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 Dear Editor,
This  letter  addresses  the  passivity-based  mean  square  exponential

stabilization  problem  for  switched  stochastic  nonlinear  systems.  A
concept  of  generalized  small-time  norm-observability  is  presented
and an appropriate test condition is also provided. For pre-given pas-
sivity  rate  and  average  dwell  time,  a  set  of  feedback  controllers  is
designed by use of the passivity property. Then, combining with gen-
eralized  small-time  norm-observability,  a  sufficient  condition  to
guarantee  mean  square  exponential  stabilization  of  a  switched
stochastic nonlinear system is given. As a special case, the switched
stochastic  linear  system  has  also  similar  results.  Finally,  a  numeral
example shows the effectiveness of the proposed method.

Switched  systems  have  attracted  considerable  attention  in  the  last
several decades [1]. Several methodologies have also been available
in  the  study  of  switched  systems,  such  as  the  common  Lyapunov
function method [2], the single Lyapunov function method, the mul-
tiple  Lyapunov  functions  method [3], [4],  the  switched  Lyapunov
function method [5] and so on.

On the other hand, passivity, as a special kind of dissipativity, is an
important  tool  in  control  study  and  the  concept  of  passivity  for
switched  systems  is  usually  described  by  use  of  multiple  storage
functions, see for instance [6] and references therein. In [6], for pre-
given average dwell time, feedback controllers have been designed to
exponentially stabilize switched systems by using the passivity prop-
erty  of  subsystems.  Meanwhile,  due  to  many  practical  applications,
such as air traffic management, communication networks and health
care systems etc., there have been increasing research activities in the
field  of  stochastic  systems [7]–[9].  Passivity  is  also  usually  used  in
the analysis and design of switched stochastic systems [10]–[12]. In
real  control  process,  to  guarantee  a  specific  dwell  time,  the  dwell
time switching method is a good choice. Recently, the dissipativity-
based stabilization problem for switched stochastic systems was con-
sidered via the design of the sliding dynamics and a fuzzy-parameter-
dependent filter in [7] and [13], respectively. Notice that, among the
aforementioned literatures, the derived average dwell time is specifi-
cally determined by Lyapunov functions or storage functions, which
cannot be designed arbitrarily. Moreover, the existing results on pas-
sivity  for  switched  stochastic  systems  mainly  focus  on  two  aspects.
One  is  the  problem of  passivity  analysis  and  feedback  passification
for switched systems via designing a proper switching law or identi-
fying  a  class  of  switching  signals.  The  other  is  the  passivity-based
control  and  design  problem  for  switched  stochastic  systems.  Up  to
now,  few  works  concentrate  on  the  control  and  design  problem  by
use  of  the  passivity  property  of  subsystems  of  switched  stochastic
systems.

In  this  letter,  the  passivity  property  of  subsystems  is  used  to

of

address  the  mean  square  exponential  stabilization  problem  for
switched stochastic nonlinear systems, where one passive subsystem
is necessary. The concept of small-time norm-observability is gener-
alized  and  an  appropriate  test  method  is  also  provided.  Finally,  for
any  pre-given  passivity  rate  and  average  dwell  time,  mean  square
exponential  stability  for  switched  stochastic  systems  is  reached  via
the  design of  a  set  of  controllers  on the  basis  of  the  passivity  prop-
erty  subsystems.

System description: Consider a switched stochastic nonlinear sys-
tem
 

dx = [ fσ(t)(x)+gσ(t)(x)uσ(t)]dt+ lσ(t)(x)dω
y = hσ(t)(x) (1)

x ∈ Rn σ : R+→ I = {1,2, . . . ,q}
q > 0

∀i ∈ I fi(x) gi(x) hi(x) li(x)
fi(0) = 0 hi(0) = 0 li(0) = 0 ω

(Ω,F,P)
E{dω} = 0 E{dω2} = 0

where  is the state,  is a piecewise con-
tinuous function,  called a  switching signal,  and  is  the  number
of  subsystems.  Furthermore,  for , , , ,  are
smooth functions satisfying , , .  is a stan-
dard  Wiener  process  on  a  complete  probability  space  with

 and .
Preliminaries: In the following, we present several definitions and

a lemma to develop the main result.
σ(t) ∀t > τ > 0

Nσ(τ, t)
σ(t) (τ, t) τa > 0 N0 ≥ 0

Nσ(τ, t) ≤ N0 +
(t−τ)
τa

τa N0

Definition  1 [14]:  For  a  switching  signal  and ,  let
 denote the number of discontinuities of the switching signal

 on  the  interval .  If  there  exist  numbers  and 
such that  holds,  and  are called the average
dwell time and the chattering bound, respectively.

