
1

Sampling methods for efficient training of graph
convolutional networks: A survey

Xin Liu, Mingyu Yan, Lei Deng, Member, IEEE, Guoqi Li, Member, IEEE, Xiaochun Ye,
and Dongrui Fan, Senior Member, IEEE

Abstract—Graph Convolutional Networks (GCNs) have re-
ceived significant attention from various research fields due to
the excellent performance in learning graph representations.
Although GCN performs well compared with other methods,
it still faces challenges. Training a GCN model for large-
scale graphs in a conventional way requires high computation
and storage costs. Therefore, motivated by an urgent need in
terms of efficiency and scalability in training GCN, sampling
methods have been proposed and achieved a significant effect.
In this paper, we categorize sampling methods based on the
sampling mechanisms and provide a comprehensive survey of
sampling methods for efficient training of GCN. To highlight the
characteristics and differences of sampling methods, we present
a detailed comparison within each category and further give
an overall comparative analysis for the sampling methods in
all categories. Finally, we discuss some challenges and future
research directions of the sampling methods.

Index Terms—sampling method, graph convolutional networks
(GCNs).

I. INTRODUCTION

A fairly large number of data in the real world con-
tain complex information representations and exhibit

a natural graphical structure, for example, the structure of
proteins [1], traffic networks [2, 3], and knowledge graphs
[4, 5]. Analyzing the graph data has frequently appeared in
various research fields in recent years and gradually becomes
a critical task of deep learning. Typically, the types of data
that deep learning models process mainly include image,
text, voice, and video. These data are Euclidean structures,
and can be regarded as many regular sample points in the
Euclidean space [6]. However, graph data are typical non-
Euclidean data and are difficult to process using general deep
learning models. Therefore, motivated by some conventional

Manuscript received March 31, 2021; revised May 27, 2021. This work
was partially supported by the National Natural Science Foundation of China
(Grant No. 61732018, 61872335, 61802367, and 61876215), the Strategic
Priority Research Program of Chinese Academy of Sciences (Grant No.
XDC05000000), Beijing Academy of Artificial Intelligence (BAAI), the Open
Project Program of the State Key Laboratory of Mathematical Engineering and
Advanced Computing(2019A07), the Open Project of Zhejiang laboratory, and
a grant from the Institute for Guo Qiang, Tsinghua University. (Corresponding
author: Mingyu Yan.)

X. Liu, M. Y. Yan, X. C. Ye and D. R. Fan are with the State Key
Laboratory of Computer Architecture, Institute of Computing Technology,
Chinese Academy of Sciences, Beijing 100086, China. (e-mail: {liuxin19g,
yanmingyu, yexiaochun, fandr}@ict.ac.cn)

L. Deng and G. Q. Li are with the Department of Precision
Instrument, Center for Brain Inspired Computing Research, Tsinghua
University, Beijing 100084, China. (e-mail:leideng@mail.tsinghua.edu.cn;
liguoqi@tsinghua.edu.cn)

X. Liu and D. R. Fan are also with the School of Computer Science and
Technology, University of Chinese Academy of Sciences

deep learning methods, many modified models are proposed
to process graph data. Graph neural network (GNN) [7] is one
of the most influential models. Distinctly, besides the natural
advantage of processing graph data, GNN is explainable and
can be efficiently used in various reasoning tasks [8–14],
which makes GNN a highly available model in a practical
and theoretical manner. Herein, despite several variants of
GNN models [15–23], we pay intensive attention to graph
convolutional networks (GCNs) [21], which outperform many
graph deep learning models in various graph-based tasks.

GCN shows excellent efficiency in learning graph represen-
tations and has become a research hotspot in both industry
and academia. However, training GCN is a no picnic task and
generally requires non-trivial cost in terms of computation and
storage. Some previous works have explored improving GCN
training by leveraging model-based optimizations, e.g., model
simplification [24–26] and knowledge distillation [27, 28],
to reduce the training cost, which provides a great leap for
efficient GCN training. From another perspective, it is also
observed that the original training approach used in GCN
[21] generally uses a full-batch approach that has two main
limitations.

Inefficiency: the full-batch training approach causes a slow
convergence of gradient descent since parameters of the model
are updated only once in every epoch. The full-batch parameter
update in training slows down the convergence of training
and leads to lower training efficiency. Poor-scalability: the
full-batch gradient is computed according to all intermediate
embeddings from the entire graph, making it difficult to scale
the training to large graph data. In consequence, training
GCN with the original full-batch approach generally requires
considerable cost in time and high requirement in storage,
which is not efficient and scalable for large graph data.

To overcome the limitations of the conventional training
approach, sampling methods are proposed and have achieved
considerable performance. In statistics, the sampling method
refers to taking a part of individuals from the target population
as a sample. Then, a reliable estimation or judgment is
obtained by observing the interested attributes of the sam-
ple. Similarly, sampling methods used in training GCN are
performed by selecting partial nodes in a graph as a sample
based on the specific rule. After sampling, the embedding of
one node can be aggregated based on the sampled neighbors’
embeddings. Instead of using all neighbors in the conventional
training approach, sampling methods construct mini-batches
and assuredly reduce the computation and storage cost for
GCN training with acceptable accuracy loss, simultaneously

ar
X

iv
:2

10
3.

05
87

2v
3

 [
cs

.L
G

]
 3

 S
ep

 2
02

1

mailto:liuxin19g@ict.ac.cn,yanmingyu@ict.ac.cn,yexiaochun@ict.ac.cn,fandr@ict.ac.cn
mailto:liuxin19g@ict.ac.cn,yanmingyu@ict.ac.cn,yexiaochun@ict.ac.cn,fandr@ict.ac.cn
mailto: leideng@mail.tsinghua.edu.cn
mailto: liguoqi@tsinghua.edu.cn

2

ensuring the efficiency and scalability in training GCN.
Sampling methods benefit GCN training in terms of effi-

ciency and scalability, and a well-designed sampling method
definitely makes the training process more efficient. Recently,
vast data are sampled and fed into GPU for shallow neural
network training. Instead of computation in neural networks,
the research focus has gradually switched to graph data
sampling and aggregation. Distinctly, the aggregation phase
is a compute-intensive process, where the embedding of one
node is aggregated recursively based on all sampled neighbors’
embeddings. However, with the dramatic growth of graph data,
the sampling phase is becoming a time-consuming process,
which affects the efficiency of the aggregation phase, and
even the entire training, to a large extent. Therefore, sampling
is a critical phase in GCN training and needs to be well
considered, especially in learning large-scale graphs. Some
existing surveys of graph neural network models [6, 29–31]
mainly focus on model variants and applications, lacking a
detailed review in terms of sampling methods.

In this paper, we provide a thorough survey on sampling
methods in different categories. To summarize, we highlight
our contributions as follows:
• We systematically categorize sampling methods in the

existing works based on the sampling mechanisms and provide
a thorough survey on sampling methods in all categories.
• We compare sampling methods from multiple aspects and

highlight their characteristics. For summarization and analysis,
we put forward comparisons for sampling methods within each
category and further give an overall comparative analysis for
sampling methods in all categories.
•We propose some challenges based on the overall analysis

and discuss some potential directions of sampling methods in
the future.

The rest of this paper is organized as follows. In Section II,
we first introduce the background of the GCN model and
sampling methods, then we present a taxonomy for sampling
methods. Based on the taxonomy, we divide sampling methods
into four categories and further introduce different categories
of sampling methods in Section III. Besides, for sampling
methods in each category, we highlight the characteristics
of each method and give a detailed comparison within each
category from multiple aspects. In Section IV, we present
comprehensive comparison and analysis for sampling methods
in all categories. In Section V, we first put forward various
challenges faced by the existing sampling methods based on
the overall analysis and then discuss some potential directions
in the future. Finally, we conclude this paper in Section VI.

II. BACKGROUND AND CATEGORIZATION

In this section, we first outline the background of GCN. To
introduce the important concept of sampling, we highlight the
training process of GCN. Moreover, we present our taxonomy
for sampling methods and divide sampling methods into four
categories.

A. Background of GCN
1) Model: Recently, there is an increasing interest in ap-

plying convolutions to graph tasks. Inspired by the wide use

and the remarkable success of CNNs [32] in deep learning,
the spectral CNN is proposed by Bruna et al. [23]. Given a
weighted graph G, the index set of G is defined as I, and
the eigenvector of the graph Laplacian L is defined as V.
The proposed model extends convolution via the Laplacian
spectrum. It takes a vector xk of size |I| × fk−1 as the input
of the k-th layer and outputs a vector xk+1 of size |I| × fk.
The aforementioned graph convolution layer is defined as:

xk+1,j = h

V fk−1∑
i=1

Fk,i,jV
Txk,i

 (j = 1,, fk) , (1)

where h is an activation function and Fk,i,j is a diagonal
matrix of learnable parameters of the filter at the k-th layer.
However, the aforementioned graph convolution operation
results in potential high computation cost and bad spatial lo-
calization. For every forward propagation, the multiplications
between V, Fk,i,j , and V T lead to O

(
n3
)

computation com-
plexity. Besides, the non-parametric filters also have several
limitations: they are not localized in the vertex domain and
their learning complexity of the parameters in each layer is
O(n).

To overcome these drawbacks, ChebNet [19] uses the
Chebyshev polynomial of the diagonal matrix of eigenvalues
to approximate the filter gθ. That is:

gθ (Λ) =

K−1∑
k=0

θkTk
(

Λ̃
)
, (2)

where Λ̃ = 2Λ/λmax - In, λmax denotes the largest eigenvalue
of Λ, and θk is the parameter vector of Chebyshev polynomial
coefficients. Herein, the Chebyshev polynomials are defined in
a recursive format: Tk (x) = 2xTk−1 (x) - Tk−2 (x) with T0 (x)

= 1 and T1 (x) = x. Thus, Tk
(

Λ̃
)

can be computed according
to the above formula under the condition that the values of Λ
lie in [-1, 1]. Thereby, the convolution operation of input x is
defined as:

x ∗ gθ = U

(
K−1∑
k=0

θiTi

(
Λ̃
))

UTx

=

K−1∑
k=0

θkTk

(
L̃
)

x,

(3)

where L̃ = 2L/λmax - In, and Tk

(
L̃
)

= UTk

(
Λ̃
)
UT .

