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The Power Allocation Game on A Network: A Paradox

Yuke Li, and A. Stephen Morse

Abstract— The well-known Braess paradox in congestion
games states that adding an additional road to a transportation
network may increase the total travel time, and consequently
decrease the overall efficiency. Motivated by this, this paper
presents a paradox in a similar spirit emerging from another
distributed resource allocation game on networks, namely the
power allocation game between countries developed in [1].
The paradox is that by having additional friends may actually
decrease a country’s total welfare in equilibrium. Conditions
for this paradox to occur as well as some price of anarchy
results are also derived.

Index Terms— paradox, utility, price of anarchy, resource
allocation game

I. INTRODUCTION

In 1969, a paradoxical example was presented in [2],

demonstrating that due to selfish behaviors of agents, a

measure aimed to increase the efficiency of a transportation

network may produce counter-productive effects. Specifi-

cally, it was shown that adding a new route to the trans-

portation network can increase the total travel time therein.

The concept of price of anarchy [3] was naturally adopted to

measure the extent of inefficiency caused by agents’ behavior

of selfish routing in [4]–[9]. For example, [6] obtains lower

and upper bounds for the price of anarchy in the congestion

game on any transportation network. An optimal network

design problem was then formulated and extensively studied

in [10]–[18], where the motivation behind this problem

was the potential interest of policy makers in designing a

transportation network with the goal of minimizing the price

of anarchy involved.

This paper proposes a similar paradox that arises in

another distributed, resource allocation game on networks,

where countries “allocate” their power among their friends

and adversaries, namely the power allocation game (PAG).

This is a distributed, resource allocation game on a signed

graph. [19]

This paper focuses on the analysis of the paradox by

examining the case of a loss in welfare countries may suffer

due to certain changes in the networked environment that

was supposed to increase its utility. For example, having

additional friends in the environment may prevent a country

from achieving its optimal welfare.
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Obviously, an utility function is needed to the definition of

countries’ “welfare” from power allocation and to the intro-

duction of the paradox; a certain family of utility functions

that satisfy the two axioms that model countries’ preferences

for the “power allocation matrices” in [1] and [20] will be

introduced and used throughout the paper.

The paper is structured as the following. In Section II, the

set up of the PAG is reviewed, along with a discussion of a

family of utility functions to model countries’ preferences for

“power allocation matrices”, and a paradox is identified. In

Section III, conditions for this paradox to occur are derived.

The paper concludes with a discussion of the upper and lower

bounds for the price of anarchy in the power allocation game

in a general networked environment.

II. THE PAG AND THE PARADOX

A. Basic Idea

By the power allocation game or PAG is meant a dis-

tributed resource allocation game between n countries with

labels in n = {1, 2, . . . , n} [1]. The game is formulated on a

simple, undirected, signed graph G called “an environment

graph” [20] whose n vertices correspond to the countries and

whose m edges represent relationships between countries. An

edge between distinct vertices i and j, denoted by (i, j), is

labeled with a plus sign if countries i an j are friends and

with a minus sign if countries i and j are adversaries. For

each i ∈ n, Fi and Ai denote the sets of labels of country

i’s friends and adversaries respectively; it is assumed that

i ∈ Fi and that Fi and Ai are disjoint sets. Each country

i possesses a nonnegative quantity pi called the total power

of country i. An allocation of this power or strategy is a

nonnegative n× 1 row vector ui whose j component uij is

that part of pi which country i allocates under the strategy

to either support country j if j ∈ Fi or to demise country

j if j ∈ Ai; accordingly uij = 0 if j 6∈ Fi ∪ Ai. The goal

of the game is for each country to choose a strategy which

contributes to the demise of all of its adversaries and to the

support of all of its friends.