x∗ = 0
σ(t)

η > 0 λ > 0 ∀t > t0 E{∥x(t)∥2} ≤
ηe−λ(t−t0)E{∥x(t0)∥2}

Definition 2 [7]: The equilibrium  of the switched stochastic
system (1) is said to be mean-square exponentially stable under 
if  there  exist  and ,  such  that  for , 

.

Vi(x)
Vi(x) ∈C2[Rn,R+] Vi(0) = 0

Definition  3 [9]:  The ith  subsystem of  the  switched  system (1)  is
said to be passive with respect to the storage function , if there
exists a function  with  such that
 

LVi(x) ≤ uT
i yi, ∀(ui,yi) ∈ Rm ×Rm (2)

LVi(·)where  represents the infinitesimal generator defined by
 

LVi(x) =
∂Vi

∂x
[ fi(x)+gi(x)ui]+

1
2

tr[lTi (x)
∂2Vi

∂x2 li(x)]. (3)

∀T2 > T1 ≥ 0 Tp[T1,T2]
[T1,T2] Tn[T1,T2]

[T1,T2] γ =
Tp[T1 ,T2]

T1−T2
0 < γ ≤ 1

Definition  4 [6]:  For ,  let  denote  the  total
time when the passive subsystems are active on  and 
denotes the total time when the non-passive subsystems are active on

.  Then,  denote  the  passivity  rate  of  the  switched
system, where .

Vi(x) ∈C2[Rn,R+] Vi(0) = 0

Lemma  1  (KYP  Lemma) [8]:  The ith  subsystem  of  the  switched
system  (1)  is  passive  if  and  only  if  there  exists  a  function

 with , such that
 

∂Vi

∂x
fi(x)+

1
2

tr[lTi (x)
∂2Vi

∂x2 li(x)] ≤ 0 (4)
 

∂Vi

∂x
gi(x) = hT

i (x). (5)

Generalized small-time norm-observability: To solve the passiv-
ity-based  mean  square  stabilization  problem for  switched  stochastic
systems,  a  new  concept  of  detectability  or  observability  and  a  test
method needs to be introduced.

Definition 5: A stochastic system
 

dx = f (x)dt+ l(x)dω
y = h(x) (6)

λ̄
c > 0 δ > 0 ∥y(t+ s)∥ ≤ δ

t ≥ t0 τ > 0 ∀s ∈ [0, τ] E{∥x(t+τ)∥2} ≤
ce−λ̄τE{∥x(t)∥2}

is  said  to  be  generalized  small-time  norm-observable  with  degree 
if  there  exist  and  such  that  when  holds
for  some ,  and ,  we  have 

.

t+τ

Remark 1: The generalized small-time norm-observability is a use-
ful and special system property, which shows the relation of the state
of the system (6) at instants t and  when the norm of the system
output  is  no  more  than  a  positive  number δ on  the  time  interval
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[t, t+τ]
[t, t+τ]

. It is worth noticing that this property does not mean that the
trajectory  of  the  system (6)  is  exponentially  decreasing  on ,
and of course,  that  the system (6) is  mean square exponentially sta-
ble.  However,  the  converse  is  true,  that  is,  exponential  stability
implies that the system is generalized small-time norm-observable.

W(x) ∈C2[Rn,R+]
W(0) = 0 l1 > 0 l2 > 0 δ > 0 λ̄ > 0

Theorem 1: Suppose that there exists a function 
with  and constants , ,  and , such that
 

∂W
∂x

f (x)+
1
2

tr[lT (x)
∂2W
∂x2 l(x)]+ (δ+ λ̄−∥h(x)∥)W(x) ≤ 0

l1∥x∥2 ≤W(x) ≤ l2∥x∥2

λ̄
then, the system (6) is generalized small-time norm-observable with
degree .