Therefore, the computation complexity is reduced to O (K|E|)
by avoiding an explicit use of the Graph Fourier basis (Herein,
|E| is the number of edges).

Based on the special variant of the ChebNet [19], GCN [21]
is proposed by Kipf et al. for semi-supervised classification
of nodes in a graph. Specifically, GCN introduces a first-
order approximation of the ChebNet, that is, K is fixed as
1 and λmax is fixed as 2 in Equation (3). Under this special
condition, Equation (3) is simplified as:

x ∗ gθ = θ0x− θ1D
−1/2AD−1/2x, (4)

where A is an adjacency matrix and D is a degree matrix.
To constrain the number of parameters, under the assumption

3

(d)(d)

Layer 2

Layer 1

Layer 0

(d)

Layer 2

Layer 1

Layer 0

(c)(c)

Layer 2

Layer 1

Layer 0

(c)

Layer 2

Layer 1

Layer 0

(b)(b)

(a)(a)

1-hop neighbor
sampling

2-hop neighbor
sampling

1-layer
sampling

2-layer
sampling

Output

…………

Graph

Feature

ReLUReLU

……

GCN

PoolingPooling
Sampling

…
…

B

D

C

B
D

I
H

Aggregation

AA

JJ

Combination

Feature Vector

…
…

Input Sampling

…
…

B

D

C

B
D

I
H

Aggregation

AA

JJ

Combination

Feature Vector

…
…

Input

Compute
Loss

Update
Weight

Output
ReLUReLU

……

GCN

Fig. 1: A variant of graph convolutional networks with two GCN layers. Note that in many variants of GCNs, one GCN layer
is generally followed by an ReLU activation function or a pooling layer, or a CNN layer, which depends on the model and
the graph task.

that θ = θ0 = −θ1, the graph convolution can be rewritten as:

x ∗ gθ = θ
(
IN +D−1/2AD−1/2

)
x. (5)

Besides, GCN put forward two tricks: self-loop and renor-
malization. Since the eigenvalues of IN + D−1/2AD−1/2

in Equation (5) lie in [0,2], the repeated use of this graph
convolution operation can cause some serious problems, such
as exploding or vanishment of the gradient, and numerical
instability. Therefore, IN + D−1/2AD−1/2 is modified to
D̃−1/2ÃD̃−1/2, with Ã = A + IN and D̃ii =

∑
j Ãij . More-

over, to support multiple dimensional inputs, Kipf et al. [21]
modify the convolution layer and finally give a layer-wise
propagation rule, which is widely cited in subsequent works:

Hk+1 = σ
(
D̃−1/2ÃD̃−1/2HkW k

)
. (6)

Herein, Hk is the hidden representation matrix in the k-th layer
of GCN, and W k is the trainable matrix that corresponds to
the weights in k-th layer of GCN. σ (.) denotes a specific
activation function, such as ReLU and Softmax activation
function.

So far, we have introduced the GCN model [21] and some
basic models [19, 23] for inspiration. Typically, the common
ground between these models is that the construction of graph
convolutions is based on filters from the aspect of the signal
processing field [33]. Thereby, these models are categorized
as spectral-based models in the existing surveys [6, 29–
31]. In contrast, another perspective that defines the graph
convolutional operation on a spatial dimension is devoted to
capturing the relationship between the target node and its
neighbors, which is inspired by the application of performing

CNNs on images. Such models generally apply graph convo-
lutional layers to a neighboring node region and compute the
representation of a target node from its neighbors in diverse
approaches, e.g., DCNN [17], MPNNs [34], GraphSAGE
[35]. And these models are categorized as spatial-based (non-
spectral) models in the existing surveys [6, 29–31]. As a
bridge, GCN [21] fills the gap between spectral-based models
and spectral-based models and provides both practical and
theoretical supports for building novel graph convolutional
networks.

2) Limitations: Due to the attractive universality and effi-
ciency of GCN, innovative applications using GCN to process
multiple types of data have appeared in various fields [1–
4, 36–41]. However, there are some limitations in GCN. The
conventional training approach used in GCN is inefficient.
Distinctly, by observing Equation (6), GCN uses a graph
convolution operation to learn the embeddings of nodes in
each layer under a top-down order. In this process, one node’s
embedding is computed by aggregating the embeddings of the
neighboring nodes in a recursive manner. As the model goes
deeper, the computation cost of the nodes’ embeddings will
become unacceptable. Besides, since the model’s weight ma-
trices are trained using a full-batch gradient descent approach,
the model parameters are updated only once in every epoch,
which slows down the convergence and ultimately affects the
model’s training efficiency.

On the other hand, the conventional training approach used
in GCN is also poor in scalability. Since nodes’ embeddings
are aggregated recursively from the neighbors’ embeddings
layer by layer, the embeddings in the final layer therefore
require all embeddings of nodes in the upper layers, bring-

4

BB CC DD EE FF GG HH IIAA B C D E F G H IA

D

L
ay

er
-w

is
e

S
am

p
li

n
g

S
u

b
g
ra

p
h

-b
as

ed
S

am
p

li
n

g

Initialize Root
Node Set With
Random Nodes

Construct
Subgraph Using
Random Walk

Top-down
Layer

Sampling

Full Graph
For Training

H
M

G

D

M

G

N
o

d
e-

w
is

e
S

am
p

li
n

g
N

HH

DD
AA

BB

E

AA BB CC DD EE FF GG HH IIA B C D E F G H I

AA BB CC DD EE FF GG HH IIA B C D E F G H I

BB CC DD EE FF GG HH IIAA B C D E F G H IA

AA BB CC DD EE GG HH IIFFA B C D E G H IF

AA BB CC DD EE FF GG HH IIA B C D E F G H I

HH

DD
AA

BB

E

H

D
A

B

E
1-hop

Neighbor
Sampling

HH

DD
AA

BB

E
2-hop

Neighbor
Sampling

HH

DD
AA

BB

E

HH

DD
AA

BB

E

HH

DD
AA

BB

E

H

D
A

B

E

Fig. 2: Illustration on the typical sampling process of the sampling method in each category.

ing about high storage cost. Moreover, the model’s gradient
update in the full-batch training approach requires storing all
intermediate embeddings, which makes the training unable to
extend to large-scale graphs. In original GCN [21], Kipf et
al. built the GCN model using quite shallow neural networks.
Recently, with the dramatic expansion of graph data, there
is an urgent need to build more complex GCN models for
learning large-scale graphs. Thereby, the conventional training
approach still requires continuous improvement.

3) Sampling in the training of GCN: To overcome the
limitations of the conventional training approach, sampling
methods have been proposed and achieved a significant effect.
Fig. 1 illustrates a variant of graph convolutional networks
with two GCN layers. Like general neural networks, the
training process of GCN can be divided into forward propa-
gation and backward propagation. In the forward propagation,
a graph and the corresponding features are fed into the
model. Then, a graph convolutional layer gets embeddings
of nodes after several phases. The final output that includes
graph embeddings is obtained by stacking multiple layers.
In the backward propagation, the loss between labels and
predictions generated in the forward propagation is computed
to update the model parameters. Finally, a well-trained model
is obtained by repeating the above two processes. To analyze
the time-consuming phases, we formally dissect the compu-
tation process in one graph convolutional layer and divide
the process into three phases [42, 43], namely, sampling,
aggregation and combination. As mentioned above, the partial
nodes of an entire graph are selected based on a certain
standard in the sampling phase. For the aggregation phase,
many works [18, 21, 35, 44] recursively aggregate the features
from the sampled neighbors of one node. After aggregation,
the combination phase updates the node’s feature in the current
layer by combining the neighborhood features generated in
aggregation with the node’s feature in the upper layer [45, 46].

Formally, the typical definition of the above phases is:

SN (v) = Sampling(k) (N (v)) , (7)

a(k)
v = Aggregate(k)

(
{h(k−1)

u : u ∈ SN (v)}
)
, (8)

h(k)
v = Combine(k)

(
h(k−1)
v , a(k)

v

)
. (9)

In Equation (7), N (v) is the neighboring nodes of node v,
and SN (v) is the sampled neighbors from N (v) based on
a certain standard. Since all these phases are executed in the
k-th layer (iteration), we define that a(k)

v is the aggregation
feature vector of node v in the k-th layer, and h

(k)
v is the

representation feature of node v in the k-th layer. As illustrated
in the lower part in Fig. 1, the sampling phase selects a part of
the neighbors of each node in a graph, for example, nodes B
and D are selected for aggregating the representation feature of
node A. As the previous step of the aggregation, the function
of sampling is to reduce the computation cost for aggregation
while maintaining comparable model accuracy. Distinctly, an
efficient sampling method can accelerate the aggregation phase
greatly and ultimately speed up the training. Considering
that sampling methods are different in their mechanisms, we
present a taxonomy of sampling methods in Section II-B.

B. Categorization of sampling methods

To systematically introduce sampling methods, we divide
them into four categories, namely node-wise sampling, layer-
wise sampling, subgraph-based sampling, and heterogeneous
sampling. The taxonomy is based on a special standard that
depends on the granularity of the sampling operation in one
sampling batch. For sampling methods proposed in the works
[35, 44, 47, 48], the sampling operation is applied to each
node’s neighbors. A part of neighbors of a single node are
sampled in one sampling batch, so we define this kind of

5

TABLE I: Categories and correlative works of the sampling methods
Categories Works

Node-wise sampling method GraphSAGE [35], PinSage [44], SSE [47], VR-GCN [48]

Layer-wise sampling method FastGCN [49], AS-GCN [50], LADIES [51]

Subgraph-based sampling method
Cluster-GCN [52], GraphSAINT [53],

RWT [54], Parallelized Graph Sampling [55]

Heterogeneous sampling method
Time-related sampling [56], HetGNN [57],

HGSampling [58], Text Graph Sampling [59]

sampling methods as the node-wise sampling method; for
sampling methods proposed in the works [49–51], multiple
nodes are sampled simultaneously in the sampling operation
in each layer, so we define this kind of sampling methods
as the layer-wise sampling method; for sampling methods
proposed in the works [52–55], a subgraph that is induced
from specially chosen nodes (and edges) is sampled in one
sampling batch for further computation, so we define this kind
of sampling methods as the subgraph-based sampling method;
for sampling methods proposed in the works [56–59], different
types of nodes and edges are sampled in a heterogeneous
graph. This kind of sampling methods generally vary with
different structures of heterogeneous graphs, and we therefore
define this kind of sampling methods as the heterogeneous
sampling method.