Each set of country strategies {ui, i ∈ n} determines an

n× n matrix U whose ith row is ui. Thus U = [uij ]n×n is

a nonnegative matrix such that, for each i ∈ n, ui1 + ui2 +
· · ·+ uin = pi. Any such matrix is called a strategy matrix

and U is the set of all n× n strategy matrices.
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B. Multi-front Pursuit of Survival

In [1] and [20], how countries allocate their power in

the support of the survival of its friends and the demise

of that of its adversaries is studied, which is in line with

the fundamental assumptions about countries’ behavior in

classical international relations theory. [21] These facts are

accounted for by the following additional formulations:

Each strategy matrix U determines for each i ∈ n, the

total support σi(U) of country i and the total threat τi(U)
against country i. Here σi : U → IR and τi : U → IR are

non-negative valued maps defined by U 7−→
∑

j∈Fi
uji +

∑

j∈Ai
uij and U 7−→

∑

j∈Ai
uji respectively. Thus country

i’s total support is the sum of the amounts of power each of

country i’s friends allocate to its support plus the sum of the

amounts of power country i allocates to the destruction of all

of its adversaries. Country i’s total threat, on the other hand,

is the sum of the amounts of power country i’s adversaries

allocate to its demise. These allocations in turn determine

country i’s state xi(U) which may be safe, precarious, or

unsafe depending on the relative values of σi(U) and τi(U).
In particular, xi(U) = safe if σi(U) > τi(U), xi(U) =
precarious if σi(U) = τi(U), or xi(U) = unsafe if σi(U) <
τi(U).

In playing the PAG, countries select individual strategies

in accordance with certain weak and/or strong preferences.

A sufficient set of conditions for country i to weakly prefer

strategy matrix V ∈ U over strategy matrix U ∈ U are as

follows

1) For all j ∈ Fi either xj(V ) ∈ {safe, precarious}, or

xj(U) = unsafe, or both.

2) For all j ∈ Ai either xj(V ) ∈ {unsafe, precarious},

or xj(U) = safe, or both.

Weak preference by country i of V over U is denoted by

U � V .

Meanwhile, a sufficient condition for country i to be

indifferent to the choice between V and U is that xi(U) =
xj(V ) for all j ∈ Fi ∪ Ai. This is denoted by V ∼ U .

Finally, a sufficient condition for country i to strongly

prefer V over U is that xi(V ) be a safe or precarious state

and xi(U) be an unsafe state. Strong preference by country

i of V over U is denoted by U ≺ V .

C. Preferences: Utility function representation

A country i will derive a certain amount of utility or

welfare from a strategy profile of the PAG assuming a

certain networked environment; let i’s utility be a function

fi : U −→ R. A family of utility functions with the

following three properties satisfies the two preference axioms

and makes possible a total order of the power allocation

matrices in U . For more details about how this is achieved,

please refer to [22].

1) Country i receives a two-valued pairwise utility from

each of its friends and adversaries, tij(xj(U)). The

specific values of the pairwise utilities can be regarded

as proxies of the relative importances attached to each

friend and adversary relation.

Pairwise utility tij : {safe, precarious, unsafe} −→
{tij(1), tij(0)} where tij(1) ≥ tij(0). tij(1), tij(0) ∈
R is defined as follows.

If j ∈ Fi, tij(1) and tij(0) respectively stands for

i’s pairwise utility from j when σj(U) ≥ τj(U) and

σj(U) < τj(U);
If j ∈ Ai, tij(1) and tij(0) respectively stands for

i’s pairwise utility from j when σj(U) ≤ τj(U) and

σj(U) > τj(U).
2) Country i’s total utility fi(U) will only be equal to t0ii

if it has not survived itself.

3) Once country i has survived, its total utility fi(U) >
t0ii, and will be a nondecreasing function of tij(xj(U))
for any j ∈ Fi ∪ Ai.

For simplicity, this paper’s focus is on a subset of utility

functions in this family; for any utility function in this

subset, its maximum is attained only when all its friends are

safe/precarious, and all its adversaries are unsafe/precarious.

