfortu-
nately, an error was found among the derived numerical method, thus
the result in this letter is not reliable [2]. More recently, Jia   [3]
analyzed dynamics of this system with order q = 0.7, 0.8 and 0.9 and
implemented  it  in  analog  circuit  by  employing  frequency  domain
method (FDM) [4]. However, whether this method accurately reflects
chaotic  characteristics  in  fractional-order  chaotic  system  was  ques-
tioned [5].  Another  method for  solving fractional-order  chaotic  sys-
tems  is  the  Adams-Bashforth-Moulton  algorithm (ABM)  [6].  It  can
be  used  to  analyze  dynamics  with  continuous  derivative  order  [7],
and  some researches  of  the  fractional-order  chaos  are  based  on  this
algorithm  [8].  But  the  calculation  speed  of  this  algorithm  is  very
slow, and it consumes too many computer resources [9]. Meanwhile,
ADM [10] is employed to obtain numerical solution of the fractional-
order chaotic system for its high precision and fast speed of conver-
gence [11].  In  addition,  based on ADM, LEs of  the fractional-order
system is calculated [12]. Furthermore, circuit design is essential for
application of fractional-order chaotic systems. Although analog cir-
cuit implementation is widely reported by researchers, digital circuit
realization  of  the  fractional-order  chaotic  system has  better  flexibil-
ity and repeatability [13]. So, we focus on the dynamics of the frac-
tional-order Lorenz system and its  DSP implementation by employ-
ing ADM in this letter.

Numerical solution for the fractional order Lorenz system: The
fractional-order Lorenz system is presented by [1]
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Dq

t0 x = a(y− x)

Dq
t0 y = cx− xz+dy

Dq
t0 z = xy−bz

(1)

a = 40 b = 3 c = 10

where a, b, c and d are the system parameters, and q is the derivative
order. According to [1] and [3], we investigate dynamics and digital
circuit realization of this system by fixing , , ,  and
varying d and q. Because ADM converges very fast [11], we choose
the first 6 terms of ADM polynomial for the approximate solution in
this  letter,  and the numerical  solution of  the fractional-order  Lorenz
system is denoted by
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where h is the integration step-size,  is the Gamma function, and

 are defined as
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2 = yn, k0
3 = zn (3)
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According  to  (2),  the  chaotic  sequences  of  the  fractional-order
Lorenz  system  are  obtained  with  appropriate  initial  values.  Mean-
while,  (2)  provides a  necessary iterative for  DSP implementation of
the fractional-order Lorenz system.

N = 20 000
h = 0.01

Dynamics with parameter varying: In  this  section,  dynamics  of
the  fractional-order  Lorenz  system  with  system  parameter d and
derivate order q varying are investigated. Parameter fixed dynamical
analysis method and chaos diagram are used. Here we set 
and . Three cases are investigated.

d = 25

0.813 ≤ q < 1

1) Fix , and vary derivative order q from 0.75 to 1 with step
size of 0.0005. The bifurcation diagram and LEs are shown in Fig. 1.
It shows that the system generates chaos for  excepting
some periodic windows. Thus the minimum total  order for the frac-
tional-order Lorenz system to generate chaos is 2.439 and the corre-
sponding  phase  diagram  is  shown  in Fig. 2.  In  addition,  the  maxi-
mum  Lyapunov  exponent  illustrates  a  decreasing  trend  as  order q
increasing.

q = 0.96

d = 32.1
d ∈ [9.8,32.1]

d ∈ [14.5,16.3]∪ [21.1,
21.5] d = 9.8

d = 20

2) Fix  and vary d from 0 to 38 with step size of 0.1. When
d decreases  from  38,  the  system  presents  periodical  states  until  it
enters  into  chaos  at  by  the  period-doubling  bifurcation  as
shown  in Fig. 3(a).  Chaos  covers  most  of  the  range 
with  several  small  periodic  widows,  like 

.  Finally,  the  system  becomes  convergent  at  by  a  tan-
gent  bifurcation.  To  observe  dynamics  better,  phase  diagrams  are
presented in Fig. 4. When d =15, 21.5, and 37, the system is periodic,
and  the  system  is  chaotic  when .  It  shows  that  the  system
presents different states with different parameter d.

3) Vary q from 0.75 to 1 with step size of 0.0025 and vary d from 0
to  38  with  step  size  of  0.38  simultaneously.  The  maximum  Lya-

d ∈ [10,32]
d ∈ [25,30] q ∈ [0.8,0.97]

punov exponent based chaos diagram in q-d parameter plane is illus-
trated in Fig. 5. In this figure, we only draw the case when the maxi-
mum  Lyapunov  exponent  is  larger  than  zero.  According  to Fig. 5,
chaos exists in the range of . A high complexity region is
observed within  and , which is favorable for
practical application. So, the fractional-order Lorenz system is a good
model for real  application.  The chaos diagram provides a parameter
selection  basis  for  the  fractional-order  Lorenz  system  in  practical
application.  Compared  with  bifurcation  analysis  results  based  on
FDM as shown in [3], results based on ADM are more detailed and
accuracy. It also shows that we can analyze dynamics of the system
with q varying continuously, but it is difficulty for FDM to do so.