An illustration of the typical process of sampling methods
in the first three categories is shown in Fig. 2 (We did not
show the process of heterogeneous sampling methods since
the heterogeneous sampling is generally fickle). Based on our
taxonomy, we systematically introduce the characteristics of
sampling methods in each category and put forward detailed
comparisons in Section III. The correlative works are given in
TABLE I by category.

III. SAMPLING METHODS

In this section, we introduce sampling methods by category.
In each category, we highlight the characteristics for each
sampling method and compare them from multiple aspects.
It is important to note that most of the sampling methods
we introduce in this section are applied to spatial-based GCN
models for capturing the relationship between nodes in a
neighboring node region. Besides, since most of the sampling
methods use common benchmark datasets, we give summary
information of these datasets in TABLE II.

A. Node-wise sampling method

Node-wise sampling method is the fundamental sampling
method and is first proposed by some inspiring works. Gener-
ally, the common ground between node-wise sampling meth-
ods is that they perform the sampling process on each node
and sample neighbors based on specific probability. Simply
taking the form of the formula in Equation 7, we modify it to
be the following form:

SN (v) = Sampling(k) (N (v) , P) , (10)

TABLE II: Summary information of the datasets
Dataset #Classes #Nodes #Edges #Features

Cora [60] 7 2708 5429 1433

Citeseer [60] 6 3327 4732 3703

Pubmed [60] 3 19,717 44,338 500

PPI [61] 121 14,755 225,270 50

Flickr [53] 7 89,250 899,756 500

Reddit [35] 41 232,965 11,606,919 602

Yelp [53] 100 716,847 6,977,410 300

Amazon1 107 1,598,960 132,169,734 200

Note1: The size of the Amazon dataset is different in many works [45,
52, 53, 62], here we choose the version used in the work [53].

{
P ∼ Uniform(0,M), Random

P ∝Metrics(v), Non− random

Here, for random sampling, the probability P obeys uniform
distribution, and M denotes the maximum number of neigh-
bors to be sampled of node v. Sampling methods used in works
[35, 47, 48] distinctly satisfy the characteristics of random
sampling. For non-random sampling, the probability P is non-
uniform and possibly is proportional to particular metrics of
node v, e.g., PinSage [44] computes the L1-normalized visit
counts to define the top T neighbors and affect the sampling
probability, where neighbors with higher L1-normalized visit
counts are easier to be sampled. In this case, the metrics-
based probability requires the pre-computed metrics before
performing the sampling process.

In most instances, it is inflexible and inefficient to sample all
neighbors of each node in the training process, and we prefer
to add a restricted value to the sampling process for flexibly
controlling. Since the sampling size of neighbors cannot be
arbitrarily large, we restrict the original sampling size to be
an appropriate value and redefine the sampling form as:

SN (v) = Sampling(k)
(
N (v) , P,RN (k)

)
, (11){

P ∼ Uniform(0,M), Random

P ∝Metrics(v), Non− random

where RN (k) denotes the restricted number of neighbors to be
sampled in one sampling batch in the k-th layer. To a certain
extent, most node-wise sampling methods can be abstracted
in the form of Equation 11, and the main difference between
these methods lies in the unique mechanism added to the origi-
nal neighbor sampling process. We compare these differences
in the last part of this section. Next up, we will introduce

6

some typical works leveraging the node-wise sampling method
in detail and highlight each method’s characteristics in the
following subsections.

1) GraphSAGE: GraphSAGE [35] is a general framework
for learning node embeddings. To train the model efficiently,
an inductive process is learned to generate node embeddings
using neighborhood sampling and aggregation. Specifically,
the sampling operation randomly selects neighbors for each
node in the graph, which is closely followed by the ag-
gregation. The aggregation leverages the sampled neighbors’
features and generates the embedding of each node from the
top layer to the final layer. Then, the output embedding is used
for the model’s weight update and some specific applications.
The authors also propose three alternative aggregators, which
can be learned in a supervised or unsupervised approach.
Detailed pseudocode of the forward propagation algorithm is
given in Algorithm 1, which covers the sampling (lines 2-7
of the algorithm) and aggregation process.

Algorithm 1: GraphSAGE minibatch forward propa-
gation algorithm [35]

Input: Graph G(V, E); depth K; minibatch node set B;
non-linearity σ; weight matrices
Wk,∀k ∈ {1, . . . ,K}; input features {xv, ∀v ∈ B};
differentiable aggregator functions AGGREGATEk,
∀k ∈ {1, . . . ,K}; neighborhood sampling functions,
Nk : v → 2V , ∀k ∈ {1, . . . ,K}

Output: Vector representations zv for all v ∈ B
1 Bk ← B;
2 for k = K . . . 1 do
3 Bk−1 ← Bk;
4 for u ∈ Bk do
5 Bk−1 ← Bk−1 ∪Nk(u)
6 end
7 end
8 h0

u ← xv,∀v ∈ B0;
9 for k = 1 . . .K do

10 for u ∈ Bk do
11 hkN (u) ← AGGREGATEk({hk−1

u′ , ∀u′ ∈ Nk(u)});
12 hku ← σ

(
Wk · CONCAT(hk−1

u ,hkN (u))
)

;

13 hku ← hku/‖hku‖2;
14 end
15 end
16 zu ← hKu , ∀u ∈ B

The node-wise sampling method proposed in GraphSAGE
corresponds to the typical node-wise sampling process in
Fig. 2. For each node in the training graph, the sampling
method samples k-hop neighbors by search depth. Then, the
sampled neighbors are added to the minibatch node set Bk
for storage. Besides, the authors choose the corresponding
sampling size for each depth (layer) in the model by demon-
strating the different neighborhood sampling sizes with the
impact on the model performance. Distinctly, the node-wise
sampling method proposed in GraphSAGE satisfies the form of
Equation 11, where the sampling probability P obeys uniform
distribution, and k is set to 2. Restricted numbers of neighbors
to be sampled in the first and second layers are set to 25 and
10, respectively. Then, the sampling process can be specified

in a detailed format:

SN (1) (v) = Sampling(1) (N (v) , P, 25) , (12a)

SN (2) (v) = Sampling(2) (N (v) , P, 10) , (12b)

N = Union
(
N,SN (1), SN (2)

)
, (12c)

where N denotes the node set used for the aggregation process.
In this way, 2-hop neighbors for aggregation are randomly
sampled. And the complexity in time and space per batch
is controlled as O

(
Π2
i=1RN

(i)
)
, guaranteeing acceptable and

predictable runtime in mini-batch GCN training.
The proposed node-wise sampling method in GraphSAGE

has the following characteristics.
• Heuristic. GraphSAGE first introduces the mini-batch

method into GCN training. Instead of using all nodes in the
graph, the sampling method randomly selects a fixed number
of neighbors of each node to reduce the computation cost.
Compared with aggregating all node features for embedding
generation, partial neighbors are sampled in a mini-batch that
may cause loss of information. Still, GraphSAGE achieves a
good trade-off between performance and runtime leveraging
the neighborhood sampling.
• Storage-friendly. The original training approach uses a

full-batch approach to compute the gradient. For each training
epoch, the whole graph and all intermediate embeddings are
required to update the full gradient, leading to high storage
cost. The sampling method proposed in GraphSAGE reduces
the number of features being aggregated in one batch by
restricting the sampling size, which helps to lower the storage
requirement in GCN training.
• Stochastic. The number of neighbors per node (defined

as M) is unknowable and stochastic in a training graph. Since
the sampling method proposed in GraphSAGE samples a fixed
number (defined as N) of neighbors of each node, when N is
larger than M , the same neighbors will inevitably be sampled
multiple times, leading to lots of redundant computation.
Therefore, the randomness in the sampling method may cause
indeterminacy and thus lower efficiency of training.

2) PinSage: PinSage [44] is a highly scalable framework
that designs for the industrial recommender system. Since
the user-item network’s transformed graph includes countless
nodes and edges, the authors use multiple localized convolu-
tional modules to aggregate the neighborhood representations
and generate embedding for nodes. Each convolutional module
learns to represent the partial neighborhood information of
one node, so that the embedding can be obtained by stacking
multiple convolutional modules. The computation of neigh-
borhood representations between nodes uses the hierarchical
shared parameters to ensure that the computation complexity
has no concern with the size of the input graph. The authors
also leverage some tricks, such as negative sampling [63], to
optimize the PinSage-based training process and further design
a curriculum training approach [64] for faster convergence.
The embeddings output by PinSage are used for the candidate
generation in the recommender system.

7

The node-wise sampling method proposed in PinSage is
greatly similar to the method in GraphSage [35] at the pseu-
docode level. Differently, PinSage leverages an importance-
based measuring standard to define the neighborhood of one
node. The authors perform a random walk simulation that
begins with an initial node v and then compute the nodes’
L1-normalized visit counts [65]. One node’s neighborhood is
defined as the top T neighbors with the largest normalized visit
counts, that is, T neighbors with the largest L1-normalized
visit counts are sampled for one node. The larger normalized
visit count a neighbor has, the greater its importance and
influence on v. Distinctly, the node-wise sampling method
proposed in GraphSAGE satisfies the form of Equation 11,
where the sampling probability P is non-uniform and propor-
tional to the L1-normalized visit counts. Through experiments
and observations, the authors find that a 2-layer GCN with
neighbors size T set to 50 achieves an optimal trade-off in
capturing neighborhood representation and training the model.
The sampling process can be specified in a detailed format:

Metrics(v) = Ordered

{(
vcu,v∑
u |vcu,v|

)}
, (13a)

SN (k) (v) = Sampling(k) (N (v) , P, 50) , (13b)

P ∝Metrics(v), (13c)

where u is a neighbor of v, and vcu,v denotes the visit counts
recorded in the random walk simulation. Sampling probability
P is proportional to Metrics(v) that includes L1-normalized
visit counts in descending order. In this way, PinSage can
sample the most influential neighbors for each node in the
training graph.