After country i’s self-survival threshold is fulfilled, the

function fi(U) exhibits a jump discontinuity. Let the set

of i’s friends who are safe/precarious under U be F1
i (U)

and the set of i’s adversaries who are unsafe/precarious be

A1
i (U). An example is

fi(U) =

{

tii(0) xi(U) = unsafe
∑

i∈F1

i
(U)∪A1

i
(U) tij(1) xi(U) ∈ {safe, precarious}

Some functions in this family may exhibit more jump

discontinuities; for instance, countries may additionally pri-

oritize the survival of some friends. An utility function where

country i prioritizes the survival of all its friends before

demising the survival of all its adversaries is below:

fi(U) =























tii(0) xi(U) = unsafe
∑

j∈F1

i
(U) tij(1) xi(U) ∈ {safe, precarious}

∑

i∈F1

i
(U)∪A1

i
(U) tij(1) xi(U) ∈ {safe, precarious},

∀j ∈ Fi

D. Definition: A Paradox

Let country i’s optimal welfare from power allocation be

the maximum utility i can derive from a power allocation

matrix U ∈ U . Denote it as

f∗
i (U)

Since country i’s optimal welfare from power allocation

must differ by environments, we define a pairwise utility i



receives from having every other country j (other than i) for

each of the following four conditions:

1) tFij(1): j ∈ Fi and xj(U) ∈ {safe, precarious}.

2) tFij(0): j ∈ Fi and xj(U) = unsafe.

3) tAij(1): j ∈ Ai and xj(U) ∈ {unsafe, precarious}.

4) tAij(0): j ∈ Ai and xj(U) = safe.

Let the two environments be with the same set of countries

and one difference between the environments is that for

country i, Fi ⊂ F i. A paradox is said to occur if given

two PAGs Γ and Γ, country i can obtain a higher optimal

welfare from the former where it has fewer friends.

Example 1: The following will illustrate an example of a

paradox, which further motivates the main results in Section

III. The parameters of the first environment in Figure 1(a)

is:

1) Set of countries: n = {1, 2, 3}.

2) Their power: p = [8 6 1].
3) Their relations are: r(1, 2) = adversary, and r(2, 3) =

r(1, 3) = friend.

The parameters of the second environment in Figure 1(b) is:

1) Set of countries: n = {1, 2, 3}.

2) Their power: p = [8 6 1].
3) Their relations are: r(1, 2) = r(2, 3) = adversary, and

r(1, 3) = friend.

In the first environment, country 3 has a friend relation

with both country 1 and country 2, which are adversaries.

Any pure strategy Nash equilibrium from the PAG in this

environment will predict country 1 to be safe, country 2 to

be unsafe/precarious, and country 3 to be safe. If country 3’s

utility from having country 2 as a safe/precarious friend is

lower than having it as an unsafe/precarious adversary

tF32(1) < tA32(1),

it will prefer the second environment where it turns against

country 2 with country 1 and gains a higher optimal wel-

fare (with country 2 being unsafe/precarious and countries

1 and 3 being safe in any equilibrium). By assumption,

tF32(1) ≤ tF32(1). Therefore, country 3’s optimal welfare in

the first environment is always lower than that in the second

environment, which constitutes the paradox.

III. MAIN RESULTS

This section presents results on the conditions for the

stated paradox to occur. In particular, the conditions involve

a comparison of the roles of friends in a country’s survival

and, after the self-survival is fulfilled, in its attainment of its

optimal welfare.

Theorem 1: If a country can survive in the equilibria of

the PAG assuming a certain networked international environ-

ment, then it can survive in the equilibria of another PAG

assuming an environment with additional friends than before,

but not vice versa.

Let two PAGs be Γ and Γ, where the only difference

between the two environments is that for a country i Fi ⊂
F i. If ∀U∗ ∈ U∗, xi(U

∗) ∈ {safe, precarious}, then it must

be that ∀U
∗
∈ U

∗
, xi(U

∗
) ∈ {safe, precarious}.

Proof of Theorem 1: In Γ, if for a country i, ∀U∗ ∈ U∗,

xi(U
∗) ∈ {safe, precarious}, by definition

∑

j∈Fi

u∗
ji +

∑

j∈Ai

u∗
ij ≥

∑

j∈Ai

u∗
ji.