E{∥x(t∗ +τ)∥2} ≤
ce−λ̄τE{∥x(t∗)∥2} ∥h(x(t))∥ ≤ δ
[t∗, t∗ +τ] τ > 0, t∗ > 0

Proof: According to Definition 5, to test the generalized small-time
norm-observability property, we only have to show 

,  when  holds  on  the  time  interval
 for some .

W(x)In view of (3), differentiating  along the trajectory of the sys-
tem (7) gives
 

LW(x) =
∂W
∂x

f (x)+
1
2

tr[lT (x)
∂2W
∂x2 l(x)]

≤ (−δ− λ̄+ ∥h(x)∥)W(x).
∥h(x(t))∥ ≤ δ [t∗, t∗ +τ]

τ > 0, t∗ > 0
When  holds  on  the  time  interval  for  some

, we can obtain
 

LW(x)+ λ̄W(x) ≤ 0, t ∈ [t∗, t∗ +τ]. (7)
H(t) = eλ̄tW(x), t ∈ [t∗, t∗ +τ] ItôLet ,  according  to ’s  formula,  we

have
 

dH(t) = eλ̄t[λ̄W(x)+LW(x)]dt+ eλ̄t
∂W(x)
∂x

l(x)dω. (8)

t∗
E{H(t)} ≤ E{H(t∗)} E{W(x(t))} ≤

e−λ̄(t−t∗)E{W(x(t∗))} E{∥x(t∗ +τ)∥2} ≤
ce−λ̄τE{∥x(t∗)∥2} c = l2

l1
λ̄

By virtue of (7), integrating both sides of (8) from  to t and tak-
ing  expectation  yield ,  and  then 

.  Furthermore,  we  can  have 
,  where .  By  Definition  5,  the  system  (6)  is

generalized small-time norm-observable with degree . ■
Remark 2: Similar to Theorem 1, we also present a sufficient con-

dition  of  generalized  small-time  norm-observability  for  the  follow-
ing stochastic linear system:
 

dx = Axdt+Cxdω
y = Dx. (9)

δ > 0 λ̄ > 0 2PA+CT PC+ (δ+ λ̄−∥h(x)∥)P ≤ 0

λ̄

Suppose that there exist a positive definite matrix P and constants
, , such that . Then, the

stochastic  linear  system  (9)  is  generalized  small-time  norm-observ-
able with degree .

Ip
In

Main  result: In  this  section,  we  will  address  the  passivity-based
mean square exponential stabilization problem for switched stochas-
tic nonlinear systems by designing a set of controllers together with
generalized small-time norm-observability. For simplicity, let  and

 denote  the  index  sets  of  passive  and  non-passive  subsystems,
respectively.

γ > 0 τa > 0

Vi(x) ∈C2[Rn,R+] Vi(0) = 0 a1 > 0 a2 > 0
µ ≥ 1

Theorem  2:  Let  and  be  pre-given  passivity  rate  and
average  dwell  time,  respectively.  Suppose  that  there  exist  functions

 with  and  constants ,  and
, such that
∀i j ∈ I ∀x ∈ Rn1) For ,  and , the following conditions hold:

 

a1∥x∥2 ≤ Vi(x) ≤ a2∥x∥2
Vi(x) ≤ µV j(x);

∀i ∈ In λ1
ui = 0 LVi(x) ≤ λ1Vi(x);

2) For , there exists a positive constant ,  such that the ith
subsystem with  satisfies 

∀i ∈ Ip ui = 0
λ̄ ≥ λ∗ c ≤ a1

a2
δ > 0

3)  For ,  the ith  subsystem with  is  generalized  small-
time  norm-observable  with  degree ,  and  a  constant