The proposed node-wise sampling method in PinSage has
the following characteristics.
• Storage-friendly. Only the sampled neighbors are used to

aggregate the neighborhood vector, which reduces the storage
requirement of training the large-scale GCN. Additionally,
the node-wise sampling method helps the execution of the
localized convolution. PinSage leverages the localized convo-
lution to generate the node embedding in an efficient way,
where the dense neural networks that transform neighbors’
representations all share the same parameters.
• Conditional. The node-wise sampling method benefits

sampling and aggregation in a similar manner. Compared
with the random neighbor sampling, the conditional neighbor
sampling selects the neighbors with the largest normalized
visit counts, which makes it possible that the aggregation of the
neighborhood vector can be executed using different weight
parameters according to the normalized visit counts.

3) SSE: As many graph analytical tasks can be solved using
various iterative algorithms, solutions of these algorithms
require extensive iterations. These solutions are usually repre-
sented by a combination of multiple steady-state conditions,
making it inefficient to achieve steady-state solutions. There-
fore, the authors design a stochastic learning framework for
learning the steady states and design fast-learning algorithms
for various graph analysis scenarios. Stochastic Steady-state

Embedding (SSE) [47] is an alternating algorithm proposed
to tackle the optimization problem in the stochastic learning
framework.

The node-wise sampling method proposed in SSE helps
to learn the embedding and the parameters in an alternating
manner. As shown in Algorithm 2, the parameters W1,W2

and V1, V2 to be learned in SSE are the weight matrices of
the operator TΘ and the parameters of the prediction function
g respectively. The entire iterative algorithm runs K cycles,
and each cycle includes two stages. In stage I, the {ĥv}v∈V
is stochastically initialized by constants. Firstly, N nodes are
randomly sampled in the original graph and used to form a
set Ṽ . Then, for each node vi in Ṽ , all 1-hop neighbors of vi
are sampled for updating embedding in the following form:

SN (vi) = Sampling (N (vi) , P) ,∀vi ∈ Ṽ, (14a)

ĥvi ← (1− α)ĥvi + αTΘ[{ĥu}u∈N (vi)],∀vi ∈ Ṽ, (14b)

where the operator TΘ enforces node embeddings’ steady-state
conditions according to information of all sampled neighbors,
and α denotes a decay factor introduced by moving average
approach. The sampling process in stage I is similar to simply
performing random neighbor sampling used in GraphSAGE
[35] for only 1-hop neighbors without restriction. In stage II,
when {ĥv}v∈V meets the steady-state equation, the labeled
nodes are sampled to update Wi and Vi using vanilla stochastic
gradient descent.

Algorithm 2: Stochastic steady-state embedding algo-
rithm [47]

Initialize W1,W2, V1, V2, {ĥv}v∈V randomly;
for k = 1, . . . ,K do

for th = 1, . . . , nh do
Sample Ṽ = {v1, v2, . . . , vN} ∈ V;
Update embedding ĥvi ,∀vi ∈ Ṽ;

end
for tf = 1, . . . , nf do

Sample Ṽ(y) = {v1, v2, . . . , vN} ∈ V(y);
{Wi ←Wi − η ∂L

∂Wi
}2i=1, {Vi ← Vi − η ∂L∂Vi

}2i=1;
end

end

The proposed node-wise sampling method in SSE has the
following characteristics.
• Asynchronous. The update of embedding ĥvi is executed

asynchronously between the sampled nodes. The reason is
that the computation complexity of synchronous updates is
costly, especially when handling large-scale graphs. Besides,
the authors [47] only use 1-hop neighbors to update the
embedding, which avoids the exponential growth of neighbors
and makes asynchronous updates feasible.
• Alternating. The algorithm alternates between leveraging

the operator TΘ and 1-order neighborhood representations to
update the embedding of the sampled nodes, and leveraging
the computed loss via stochastic gradient descent to update
the parameters of the operator TΘ and the link function g. The
authors also find that the model will gain a faster convergence

8

rate and better generalization when the number of inner loops
in embedding update is larger than that in parameter updates.

4) VR-GCN: VR-GCN [48] is a stochastic approximation
algorithm for efficient GCN training. To alleviate the exponen-
tial growth of the receptive field caused by the recursive com-
putation of neighborhood representations, VR-GCN leverages
a variance reduction technique to restrict the size of sampled
neighbors to an arbitrarily small number. Empirically, VR-
GCN only samples 2 neighbors per node, which still achieves
a comparable predictive performance compared with some
existing methods.

Algorithm 3: Constructing the receptive fields and
random propagation matrices [48]

r(L) ← VB
for layer l← L− 1 to 0 do

r(l) ← ∅
P̂ (l) ← 0
for each node u ∈ r(l+1) do

r(l) ← r(l) ∪ {u}
P̂

(l)
uu ← P̂

(l)
uu + P̂uun(u)/D(l)

for D(l) − 1 random neighbors v ∈ n(u) do
r(l) ← r(l) ∪ {v}
P̂

(l)
uv ← P̂

(l)
uv + P̂uvn(u)/D(l)

end
end

end

The basic sampling process in VR-GCN is to randomly
sample D(l) neighbors for each node u in the set of receptive
field in the (l+1) layer, which is shown in the inner loop of the
Algorithm 3. The node-wise sampling method used in VR-
GCN can be regarded as a variant of GraphSAGE [35] with a
particular restriction that only two neighbors are sampled per
node for updating the receptive field r and the propagation
matrices P̂ . The above process can be formally specified as
the following form:

r(k), P̂ (k) ← Update (u,N(u)) ,∀u ∈ r(k+1), (15a)

SN (k) (u) = Sampling(k) (N (u) , P, 1) , (15b)

r(k), P̂ (k) ← Update
(
SN (k) (u) , N(u)

)
. (15c)

Note that the node u is always considered as a neighbor
of itself, and therefore only one neighbor (excluding u) is
sampled. The main novelty of this method is that the authors
use the historical activation h̄

(l)
v to approximate the h

(l)
v .

Denote ∆h
(l)
v as the difference between h̄

(l)
v and h

(l)
v , that

is, h(l)
v = h̄

(l)
v + ∆h

(l)
v . In each training batch, the control

variate based estimator, which refers as CV, is performed
leveraging activations h̄(l)

v and h(l)
v in the forward propagation,

and the model’s weight is updated based on the computed loss
in the backward propagation. Then, the historical activation
h̄

(l)
v is updated leveraging h

(l)
v . Since the ∆h

(l)
v gradually

converges to zero, the variance of the CV estimator is ulti-
mately becoming zero during training GCN. Therefore, VR-
GCN successfully combines reducing the variance and a fast
training speed.

The proposed node-wise sampling method in VR-GCN has
the following characteristics.
• Time-saving. Based on the stochastic approximation

algorithm, only two neighbors are empirically sampled for
each node in one mini-batch. Compared with the original GCN
[21] and GraphSAGE [35], the sampled size is arbitrary small,
which makes it possible that the time cost of training GCN
is relatively small. Besides, the historical activation h̄(l)

v does
not need to be computed recursively.
• Approximated. Neighborhood representation of each

node is approximated by the restricted neighbor sampling.
Based on the sampled nodes, the embedding is approximated
by the historical activation. Further, the approximated gradient
is computed for model update leveraging the CV estimator.
The approximate method makes the model theoretically con-
verge to a local optimum.

5) Comparisons within the category: In the preceding
subsections, we have introduced typical node-wise sampling
methods. Distinctly, it is common ground that all these meth-
ods sample neighbors for each node in a training graph.
However, some differences lie in several aspects, e.g., sam-
pling depth and sampling condition, since not all node-wise
sampling methods sample neighbors in a random manner. For
summarization and analysis, we put forward some consid-
erable questions and compare these sampling methods from
multiple aspects. A summary of the comparisons is given in
TABLE III.
• How they work?
To analyze the availability of a sampling method, we

explain the workflow of these methods based on their sampling
conditions in the form of illustration. As illustrated in Fig. 3,
GraphSAGE randomly samples k-hop (herein, k = 2) neighbors
for each node in a recursive manner. As an improvement, VR-
GCN optimizes the random sampling strategy by restricting
the sampling size, which reduces the receptive field size
and guarantees the training convergence. SSE uses a random
sampling strategy to sample 1-hop neighbors for updating the
embedding and functions (operator). The random sampling
strategy used in these methods is simple yet efficient, reducing
the training cost in computation and storage compared with the
original GCN. Differently, PinSage uses conditional sampling
to select neighbors according to normalized visit counts, which
guarantees the correlation between the sampled neighbors.
• What’s the difference?
Excluding the sampling condition, the differences between

among methods are also reflected in some details of neighbor
sampling. In the aspect of sampling depth and neighbor
extension, GraphSAGE and VR-GCN similarly sample K-
hop neighbors for each node recursively, which leads to the
exponential neighborhood extension. PinSage samples neigh-
bors based on the normalized visit counts in a random walk
process, but it still cannot avoid the exponential extension
of the neighborhood. SSE only samples 1-hop neighbors to
maintain neighbors’ linear extension, ensuring efficiency and

9

TABLE III: Summary of the comparisons among node-wise sampling methods
Method Sampling Depth Sampling Condition Neighbor Extension Extra Mechanism

GraphSAGE [35] K-hop Neighbors Random Sampling Exponential Extension −
PinSage [44] Random walk Depth Normalized Visit Counts Exponential Extension Random Walk Simulation

SSE [47] 1-hop Neighbors Random Sampling Linear Extension Alternating Sampling

VR-GCN [48] K-hop Neighbors Random Sampling Exponential Extension Historical Activation

HH

DD
AA

BB

E

H

D
A

B

E

2-Hop

1-Hop

(a)

D→F 0.4

D→B 0.1

D→A 0.5

Ordered L1-
normalized

Visit Counts

D→F 0.4

D→B 0.1

D→A 0.5

Ordered L1-
normalized

Visit Counts

HH

DD
AA

BB

E

H

D
A

B

E

(b)

D→F 0.4

D→B 0.1

D→A 0.5

Ordered L1-
normalized

Visit Counts

H

D
A

B

E

(b)

HH

DD
AA

BB

E
Latest

Activation

 Historical
Activation

(d)

HH

DD
AA

BB

E

H

D
A

B

E

TѲ Operator
ɡ Function

ĥFĥFĥF

(c)

Alternating
Update

Compute
Visit Count

Fig. 3: Illustration on the introduced node-wise sampling methods in existing works. (a) 2-hop neighbor sampling in Graph-
SAGE. (b) Importance-based neighbor sampling in PinSage. (c) Alternating sampling for embedding and function(operator)
update in SSE. (d) Neighbor sampling leveraging historical activation in VR-GCN.

effectiveness in training. Distinctly, the exponential extension
of the neighborhood will bring up significant computation
and storage costs, which may deteriorate the efficiency of the
method.
• What’s the special?
Typically, GraphSAGE first introduces the sampling strategy

into GCN training, bringing inspiration to some works. Some
methods modify the original random sampling proposed in
GraphSAGE to achieve better performance by adding unique
mechanisms. For example, PinSage traverses nodes by sim-
ulating a random walk process to compute the visit counts,
which helps to sample the most influential neighbors for each
node. SSE uses the alternating sampling strategy to sample 1-
hop neighbors for embedding computation and labeled nodes
for functions update. VR-GCN leverages the historical acti-
vation to approximate the embedding, avoiding the recursive
computation, which makes it possible that comparable predic-
tive performance is achieved with an arbitrarily small sampling
size.