Given that Fi ⊂ F i, any equilibrium allocations in the

two games satisfy the following:
∑

j∈Fi

u∗
ji +

∑

j∈Ai

u∗
ij ≥

∑

j∈Fi

u∗
ji +

∑

j∈Ai

u∗
ij

and
∑

j∈Fi

u∗
ji +

∑

j∈Ai

u∗
ij ≥ sup{τi(U

∗) : U∗ ∈ U∗}.

Note that

sup{τi(U
∗) : U∗ ∈ U∗} = sup{τi(U

∗
) : U

∗
∈ U

∗
},

because the only difference between the two environments

lies in the number of i’s friends.

Therefore, in any equilibrium U
∗
∈ U

∗
of Γ, it must also

be that
∑

j∈Fi

u∗
ji +

∑

j∈Ai

u∗
ij ≥

∑

j∈Ai

u∗
ji.

In other words, i must also survive in any equilibrium in

the game Γ with more friends in the new environment.

�

Remark 1: The existence of multiple equilibria in the PAG

is the reason in Theorem 1 for the comparison between

two games, in all of whose equilibria country i survives.

Intuitively, the reverse of Theorem 1 may not be true, with

the logic being that country i may not gather the level

of support in the previous environment to survive in a

new environment with some of its former friends becoming

nonexistent. Theorem 1 also holds in the case where country

i has some of the former adversaries turn nonexistent or new

friends, which means when Fi ⊂ F i and Ai ⊂ Ai hold.

Next a necessary condition and a sufficient condition will

respectively be provided that a country may achieve a lower

optimal welfare in the equilibria of the power allocation

game in a new networked environment with more friends

than in the previous environment.

Theorem 2 (Necessary Condition): A necessary condition

for the above stated paradox to occur is that there exists at



least a country which derives a higher utility from having

another country as an unsafe/precarious adversary than as a

unsafe friend.

Given two games Γ and Γ, the only difference between

the two underlying environments is Fi ⊂ F i. If there exists

country i ∈ n, f∗
i (U) > f

∗

i (U), then there must exist country

j 6= i such that tFij(0) < tAij(1).

Proof of Theorem 2: Suppose to the contrary. That is to

say, for any country i, tFij(0) ≥ tAij(1), j 6= i, which

means that for any country i the utility of having any other

country as an unsafe friend exceeds that of having it as an

unsafe/precarious adversary.

Given a random environment, let the optimal welfare coun-

try i can obtain from the PAG Γ assuming this environment

be f∗
i (U).

Let an alternative environment be Γ be such that the

only difference from Γ is that Fi ⊂ F i. Let the optimal

welfare country i can obtain from the PAG Γ assuming this

environment be f
∗

i (U)

Then there must hold

f∗
i (U) > f

∗

i (U)

because for any of i’s new friends j, even when xj(U) ∈
{unsafe, precarious}, tFij(0) ≥ tAij(1).

Then i’s having more friends will not decrease its optimal

welfare from power allocation.

Therefore, in order to the stated paradox to occur, there

must exist another country j 6= i such that tFij(0) < tAij(1).

�

Theorem 3 (Sufficient Condition): A sufficient condition

for the stated paradox to occur is that there exists at least a

country which derives a higher utility from having another

as an unsafe/precarious adversary than as a safe/precarious

friend and the total power of these two countries is smaller

than that of all other countries in the environment.

For country i ∈ n, suppose that there exists another

country j 6= i such that tAij(1) > tFij(1), and that pi + pj ≤
∑

k∈n−{i,j}

pi. Then there can be constructed two different

environments in which the PAG takes place Γ and Γ where

the only difference between the environments is that for a

country i Fi ⊂ F i. The stated paradox will then occur for

country i as it switches from Γ to Γ, which means that

f∗
i (U

∗) < f
∗

i (U
∗
).

Proof of Theorem 3: Let the environment of the PAG Γ be

such that all countries other than i are adversaries with j. i

is a friend with all of the other countries including j. And

let the environment of the PAG Γ be such that where all

countries are adversaries with j, and i is a friend with all of

the other countries excluding j.