, where
 

λ∗ =
λ2

γ
+

lnµ
γτa
+
λ1

γ
−λ1

λ2 > 0for some constant . Then, by designing the controllers 

ui =

−ki(Vi(x), τa)
(
∂Vi(x)
∂x

gi(x)
)T

, i ∈ Ip

0, i ∈ In

(10)

where
 

ki(Vi(x), τa)

=


λ∗

(∥∥∥∥∥∂Vi(x)
∂x

gi(x)
∥∥∥∥∥2)−1

Vi(x),
∥∥∥∥∥∂Vi(x)
∂x

gi(x)
∥∥∥∥∥ > δ

0,
∥∥∥∥∥∂Vi(x)
∂x

gi(x)
∥∥∥∥∥ ≤ δ

(11)

τa

the switched stochastic system (1) is mean square exponentially sta-
ble  under  the  passivity  rate γ and  any switching  law with  the  dwell
time .

S i = {t : ∥ ∂Vi(x)
∂x gi(x)∥ ≤ δ} i ∈ IPProof: Let , . Next, the proof is split

into two cases.
S i = ∅Case 1: .

Itô
Vi(x) dVi(x) =

LVi(x)dt + ∂Vi(x)
∂x li(x)dω, LVi(x) = ∂Vi

∂x ( fi(x) + gi(x)ui) +
1
2 tr[lTi (x) ∂

2Vi
∂x2 li(x)].

When  the ith  passive  subsystem  is  active,  according  to ’s  for-
mula,  differentiating  along  the  trajectory  gives 

 where 
 In view of Definition 3, we have

 

LVi(x)+λ∗Vi(x) =
∂Vi

∂x
( fi(x)+gi(x)ui)+

1
2

tr[lTi (x)
∂2Vi

∂x2 li(x)]

+λ∗Vi(x) ≤ uT
i yi +λ

∗Vi(x)

= −λ∗(∥∂Vi(x)
∂x

gi(x)∥2)−1Vi(x)
∂Vi(x)
∂x

gi(x)

× (
∂Vi(x)
∂x

gi(x))T +λ∗Vi(x) = 0

LVi(x) ≤ −λ∗Vi(x).that is,  Thus, we obtain
 

E{Vik (x(t))} ≤ Ψik (t, tk)E{Vik (x(tk))}
t ∈ [tk, tk +1), k = 0,1,2, . . .

where
 

Ψik (tk, t) = eλik (t−tk) =

e−λ
∗(t−tk), ik ∈ Ip

eλ1(t−tk), ik ∈ In.
(12)

t > t0 t1, t2, . . . , tk, . . . , tNσ(t0,t)
[t0, t] t1 < t2 < · · · < tk < · · · < tNσ(t0,t)

For  any  given ,  let  be  the  switching
instants  on ,  where .  A  straight-
forward calculation shows that
 

E{ViNσ (t0 ,t)
(x(t))} ≤ µΨiNσ (t0 ,t)

(t, tNσ(t0,t))E{ViNσ (t0 ,t)−1 (x(tNσ(t0,t)))}

≤ µNσ(t0,t)−1e−λ
∗Tp(t1,t)eλ1Tn(t1,t)E{Vi1 (x(t1))}

≤ µNσ(t0,t)e−λ
∗Tp(t1,t)eλ1Tn(t1,t)Ψi0 (t0, t1)E{Vi0 (x(t0))}

= µNσ(t0,t)e−λ
∗Tp(t0,t)eλ1Tn(t0,t)E{Vi0 (x(t0))}

= a2eNσ(t0,t)lnµ−λ∗γ(t−t0)+λ1(1−γ)(t−t0)E{∥x(t0)∥2}

≤ a2e(N0+
t−t0
τa

)lnµ−λ∗γ(t−t0)+λ1(1−γ)(t−t0)E{∥x(t0)∥2}
= a2µ

N0 e−λ2(t−t0)E{∥x(t0)∥2}.
Using the condition 1) yields

 

E{∥x(t)∥2} ≤ a2

a1
µN0 e−λ2(t−t0)E{∥x(t0)∥2}.