B. Layer-wise sampling method

Layer-wise sampling method is the improvement of node-
wise sampling method and generally samples a certain number
of nodes together in one sampling step. In this category of

sampling methods, since multiple nodes are jointly sampled in
each layer, time cost of the sampling process is significantly
reduced by avoiding the exponential extension of neighbors.
More importantly, a novel view that one can interpret loss and
graph convolutions as integral transformations of embedding
computation to reduce sampling variance leveraging impor-
tance sampling technique, is first introduced in the work [49],
which is widely used in later works [50, 51].

To introduce importance sampling and Monte-Carlo approx-
imation, we begin with recalling the forward propagation of
GCN [21] in Equation 6 and rewrite the formula as an integral
format:

h(l+1)(v) = σ

(∫
Â(v, u)h(l)(u)W (l)dP (u)

)
, (16)

where σ(·) denotes a specific activation function, and Â(v, u)
is a renormalized adjacency matrix. h(l)(u) and W (l) denote
the hidden feature vector of u and weight matrix in the l-
th layer, respectively. And probability P is introduced as
the sampling distribution to represent various sampling, e.g.,
uniform probability for independent sampling and conditional
probability for node/layer-dependent sampling. Specifically, in
some layer-wise sampling methods, one node is sampled under
the influence of other nodes in the current layer, we thereby

10

introduce the impact of other nodes in the form of importance
sampling as:

h(l+1)(v) = σ

(
Â(v, u)Eq(u)[

p(u|v) · h(l)(u)

q(u)
]W (l)

)
, (17)

where q(u) denotes the probability of sampling node u under
the condition that all nodes in the current layer are given. In
this situation, to accelerate the forward propagation in Equa-
tion 17, we specify a concrete instance and apply Monte-Carlo
approximation to the expectation µq(v) = Eq(u)[

p(u|v)·h(l)(u)
q(u)]:

µ̂q(vi) =
1

n

n∑
j=1

p(ûj |vi) · h(l)(ûj)

q(ûj |v1, · · · , vn)
. (18)

Here, µ̂q(vi) is the approximate expectation where ûj ∼
q(ûj |v1, · · · , vn). q(ûj |v1, · · · , vn) is the specified format of
q(u) that denotes the probability of sampling node uj given
nodes v1, v2, · · · , vn in the current layer. Next up, the target
for optimizing sampling is to reduce the variance of µ̂q(vi) as
far as possible, that is, finding an optimal sampling probability
q∗(uj) to minimize V arq(µ̂q(vi)).

Practically, these layer-wise sampling methods propose di-
verse approaches to solve different problems that are aimed at,
and there is also a distinction between the optimal sampling
probabilities q∗(u) used in their sampling process. We will
show the differences of sampling probability in each work
subsequently and compare these methods in the last part of the
section to clarify how to reduce the sampling variance. Next
up, we will introduce some typical works leveraging the layer-
wise sampling method in detail and highlight each method’s
characteristics in the following subsections.

1) FastGCN: FastGCN [49] is a fast learning method for
training GCN. To alleviate the expensive computation caused
by the exponential neighborhood expansion, FastGCN samples
a certain number of nodes in each layer independently based
on the pre-set probability distribution. Formally, the authors
use an integral transformation of the embedding function to
interpret the convolution operation in GCN. Further, under the
condition that the training graph is an induced subgraph of an
infinite graph, the node embedding which is in the form of
integrals, can be estimated using the Monte Carlo approach.
In this way, the embedding is approximatively evaluated by
sampling tl nodes in each layer. Thereby, GCN training can
be represented as an inductive learning process and achieve a
considerable speedup.

The layer-wise sampling method proposed in FastGCN
corresponds to the typical layer-wise sampling process in
Fig. 2, it samples a certain number of nodes in each layer
in a batched manner. Since the main challenge in node-
wise sampling methods is the massive neighbors that expand
exponentially with the number of layers, the layer-wise sam-
pling method alleviates this heavy overhead by restricting the
sampling size in each layer. To reduce the variance, the authors
use importance sampling technique to alter the probability
distribution. As introduced by us in the previous chapter, to
compute the optimal sampling probability that can minimize

V arq(µ̂q(vi)) as far as possible, FastGCN defines the optimal
probability that is proportional to ‖Â(:, u)‖2, that is,

q(u) = ‖Â(:, u)‖2
∑
u′∈V

‖Â(:, u′)‖2, u ∈ V. (19)

Based on the q(u), tl nodes are sampled in each layer
independently, and the inter-layer connections (edges) are
reconstructed after the sampling process to link the sampled
nodes. Besides, the authors also define vanilla FastGCN which
samples tl nodes in each layer uniformly as contrast and
has experimentally demonstrated the advantage of importance
sampling technique in predicting accuracy used in FastGCN,
compared with the uniform sampling used in vanilla Fast-
GCN. Detailed pseudocode of the training process is given
in Algorithm 4, which includes the sampling and forward
propagation.

The proposed layer-wise sampling method in FastGCN has
the following characteristics.
• Fast. Compared with the k-hop neighbor sampling, the

layer-wise sampling method restricts the size of the sampled
neighbors in each layer. Since the layer-wise sampling process
is independent between layers, the sampled neighbors maintain
a linear-growth trend, which avoids the recursive sampling of
the multi-hop neighbors.
• Possibly-sparse. The layer-wise sampling method pro-

posed in FastGCN samples a certain number of nodes in each
layer independently, which may cause the situation that the
sampled nodes are not connected in two consecutive layers.
Thereby, the generated adjacency matrices of the sampled
nodes are possibly sparse, which may deteriorate the training
and model accuracy.

Algorithm 4: FastGCN batched training [49]
For each vertex u, compute sampling probability
q(u) ∝ ‖Â(:, u)‖2

for each batch do
For each layer l, sample tl vertices u(l)

1 , · · · , u(l)
tl

according to distribution q
for each layer l do

If v is sampled in the next layer, ∇H̃(l+1)(v, :

)← 1
tl

tl∑
j=1

Â(v,u
(l)
j)

q(u
(l)
j)
∇{H(l)(u

(l)
j , :)W

(l)}

end
W ←W − η∇Lbatch

end

2) AS-GCN: AS-GCN [50] introduces an adaptive sam-
pling approach into GCN training. It builds a sequential model
from the top layer to the bottom layer. The importance of
sequentiality lies in that the lower layer’s nodes are sampled
according to the upper layer’s nodes conditionally. In this way,
the sampled nodes in the lower layer can be efficiently reused
in the upper layer since they are shared by their parent nodes.
Besides, AS-GCN adds the variance generated by sampling
into the loss function and reduces the variance through model
training. To efficiently use the remote nodes’ information, AS-
GCN designs a skip connection to maintain the second-order

11

proximity, which makes it possible that the 2-hop neighbors
are directly used without sampling recursively.

The layer-wise sampling method proposed in AS-GCN
samples a fixed number of nodes in each layer under a
top-down manner. Especially, the lower layer’s nodes are
sampled conditionally according to the nodes in the upper
layer instead of independent sampling in each layer. The
conditional sampling approach ensures the efficient reuse of
the sampled nodes. Similarly to FastGCN [49], the authors
transform the embedding function to a probability-based form
by using importance sampling and accelerate the computation
by approximating the expectation in the Monte Carlo manner.
They specify the form of the variance of the approximate
expectation to be:

V arq(µ̂) =
1

n
Eq(uj)

[(
p(uj |vi)|h(l)(uj)| − µq(vi)q(uj)

)2
q2(uj)

]
. (20)

Here, µ̂ is a shorthand for µ̂q(vi). And the optimal sampling
probability can be given as:

q∗(uj) =
p(uj |vi)|h(l)(uj)|∑N
j=1 p(uj |vi)|h(l)(uj)|

. (21)

Since the optimal sampling probability is unable to compute
due to the chicken-and-egg dilemma that the hidden feature
can not be gained until the model is fully built through
sampling, AS-GCN approximately replaces the uncomputable
part with a linear function g (x(uj)), that is:

q∗(uj) =

∑n
i=1 p(uj |vi)|g(x(uj))|∑N

j=1

∑n
i=1 p(uj |vi)|g(x(vj))|

. (22)

Therefore, the optimal sampling probability can be computed
by defining g (x(uj)) = Wgx(uj). Besides, the variance
caused by the sampler is added to the loss function for
minimization during the training.