Since

pi + pj ≤
∑

k∈n−{i,j}

pi,

there must hold that in any equilibrium U∗ ∈ U∗ of Γ,

xj(U
∗) ∈ {unsafe, precarious},

and

∀k 6= j, xk(U
∗) ∈ {safe, precarious}.

The same must hold for in any equilibrium U
∗
∈ U

∗
of Γ.

To country i, country j is an unsafe/precarious friend in

Γ and an unsafe/precarious adversary in Γ.

Since tAij(1) > tFij(1) ≥ tFij(0), it must be that f∗
i (U

∗) <

f
∗

i (U
∗
), with all other pairwise utilities from other neighbors

being equal.

Therefore, having additional friends than before will de-

crease country i’s optimal welfare from power allocation.

�

Theorem 3 extends to the case where a country may have

a subset of countries in the environment, each of which

satisfies the stated condition. Thus Corollary 1 immediately

follows. Then when the conditions in Corollary holds, having

more friends from this subset will only decrease its optimal

welfare from power allocation for a country.

Corollary 1: If there exists at least a country which de-

rives a higher utility from having any other in a subset of

countries (which it is not a member of) as an unsafe/precar-

ious foe than as a safe/precarious friend and the total power

of this country and those in the subset is smaller than that

of all other countries in the environment, the stated paradox

will occur.

For country i ∈ n, suppose that there exists a subset of

countries S such that i 6∈ S and for any j ∈ S, tAij(1) >

tFij(1), and that pi +
∑

j∈S

pj ≤
∑

k∈n−{i}−S

pk. Then there

exists two games assuming different environments Γ and Γ
where the only difference between the environments is that

for a country i Fi ⊂ F i, and where an U∗ ∈ U∗ and an

U
∗
∈ U

∗
exist such that f∗

i (U
∗) < f

∗

i (U
∗
).

Proof of Corollary 1: Let the environment of the PAG Γ be

such that all countries other than i are adversaries with any

country j in S. i is a friend with all of the other countries

including countries in S. Let the environment of the PAG Γ
be such that all countries are adversaries with countries in

S, and i is a friend with all of the other countries excluding

those in S.



Since

pi +
∑

j∈S

pj ≤
∑

k∈n−{i,S}

pk,

there must hold that in any equilibrium U∗ ∈ U∗ of Γ,

∀j ∈ S, xj = {unsafe,precarious},

and

∀k 6∈ S, xk ∈ {safe, precarious}.

The same must also hold in any equilibrium U
∗
∈ U

∗
of Γ.

To country i, any country j ∈ S is an unsafe/precarious

friend in Γ and an unsafe/precarious adversary in Γ.

Since ∀j ∈ S, tAij(1) > tFij(1) ≥ tFij(0), there holds that

f∗
i (U

∗) < f
∗

i (U
∗
). Therefore, having additional friends than

before will decrease country i’s optimal welfare from power

allocation.

�

IV. THE PRICE OF ANARCHY RESULTS

In this section we compare the implications of different

networked international environments for the total welfare of

countries in the power allocation game, and the commonly

defined price of anarchy concept will be used for the analysis.

Definition 1 (Price of Anarchy Concept [3]):

max
U∈U

∑

i∈n

fi(U)

min
U∈U∗

∑

i∈n

fi(U
∗)

Lemma 1: In any PAG Γ, at least a country survives in

any U ∈ U . Note that this holds regardless of whether U is

an equilibrium.

In Γ, ∀U ∈ U , ∃i ∈ n such that xi(U) ∈
{safe, precarious}.

Proof of Lemma 1: The proof is by contradiction. Given an

U ∈ U , suppose that ∀i ∈ n, xi(U) = unsafe. That is to say

that,

∀i ∈ n,
∑

j∈Fi

uji +
∑

j∈Ai

uij <
∑

j∈Ai

uji.

Equivalently,

∀i ∈ n, pi −
∑

j∈Fi

uji +
∑

j∈Fi

uji <
∑

j∈Ai

uji.

Summing from 1 to n in n gives the following,
∑

i∈n

pi −
∑

i∈n

(
∑

j∈Fi

uji −
∑

j∈Fi

uij) <
∑

i∈n

∑

j∈Ai

uji.