Discussion about the minimum order: Obviously, the minimum
order  for  chaos  is  different  for  different  system parameter.  But  it  is
also different when the numerical solution algorithm or time step size
h is different [14]. Thus these two aspects are discussed as follows.
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1)  Compared  with  other  approaches,  chaotic  system  has  a  much
lower order if it is solved by ADM algorithm. The equilibrium point
of this system is (0, 0, 0) and . When
d = 25, the eigenvalues at (0, 0, 0) are 

,  and  the  eigenvalues  at  are 
,  and . Acco-

rding to  the  stability  theory,  the  lowest  order q to  generate  chaos  is
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d = 25Fig. 1. Dynamics  of  the  fractional-order  Lorenz  system  with  and q
varying. (a) LEs; (b) Bifurcation diagram.
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Fig. 2. Phase diagram of the fractional-order Lorenz system with d = 25 and
q = 0.813.
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Fig. 3. Dynamics  of  the  fractional-order  Lorenz  system with q =  0.96  and d
varying. (a) LEs; (b) Bifurcation diagram.
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Fig. 4. Phase  diagrams  of  the  fractional-order  Lorenz  system  with q =  0.96
and d varying. (a) ; (b) ; (c) ; (d) .
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Fig. 5. Maximum Lyapunov exponent based chaos diagram.
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q =  0.8726.  It  is  not  difficult  to  find  out  that  ABM  satisfies  this
result. However, FDM and ADM do not. According to [3], when q =
0.7, the system has rich dynamics and chaos still  exists by applying
FDM. According to Fig. 1,  the minimum order of  the system is q =
0.813  by  applying  ADM.  Actually,  the  stability  theory  [15]  is  pro-
posed to analyze fractional-order linear systems. For fractional-order
nonlinear systems, Li   [16] proved that the stability theory does
not always work when the specified matrix  is time-varying. We
think that  it  is  more complex to analyze stability  of  fractional-order
nonlinear  system.  Besides,  although  FDM  and  ADM  do  not  satisfy
the  stability  theory,  they  are  widely  used  and  accepted  by
researchers.  In  addition,  it  shows  in  [17]  that  different  results  of  a
fractional-order  system  may  be  achieved  when  simulations  are  per-
formed based on different numerical methods. Since FDM and ADM
can  obtain  chaos  at  a  much  lower  order,  they  extend  the  parameter
space of fractional-order chaotic systems.

2) The effect of time step h should be further investigated. As for
ADM,  when h =  0.01,  the  lowest  order  to  generate  chaos  is q =
0.813. We also find that the lowest order decrease with the decrease
of the time step size h. As shown in Fig. 6, when h = 0.001, the low-
est  order  is q =  0.505,  and  the  lowest  order  is q =  0.402  for h =
0.0001. The system generates chaos with lower order when time step
h is smaller, but more memory and computing resources are needed.
It is not good for the real application. We think h = 0.01 is a suitable
choice for general  cases.  However,  the reason why the lowest  order
decreases with the decrease of time h needs further study.

According  to  the  discussion  above,  when  a  minimum  order  for
chaos  generation  of  a  fractional-order  chaotic  system  is  presented,
the certain set of parameters, numerical algorithm and time step size
should also be specified.

x0 = [1 2 3]

Digital circuit implementation: The DSP implementation method
for  the  fractional-order  chaotic  systems  is  described  in  [13].  In  this
section,  the  fractional-order  Lorenz  system  is  realized  according  to
(2)−(9). Here, the initial value is . Setting q = 0.8130, d =
25,  the  phase  diagram  is  shown  in Fig. 7(a).  The  corresponding
MATLAB simulation result is illustrated in Fig. 2. Setting q = 0.96, d
= 15, the phase diagram is shown in Fig. 7(b), and its MATLAB sim-
ulation  counterpart  is  presented  in Fig. 4(a).  Setting q =  0.96  and
varying d (d =  20  and d =  37),  the  phase  diagrams  are  shown  in
Figs. 7(c)  and 7(d).  It  can  be  seen  that  they  consist  with  phase  dia-
grams  as  shown in Figs. 4(b)  and 4(d).  It  shows  that  the  fractional-
order  Lorenz  system  is  implemented  on  the  DSP  platform  success-
fully.  It  lays  a  hardware  foundation for  the  applications  of  the  frac-
tional-order Lorenz chaotic system.

Conclusion: In  this  letter,  based  on  ADM  algorithm,  we  investi-
gated  the  dynamics  of  the  fractional-order  Lorenz  system.  It  shows
that the fractional-order Lorenz system has rich dynamical character-
istics.  The system is more complex with smaller derivate order q as
the  maximum Lyapunov exponent  decreases  with  the  increase  of q.
The lowest order for chaos generation is different according to differ-
ent  numerical  algorithms.  The  fractional-order  Lorenz  system has  a
much lower order for chaos if it is solved by ADM algorithm. Mean-
while, the lowest order for chaos is smaller when the time step size h
is  smaller.  Finally,  the  system  is  implemented  by  employing  DSP,
and phase diagrams generated by the DSP device are consistent with
the  simulation  results.  Our  further  work  will  focus  on  real  applica-
tions of the fractional-order Lorenz system.
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Fig. 6. Bifurcation diagrams of the fractional-order Lorenz system under dif-
ferent h. (a) h = 0.001; (b) h = 0.0001.
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Fig. 7. Phase diagrams of the fractional-order Lorenz system recorded by the
oscilloscope (a) q = 0.8130 and d = 25; (b) q = 0.96 and d = 15; (c) q = 0.96
and d = 20; (d) q = 0.96 and d = 37.
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