The proposed layer-wise sampling method in AS-GCN has
the following characteristics.
• Adaptive. The adaptivity of the sampling method lies in

two aspects. On the one hand, the training frameworks used in
GraphSAGE [35] and FastGCN [49] are compatible with AS-
GCN by modifying the conditional sampling probability. On
the other hand, the sampler used in AS-GCN is parameterized
and can be adaptively trained to reduce the variance.
• Empirical. To obtain the optimal sampler, the authors

design a self-dependent function g (x(uj)) of each node and
replace the embedding function with g (x(uj)) to compute
the optimal sampling probability. The self-dependent function
is empirically defined to be a linear form and assigned as
g (x(uj)) = Wgx(uj).
• Efficient. A skip connection is added across the two

layers to pass the information across layers over remote nodes
efficiently. Since the skip connection mechanism preserves the
second-order proximity, the nodes in the (l + 1) layer can
aggregate the information from the (l) layer and (l− 1) layer
without extra 2-hop sampling and parameter computation. In
this way, the information pass between two layers with large
spacing is allowed, and the training is therefore becoming
more efficient.

3) LADIES: LADIES [51] is a layer-dependent importance
sampling algorithm for training deep GCN models efficiently.
Especially, LADIES is designed to solve the challenges of the
high overhead in training and sparsity in sampling. On the
one hand, the typical neighbor sampling method samples a
subset of neighbors of each node in a recursive manner, but
it leads to high computation cost which grows exponentially
as the neighborhood expands. In some layer-wise sampling
methods, many nodes are jointly sampled in each layer in-
dependently, which may cause a sparse situation in terms of
node connection.

To solve the above two challenges, LADIES performs
layer-dependent sampling in a top-down manner. A detailed
sampling procedure is given in Algorithm 5. Firstly, LADIES
computes the sampling probability p(l−1)

i of each node in the
l−1 layer according to the layer-dependent Laplacian matrices:

p
(l−1)
i =

‖Q(l)P∗,i‖22
‖Q(l)P‖2F

. (23)

where P denotes the modified Laplacian matrix, and Q
denotes the row selection matrix. Notably, the computed prob-
abilities are organized into a random diagonal matrix for the
subsequent step. Next, a fixed number of nodes are sampled in
the (l− 1) layer based on the p(l−1). Note that nodes are not
independently sampled in each layer. They are generated from
the union set of neighbors which are sampled in the upper
layer. The sampled adjacency matrix is then reconstructed
between two consecutive layers since the sampling process
is based on the layer-dependent matrices in the current and
upper layers. Finally, the sampled adjacency matrix is further
modified by row-wise normalization for stabilizing training.

Algorithm 5: Sampling Procedure of LADIES [51]
Require: Normalized Laplacian Matrix P; Batch Size b,

Sample Number n;
Randomly sample a batch of b output nodes as QL

for l = L to 1 do
Get layer-dependent laplacian matrix Q(l)P. Calculate

sampling probability for each node using
p

(l−1)
i ← ‖Q(l)P∗,i‖22

‖Q(l)P‖2
F

,and organize them into a random

diagonal matrix S(l−1).
Sample n nodes in l − 1 layer using p(l−1). The

sampled nodes formulate Q(l−1).
Reconstruct sampled laplacian matrix between sampled

nodes in layer l − 1 and l by
P̃(l−1) ← Q(l)PS(l−1)Q(l−1)>, then normalize it by
P̃(l) ← D−1

P̃(l)P̃
(l).

end
return Modified Laplacian Matrices {P̃(l)}l=1,...,L and

Sampled Node at Input Layer Q0;

LADIES has the following characteristics.
• Layer-dependent. The neighbor dependence of each

node is leveraged in LADIES, where nodes are conditionally
sampled in the (l−1) layer according to the sampled nodes in
the (l) layer. The characteristic of layer-dependent sampling
ensures that the adjacency matrices generated by the sampled

12

TABLE IV: Summary of the comparisons between layer-wise sampling methods
Method Intra-layer Sampling Inter-layer Connection Variance Reduction Extra Mechanism

FastGCN [49]
Probabilistic Sampling

on Independent Nodes

Independent Layer

Sampling

Change Sampling Distribution

with Importance Sampling
−

AS-GCN [50]
Probabilistic Sampling

Based on Parent Nodes

Layer-dependent

Sampling

Importance Sampling &

Explicit Variance Reduction
Skip Connection

LADIES [51]
Probabilistic Sampling

with Restriction

Layer-dependent

Sampling

Change Sampling Distribution

with Importance Sampling

Laplacian Matrix

Normalization

TABLE V: Comparison of testing Micro F1 scores between layer-wise sampling methods
Method Cora Pubmed PPI Reddit Flickr

FastGCN [49] 0.827±0.001 0.895±0.005 0.502±0.003 0.825±0.006 0.500±0.001

AS-GCN [50] 0.830±0.001 0.880±0.006 0.599±0.004 0.890±0.013 0.506±0.012

LADIES [51] 0.843±0.003 0.880±0.006 0.574±0.003 0.932±0.001 0.465±0.007

nodes are dense, which maintains sufficient information for
training GCN.
• Importance-based. LADIES uses an importance sam-

pling approach to reduce the variance, where the importance
probability for sampling only depends on the layer-dependent
Laplacian matrix. Besides, importance sampling approach is
also beneficial to the convergence of training.

4) Comparisons within the category: In the preceding sub-
sections, we have introduced some typical layer-wise sampling
methods. Similarly, these methods sample a fixed number of
nodes according to the particular probability in a layer-by-
layer manner and reduce the variance caused by sampling with
some techniques or tricks. Although they perform the sampling
based on some common ground, there are still some distinct
differences between these methods. We thereby analyze the
discrepancies from multiple aspects and explain them in a
Q&A manner. A summary of the comparisons is given in
TABLE IV.
• What’s the difference?
All these methods sample nodes per layer in a mini-batch

manner to guarantee the scalability of training for large-scale
graphs. FastGCN samples tl nodes in the (l) layer according to
the pre-computed probability independently. AS-GCN samples
n nodes based on the parent nodes sampled in the upper
layer, where the sampling process is probability-based and
dependent between layers. LADIES samples n nodes per
layer with the restriction that nodes being sampled are from
the union of neighbors of the already sampled nodes, which
preserves the inter-layer dependence. Obviously, although all
these methods sample a fixed number of nodes together in
one sampling batch, FastGCN samples nodes regardless of
dependency, while AS-GCN and LADIES perform sampling
in a layer-dependent manner. There are both pros and cons.
In FastGCN, the computation of sampling probability can be
finished in the pre-processing, which reduces the time cost of
sampling. However, FastGCN faces a possibly-sparse issue in
the sampled result due to ignoring the dependency. AS-GCN
and LADIES compute the probability in the sampling pro-
cess iteratively to preserve the inter-layer dependency, which
increases the computation cost. But AS-GCN and LADIES
obtain denser neighborhoods in the sampled result.

• How to reduce variance?
Reducing the variance caused by sampling is the critical

work to optimize the sampling, which directly affects the
accuracy of the model. TABLE V [66] shows a comparison
of testing Micro F1 scores among these methods. All these
methods reduce variance through the approach of changing
the sampling distribution by importance sampling. Besides,
AS-GCN uses an explicit variance reduction technique, where
the variance is added into the loss function for explicit
minimization during the training. It is reported in AS-GCN
that compared with directly using AS-GCN, AS-GCN with
variance reduction achieves better performance, especially
on the Cora dataset and the Reddit dataset. Nevertheless,
GraphSAINT [53] finds that AS-GCN requires more storage
than FastGCN when training on some large datasets since only
AS-GCN throws a runtime error on the Yelp and Amazon
datasets under the same experimental environment.
• What’s the special?
All these methods achieve considerable efficiency compared

with the original GCN in terms of training cost and speed.
Besides, some extra tricks are used in these methods to
provide further optimization: AS-GCN uses a skip connection
technique to preserve the second-order proximity across two
layers, making it possible that remote nodes’ information
can pass efficiently across layers without extra computation.
LADIES applies the normalization to Laplacian matrix in each
layer, which stabilizes the training.

C. Subgraph-based sampling method

Formally, in this category of sampling methods, one or
more subgraphs are sampled for each mini-batch in GCN
training. Generally, a subgraph is directly formed by the graph
partition algorithm, or induced from the specifically sampled
nodes (edges) set. As illustrated in Fig. 4, for the former case,
a training graph is partitioned using special methods, e.g.,
graph partition algorithms and graph clustering algorithms.
Thereby, the original graph is divided into multiple subgraphs,
and we can sample one or a certain number of subgraphs in
each sampling batch. The sampling method used in work [52]
distinctly satisfies the characteristics of the above process.

13

For the latter case, a subgraph is progressively generated
from a specifically sampled nodes (edges) set. In this situation,
one or several nodes are chosen as initial nodes. Based on the
initial nodes, more nodes or edges are sampled by specific
expansion and added to a candidate sampling set. Neighbors
expansion can be achieved using a random walk process or
probabilistic sampling. Thereby, a subgraph can be induced
from the candidate sampling set. The sampling methods used
in works [53–55] all satisfy the mechanism that subgraphs are
induced from nodes (edges) extension.

G
ra

p
h

P
ar

ti
ti

o
n AB

FF

II

JJ

LL

HH

C

DD

EE

GG
K

AB

F

I

J

L

H

C

D

E

G
K

B

II

JJ

LL

HH

C

DD

EE

GG
K

AB

I

J

L

H

C

D

E

G
K

A

N
o

d
e

&
 E

d
g

e
E

x
te

n
si

o
n

FF

JJ

LL

C

DD

EE

Generated
Subgraph

Fig. 4: Illustration on typical process of subgraph-based sam-
pling

However, due to the diversity in subgraph generation and
execution flow, subgraph-based sampling methods have many
differences in various aspects. We compare these differences
in the last part of this section. Next up, we will introduce
some typical works leveraging the subgraph-based sampling
method in detail and highlight each method’s characteristics
in the following subsections.

1) Cluster-GCN: As the name suggests, Cluster-GCN [52]
extends the sampling operation to clusters and subgraphs.
Cluster-GCN first partitions the original graph into multiple
clusters by using graph clustering algorithms (e.g., Mrtis [67]
and Graclus [68]). Then, Cluster-GCN randomly samples a
fixed number of clusters as a batch and forms a subgraph
by combining the chosen clusters. Finally, the batch training
of GCN is executed based on a subgraph in each iteration.
Detailed pseudocode of the training algorithm is given in
Algorithm 6, where the sampling process corresponds to lines
3-4 of the algorithm.