S i , ∅Case 2: .
∀i ∈ Ip

∂Vi(x)
∂x gi(x) = hT

i (x)

{t : ∥ ∂Vi(x)
∂x gi(x)∥ ≤ δ} = [ti1 , ti′1 ]

∪
[ti2 , ti′2 ]

∪ · · ·According  to  KYP  lemma, ,  is  continu-
ous.  Let .  By using  gen-
eralized small-time norm-observability, we have
 

E{∥x(ti′k )∥2} ≤ ce
−λ̄(ti′k−tik )

E{∥x(tik )∥2} ≤ a1

a2
e
−λ∗(ti′k−tik )

E{∥x(tik )∥2}.

From the condition 1), we obtain
 

1
a2

E{Vi(x(ti′k ))} ≤ E{∥x(ti′k )∥2}

E{∥x(ti′k )∥2} ≤ 1
a1

E{Vi(x(ti′k ))}.
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Then,
 

E{Vi(x(ti′k ))} ≤ a2
a1

a2
e
−λ∗(ti′k−tik )

E{∥x(tik )∥2}

≤ e
−λ∗(ti′k−tik )

E{Vi(x(tik ))}.
[tk, tk+1]

E{Vik (x(tk+1))} ≤ e−λ
∗(tk+1−tk)E{Vik (x(tk))}

Thus,  when  the  passive  subsystem  is  active  on ,  we  can
deduce that  hold. Similar to
Case 1, we can also obtain
 

E{∥x(t)∥2} ≤ a2

a1
µN0 e−λ2(t−t0)E{∥x(t0)∥2}, ∀t > t0.

η = a2
a1
µN0 E{∥x(t)∥2} ≤ ηe−λ2(t−t0)E{∥x(t0)∥2}

τa

Let , . Hence, the resul-
ting  closed-loop  system  is  mean  square  exponentially  stable  under
any switching law with the average dwell time . ■

Illustrative example: In this section, a numerical example is given
to illustrate the effectiveness of the proposed method.

Consider the switched stochastic nonlinear system of the form
 

dx = ( fi(x)+gi(x)ui)dt+ li(x)dω
y = hi(x) (13)

i ∈ {1,2} ω E{dω} = 0
E{dω2} = 0

where ,  is a standard Wiener process satisfying 
and , and
 

f1(x) =


x1

2
+ x1x2

x2

3
− x2

1

 , g1(x) =
[
2

3

]
, l1(x) =

[ √
2x1

−
√

2x2

]

f2(x) =


−6x1 +

x2

3

−5x2 −
x1

4

 , g2(x) =
[−1

1

]
, l2(x) =

[x1
x2

]
 

h1(x) = 7x2, h2(x) = −3x1 +4x2.

µ = e2 λ1 = 3 δ = 1
30 λ̄ = 8

τa γ ∈ ( λ1
λ1+λ̄
,1]

τa >
lnµ
λ̄

γ = 1
2 τa = 4

λ2 = 1
λ∗ = 6

According  to  the  design  strategy  in  Theorem  2,  we  can  choose
, ,  and . It is worth pointing out that we can

arbitrarily  give  the  parameters γ and  with  and
. For the implementation of a specific simulation, we choose

 and  as  the  passivity  rate  and  the  average  dwell  time,
respectively.  Then,  we  select ,  which  in  turn  implies  that

. Furthermore, the controllers are designed as follows:
 

ui =



0, i = 1

0, i = 2, | −3x1 +4x2| ≤
1

30
9x2

1 +12x2
2

−3x1 +4x2
, i = 2, | −3x1 +4x2| >

1
30
.

x(0) = (3,−5)

τa = 4

For the initial state , the simulation results are shown
in Figs. 1 and 2, which indicate that the resulting closed-loop system
is mean square exponentially stable under a specific switching signal
satisfying the dwell time .
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x1Fig. 1. The state response .

 
Conclusion: In  this  letter,  we  provided  a  new  observability  con-

cept–generalized small-time norm-observability  and also gave a test

method. For pre-given average dwell time and passivity rate, a suffi-
cient  condition  has  been  obtained,  under  which  switched  stochastic
nonlinear systems are mean square exponentially stable. In the future,
how  to  get  more  desirable  test  method  of  generalized  small-time
norm-observability may be an interesting study direction.
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