Note that,
∑

i∈n

(
∑

j∈Fi

uji−
∑

j∈Fi

uij) =
∑

{i,j}∈RF

(uji−uij)+(uij−uji) = 0.

Then there holds that
∑

i∈n

pi <
∑

i∈n

∑

j∈Ai

uji.

However, by each country’s total power constraint, it must

be the case that
∑

i∈n

pi ≥
∑

i∈n

∑

j∈Ai

uji.

Hence contradiction. Therefore, given an U ∈ U , there must

exist i ∈ n, xi(U) = {safe, precarious}. In other words, in

any power allocation matrix assuming any environment, it

can never be the case that there is no survivor.

�

Based on Lemma 1, an upper bound for the price of

anarchy in the PAG is immediate. In addition, environments

which gives an lower bound for the price of anarchy can be

constructed.

Theorem 4: In Γ,

1 ≤ PoA ≤
A

B

where

A = nsup{
∑

j∈Fi

tFij(1) +
∑

j∈Ai

tAij(1) : i ∈ n}

and

B = (n− 1)inf{tFii (0) : i ∈ n}+ inf{tFii (1) : i ∈ n}.

Proof of Theorem 4: In an environment without any antag-

onism among countries, max
U∈U

∑

i∈n

f∗
i (U) is achieved with all

countries allocating zero to one other. At the same time,

max
U∗∈U∗

∑

i∈n

f∗
i (U

∗) is also achieved because this is obviously

an equilibrium. Therefore, in this case PoA = 1.

Obviously, there exists no lower value for PoA; otherwise,

it means that even better total welfare can be achieved in

equilibrium. However, this gives a contradiction because U∗

already achieves the optimal total welfare. 1 is tight as

a lower bound for the PAG in environments without any

adversary relations.

Now rank all the pairwise utility from not having survived

itself of all countries, tii(0), i ∈ n, nondecreasingly, and

denote the maximum as

sup{tFii (0) : i ∈ n}

and the minimum as

inf{tFii (0) : i ∈ n}.

Rank all the pairwise utilities from having survived itself

of all countries, tFii (1), i ∈ n, nondecreasingly, and denote

the maximum as

sup{tFii (1) : i ∈ n}



and the minimum as

inf{tFii (1) : i ∈ n}.

Rank the optimal welfare of all countries

∑

j∈Fi

tFij(1) +
∑

j∈Ai

tAij(1), i ∈ n

nondecreasingly, and denote the highest as

sup{
∑

j∈Fi

tFij(1) +
∑

j∈Ai

tAij(1), i ∈ n}

. By Lemma 1, in any PAG, at least one country survives.

Suppose there exists a PAG where exactly one country

survives and the utility of this country is inf{tFii (1) : i ∈ n}.

Since the other countries have not survived, their utilities are

at least

inf{tFii (0) : i ∈ n}.

This then gives the upper bound PoA ≤ A
B

where

A = nsup{
∑

j∈Fi

tFij(1) +
∑

j∈Ai

tAij(1) : i ∈ n}

and

B = (n− 1)inf{tFii (0) : i ∈ n}+ inf{tFii (1) : i ∈ n}.

�

V. DISCUSSION AND CONCLUSION

This paper analytically studies a paradox emerging from

the PAG. Specifically, the paper shows friends may play

different roles in a country’s survival and its attainment of

optimal welfare. Much like what Example 1 has shown, a

country’s having many friends may impede the attainment

of its optimal welfare from power allocation, especially the

potential friends have conflicts among themselves.

However, paradoxes of this kind is unsurprising in a

political context. In order to win over as many allies as

possible always requires a country to straddle middle grounds

between parties with perhaps irreconcilable differences or

even conflicts. Just as the former British PM, Margaret

Thatcher, accurately put it, “standing in the middle of the

road is very dangerous; you get knocked down by the

traffic from both sides.” Especially, thinking of the current

conflictual scenarios between the United States and North

Korea, a question can perhaps be asked, should China try to

reconcile both or choose to exert pressure on one of them,

e.g., North Korea?
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