The subgraph-based sampling method proposed in Cluster-
GCN is inspired by the efficient use of stochastic gradient
descent (SGD). To characterize the computation efficiency of
the SGD, Cluster-GCN puts forward a concept of embedding
utilization and considers that the embedding utilization is
proportional to the number of edges within a subgraph in each
batch. Therefore, to maximize the embedding utilization, a
definite idea is to maximize the number of edges in each batch.
Firstly, Cluster-GCN applies a graph clustering algorithm to

Algorithm 6: Training algorithm of Cluster-GCN [52]
Input: Graph A; feature X; label Y
Output: Node representation X̄

1 Partition graph nodes into c clusters V1,V2, · · · ,Vc by
METIS;

2 for iter = 1,· · · ,max iter do
3 Randomly choose q clusters, t1, · · · , tq from V without

replacement;
4 Form the subgraph Ḡ with nodes V =

[Vt1 ,Vt2 , · · · ,Vtq] and links AV̄ ,V̄ ;
5 Compute g ← ∆LAV̄ ,V̄

(loss on the subgraph AV̄ ,V̄);
6 Conduct Adam update using gradient estimator g;
7 end
8 Output: {Wl}Ll=1

partition the original graph and forms dense subgraphs. Given
a graph G, Cluster-GCN partitions all nodes into c clusters:
V = [V1,V2, · · · ,Vc]. Based on the clustering result, the graph
G is divided into c subgraphs: Ḡ = [G1, G2, · · · , Gc], where
Gt = {Vt, Et}, Vt and Et define all nodes in the t-th cluster
and all links between nodes in the t-th cluster respectively.
Thereby, the adjacency matrix of graph G is divided into c2

submatrices:

A = Ā+ ∆ =


A11 · · · A1c

...
. . .

...

Ac1 · · · Acc

 (24)

with

Ā =


A11 · · · 0

...
. . .

...

0 · · · Acc

 ,∆ =


0 · · · A1c

...
. . .

...

Ac1 · · · 0

 , (25)

where Ā is the adjacency matrix of graph Ḡ and only
consists of the diagonal square matrices Att of size |Vt|×|Vt|.
∆ consists of all off-diagonal matrices of A.

Then, Cluster-GCN proposes an approximation way that it
replaces G with Ḡ in the training of GCN. Therefore, the
process of learning the final embedding can be defined as:

Z(L) = Ā′σ(Ā′σ(· · ·σ(Ā′XW (0))W (1)) · · ·)W (L−1)

=


Ā′11σ(Ā′11σ(· · ·σ(Ā′11X1W (0))W (1)) · · ·)W (L−1)

...

Ā′ccσ(Ā′ccσ(· · ·σ(Ā′ccXcW
(0))W (1)) · · ·)W (L−1)

 .
(26)

where Ā′ is the normalized representation of Ā and W k

is the weight matrix in the k-th layer. Since Ā′ includes c
submatrices, each submatrix Ā′tt corresponds to the internal
edges of the subgraph Gt.

The graph clustering algorithms guarantee the density of
the subgraph in each batch, and the decomposition of the loss
enables the forward and backward propagations on subgraphs
in the mini-batch training. Based on the above ideas, Cluster-
GCN randomly samples q clusters without replacement to
form a subgraph Ḡ. The subgraph Ḡ not only includes all
nodes and edges within the chosen clusters, but also includes

14

the edges between these clusters. The generation process
of a subgraph in Cluster-GCN typically corresponds to the
graph partition that is shown in Fig. 4. Specially, instead of
directly sampling a subgraph in each batch, a fixed number of
subgraphs are randomly chosen to construct a larger subgraph
to maintain the randomness, which also reduces information
(inter-cluster edges) loss.

The proposed subgraph-based sampling method in Cluster-
GCN has the following characteristics.
• Scalable. In each batch, only a subgraph is loaded

into GPU memory instead of the original graph, which is
friendly to learning large-scale graphs. In vanilla Cluster-GCN,
the mini-batch stochastic gradient descent is executed on a
subgraph(cluster), which avoids the neighborhood searching
outside the subgraph and ultimately reduces the training cost.
• Heuristic. Cluster-GCN leverages a stochastic multiple

clustering approach to address the imbalanced distribution
of nodes’ labels caused by the clustering algorithm (Metis)
instead of analyzing the variance in a theoretical manner.
Although Cluster-GCN outperforms the previous works, it
does not explicitly account for or solve the bias caused by
the graph sampling. Nonetheless, Cluster-GCN provides a
heuristic way to perform sampling in large-scale graphs.

2) Parallelized Graph Sampling: A novel GCN model
based on parallelized graph sampling [55] technique is pro-
posed in this work to train large-scale graphs accurately and
efficiently. Since subgraphs are sampled independently in the
training approach, the authors design a unique data structure
to enable the thread-safe parallelization of the sampler and
parallelize the sampling step on multiple processing units.
Besides, to scale the sampling across samplers, a training
scheduler is proposed to manage subgraphs pool and samplers.
In each iteration, a complete GCN model is built on a sampled
subgraph Gsub for the forward and backward propagations.
Detailed pseudocode of the GCN training with the parallel
method is given in Algorithm 7.

Algorithm 7: GCN training with parallel frontier sam-
pler [55]

Input: Training graph G(V, E ,H(0)); Labels L; Sampler
parameters m,n, η; Parallelization parameters
pinter, pintra

Output: Trained weights {W(l)
self ,W

(l)
neigh|1 ≤ l ≤ L}

.Set of unused subgraphs
1 {Gi} ← ∅

.Iterate over minibatches
2 while not terminate do
3 if {Gi} is empty then
4 for p = 0 to pinter - 1 pardo
5 {Gi} ← {Gi} ∪ SAMPLEG(G,m, n, η, pintra)
6 end
7 Gsub ← Subgraph popped out from {Gi}
8 {V(l)

GS}, {E
(l)
GS} ← GCN construction on Gsub

9 Forward and backward propagation of GCN
10 end
11 end
12 return {W(l)

self}, {W
(l)
neigh}

Algorithm 8: Parallel Dashboard based frontier sam-
pling [55]

Input: Original graph G(V, E); Frontier size m; Budget n;
Enlargement factor η; Number of processors p

Output: Induced subgraph Gsub(Vsub, Esub)
1 d← |E|/|V|

.INValid
2 DB ← Array of R3×(η·m·d) with value INV
3 IA ← Array of R2×(η·m·d+1) with value INV
4 FS ← m vertices selected uniformly at random from V
5 Vsub ← { v | v ∈ FS }
6 FS ← Indexable list of vertices converted from set FS
7 IA[0, 0] ← 0; IA[1, 0] ← True;

.Initialize IA from FS
8 for i = 1 to m do
9 IA[0, i] ← IA[0, i - 1] + deg(FS[i - 1])

10 IA[1, i] ← (i 6= m) ? True : False
11 end

.Initialize DB from FS
12 for i = 0 to m - 1 pardo
13 for k = IA[i] to IA[i + 1]− 1 do
14 DB[0, k] ← FS[i]
15 DB[1, k] ← (k 6= IA[i])?(k - IA[i]) : −deg(FS[i])
16 DB[2, k] ← i
17 end
18 end
19 s← m

. Sampling main loop
20 for i = m to n - 1 do
21 vpop ← pardo POP FRONTIER(DB,p)
22 vnew ← Vertex sampled from vpop’s neighbors
23 if deg(vnew) > η ·m · d− IA[0, s] + 1 then
24 DB ← pardo CLEANUP(DB, IA, p)
25 s← m− 1
26 end
27 pardo ADD TO FRONTIER(vnew,s,DB,IA,p)
28 Vsub ← Vsub ∪ {vnew}
29 s← s + 1
30 end
31 Gsub ← Subgraph of G induced by Vsub
32 return Gsub(Vsub, Esub)

The parallelized graph sampling method proposed in this
work is built based on the frontier sampling method [69].
Subgraphs generated by the frontier sampling method approx-
imate the original graph in respect of numerous connectivity
measures, which makes it possible that the graph sampling
based model can learn accurate embeddings from a graph. To
accelerate the sampling and reduce the time cost of training,
the authors parallelize the frontier sampling under the con-
dition that the subgraph’s quality is well guaranteed. Besides,
the authors design a novel data structure, namely, ”Dashboard”
table, to guarantee thread-safe parallelization of the sampling
step with low complexity. Since the sampler randomly pops
out a node v leveraging a probability distribution which is
based on the degree of nodes and replaces v with a random
neighbor u of v in each iteration, we define the current node v
as a historical one when v is popped out. A detailed algorithm
of parallel dashboard based sampling is given in Algorithm 8,
where FS denotes the frontier set, and DB is a dashboard table
to store information (e.g., probabilities and status) for current
and historical vertices in FS. IA is an auxiliary index array

15

used to clean up the DB to avoid overflow.
To begin with, DB and IA are initialized by FS. A par-

allel scheme is applied to DB to speed up the process of
initialization. Next, for each iteration in the main loop of the
sampling step, a vertex to be popped out next is obtained
from the function ”pardo POP FRONTIER”. After the vertex
vpop is popped out, a vertex vnew is randomly sampled from
vpop’s neighbors. If the degree of the latest sampled vertex
vnew implies that DB needs to be cleaned, the function
”pardo CLEANUP” is executed and reconstitutes DB leverag-
ing the information in IA. Then, DB is updated by the function
”pardo ADD TO FRONTIER”, and the vertex vnew is added
into the Vsub. Finally, a subgraph Gsub is induced by the
Vsub after multiple iterations. Distinctly, multiple subgraphs
are sampled in parallel in one sampling batch. The generation
mechanism of a subgraph satisfies the process that nodes
extension from the randomly selected node set FS that is
shown in Fig. 4. Note that the abovementioned functions can
be executed in parallel on multiple processors to accelerate the
sampling because the subgraphs in this training approach are
sampled independently. Moreover, the authors give the overall
cost of sampling a subgraph with p processors, that is:

(
COSTrand

1− (1− 1/η)p
+

(
4 +

3

η − 1

)
d ·COSTmem

p

)
· (n−m). (27)

Based on the assumption that COSTrand = COSTmem

in Equation (27), the authors have proven that for any given
ε > 0, a lower bound of speedup of the sampling algorithm is
p

1+ε , ∀p ≤ εd(4 + 3
η−1)− η.

The proposed subgraph-based sampling method in this par-
allelized training approach has the following characteristics.
• Parallelizable. Both inter-subgraph and intra-subgraph

parallelization methods are used in GCN training. For inter-
subgraph parallelization, subgraphs are sampled independently
on multiple processors in parallel with the help of the
scheduler. For intra-subgraph parallelization, each sampler (an
instance of sampling) can be parallelized by exploiting the
parallelism of the proposed functions in the main loop of
sampling in Algorithm 8.
• Scalable. The cost of sampling a subgraph achieves a

near-linear speedup with the number of processing units in
terms of scalability. Furthermore, the speedup of sampling is
scalable with the number of samplers under the condition that
the number of processors is fixed in the experimental platform.
The authors also experimentally demonstrate the scalability
in respect of the depth of GCN model, which achieves a
significant training speedup relevant to the number of cores.

3) GraphSAINT: Motivated by training GCN models on
large-scale graphs, GraphSAINT [53] proposes a graph sam-
pling based inductive method for efficient training of GCN.
GraphSAINT first uses a proper-designed sampler to estimate
the probability of nodes and edges being sampled, respectively.
In each batch, an appropriately connected subgraph is sampled
according to the sampler. Then, GraphSAINT builds a full
GCN on the sampled subgraph and executes the training
process. Finally, the weights of the model are updated after the
forward and backward propagations. Especially, GraphSAINT
leverages normalization techniques to address the bias issue in-

troduced by the graph sampling method. Detailed pseudocode
of the training algorithm is given in Algorithm 9, here we
mainly focus on the sampling method and the normalization
techniques.

Algorithm 9: Training algorithm of GraphSAINT [53]
Input: Training graph G(V, E ,X); label Ȳ ; Sampler

SAMPLE
Output: GCN model with trained weights

1 Pre-processing: Setup SAMPLE parameters; Compute
normalization coefficients α, λ.

2 for each minibatch do
3 Gs(Vs, Es) ← Sampled sub-graph of G according to

SAMPLE
4 GCN construction on G.
5 {yv | v ∈ Vs} ← Forward propagation of {xv | v ∈ Vs},

normalized by α
6 Backward propagation from λ-normalized loss

L(yv, ȳv). Update Weights.
7 end

The subgraph-based sampling methods proposed in Graph-
SAINT are alternative in training. The authors put forward two
intuitions: 1)Nodes influential to each other should be sampled
in the same subgraph. 2)The probability of each edge being
sampled cannot be neglected. The above two intuitions will
undoubtedly introduce bias into training. GraphSAINT there-
fore optimizes sampling by considering the bias explicitly.

Firstly, GraphSAINT proposes an unbiased estimator ζ(l+1)
v

of the aggregated embedding in (l + 1) layer under the
condition that the embedding is learned independently in each
layer.To accurately perform sampling, GraphSAINT leverages
an optimal edge sampler to reduce the variance of the unbiased
estimator ζ

(l)
v . Assuming that m edges are independently

sampled, the optimal probability pe for edges that are sampled
to minimize the sum of variances of ζ in all dimensions is:

pe =
m∑

e′ ‖
∑
l b(l)
e′ ‖
‖
∑
l

b(l)
e ‖, (28a)

b(l)
e = Ãv,ux̃

(l−1)
u + Ãu,vx̃

(l−1)
v . (28b)

Here, e denotes an edge between node u and v, , and Ãv,u
is defined as a scalar which takes an element from the nor-
malized adjacency matrix. Based on the given constraints, the
optimal probability pe can be derived by the Cauchy-Schwarz
inequality. Since computing x̃

(l−1)
v in b(l)

e will increase the
complexity of the sampling, the authors ignore the x̃

(l)
v to

make pe only dependent on the topology of the graph, that
is:

pe ∝ Ãv,u + Ãu,v =
1

deg(u)
+

1

deg(u)
. (29)

GraphSAINT also proposes two random walk based sam-
plers for multi-layer GCN by representing L-layer GCN as
one-layer GCN with edge weights. Detailed pseudocode of the
samplers integrated in GraphSAINT is given in Algorithm 10.
Obviously, the generation mechanism of a subgraph in the
random walk based samplers satisfies the process of nodes
extension from the randomly selected root nodes, while as
for edge samplers, it samples edges based on pre-computed

16

probability and adds them to Es. And a subgraph is generated
by a set of nodes Vs that are end-points of edges in the sampled
edge set Es.

Algorithm 10: Graph sampling algorithms by Graph-
SAINT [53]

Input: Training graph G(V, E); Sampling parameters; node
budget n; edge budget m; number of roots r; random
walk length h

Output: Sampled graph Gs(Vs, Es)
. Node sampler

1 function NODE(G, n)

2 P(v) :=‖ Ã:,v ‖2 /
∑
v′∈V ‖ Ã:,v′ ‖2

3 Vs ← n nodes randomly sampled (with replacement) from V
according to P

4 Gs ← Node induced subgraph of G from Vs
5 end function

. Edge sampler(approximate version)
6 function EDGE(G,m)

7 P((u, v)) := (1
deg(u)

+ 1
deg(v)

)/
∑

(u′,v′)∈ε(
1

deg(u′) + 1
deg(v′))

8 Es ← m edges randomly sampled (with replacement) from E
according to P

9 Vs ← Set of nodes that are end-points of edges in Es
10 Gs ← Node induced subgraph of G from Vs
11 end function

. Random walk sampler
12 function RW(G, r, h)

13 Vroot ← r root nodes sampled uniformly at random (with
replacement) from V

14 Vs ← Vroot
15 for v ∈ Vroot do
16 u← v
17 for d = 1 to h do
18 u← Node sampled uniformly at random from u’s

neighbor
19 Vs ← Vs ∪ {u}
20 end
21 end
22 Gs ← Node induced subgraph of G from Vs
23 end function

. Multi− dimensional random walk sampler
24 function MRW(G, n, r)
25 VFS ← r root nodes sampled uniformly at random (with

replacement) from V
26 Vs ← VFS
27 for i = r + 1 to n do
28 Select u ∈ VFS with probability

deg(u)/
∑
v∈VFS

deg(v)

29 u′ ← Node randomly sampled from u’s neighbor
30 VFS ← (VFS \ {u}) ∪ {u′}
31 Vs ← Vs ∪ {u}
32 end
33 Gs ← Node induced subgraph of G from Vs
34 end function

The probability-based edges sampling method is similar to
layer-wise sampling methods [49–51]. The common ground
between them is that a fixed number of nodes (edges) are
sampled according to the pre-computed probability. Differ-
ently, the edge sampler in GraphSAINT forms a subgraph from
the node set relevant to the sampled edges, while layer-wise
sampling methods directly construct GCN training on multi-

layer sampled nodes.
The proposed subgraph-based sampling method in Graph-

SAINT has the following characteristics.
• Precise. In GraphSAINT, nodes that appear with a

higher effect on each other are more likely to be sampled to
form a subgraph, ensuring better connectivity between layers.
Besides, GraphSAINT proposes normalization techniques to
eliminate the bias introduced by graph sampling explicitly.
• Conditional. The analysis of the normalization technique

and sampling probability is under the condition that the
embedding of each layer is learned independently, which is
similar to the treatment of layers in some layer-wise sampling
methods [49, 50].
• Flexible. As shown in Algorithm 10, GraphSAINT can

integrate many other graph sampling methods. On the other
hand, the graph sampling based training framework used in
GraphSAINT is also applicable to many other popular variants
of GCN.

4) RWT: Ripple Walk Training (RWT) [54] is a subgraph-
based training framework for large and deep GNNs (GCN &
GAT). In this framework, a ripple walk sampler is integrated
in RWT to sample high-quality subgraphs for computation
of mini-batch gradient. In each iteration, the model’s weight
is updated according to the gradient. RWT is designed to
simultaneously solve some critical problems in many current
GNNs, namely, neighbor explosion, node dependence, and
over-smoothing. The first two problems can be well solved by
the subgraph-based sampling method, and the over-smoothing
problem in deep GNNs can be handled by applying RWT.

The subgraph-based sampling method integrated in RWT
is designed to sample particular subgraphs with two charac-
teristics: randomness and connectivity. For randomness, each
node in a graph is sampled with the same probability, and
each node’s neighbors are chosen with the same probability.
For connectivity, each subgraph is required to have high
connectivity to maintain the connectivity in the original graph.

Algorithm 11: Ripple Walk Sampler [54]
Input: Target graph G = (V, E); expansion ratio r; target

subgraph size S
Output: Subgraph Gk

1 Initiate Gk = (Vk, Ek) with Vk = ∅
2 Randomly select the initial node vs, add vs into the Gk
3 while |Vk| < S do
4 NS = {n|(n, j) ∈ E , j ∈ Vk, n /∈ V} /* Get neighbor

nodes set of Vk */
5 Randomly select r of nodes in NS, add them into the Vk
6 end
7 return Gk

To begin with, a random node vs is chosen to initialize the
subgraph Gk and added into the node set Vk of Gk. Then,
Vk’s neighbor node set NS is required for further selection.
For each node in Vk, a certain percentage of its neighbors
are randomly sampled according to the ratio r (herein, r is
set to 0.5 by the authors to denote 50%) and added into
Vk in every expansion of the subgraph. Finally, a subgraph
that includes S nodes is returned after multiple expansions.
Detailed pseudocode of the ripple walk sampler is given in

17

TABLE VI: Summary of the comparisons between subgraph-based sampling methods
Method Subgraph Generation Time-consuming Part Evaluation

Cluster-GCN [52] Graph Clustering Algorithm Clustering Heuristic

Parallelized Graph Sampling [55] Parallel Frontier Sampler Dashboard Cleanup Parallelizable

RWT [54] Random Neighbor Expansion Neighbor Traversal Empirical

GraphSAINT-EDGE [53] Probabilistic Edge Sampler Edge Sampling2 Provable

GraphSAINT-RW [53] Random Walk Sampler Neighbor Traversal Empirical

Note2: The complexity of the GraphSAINT-EDGE given by the authors is O(m), which excludes the cost of probability
computation and subgraph induction.

TABLE VII: Comparison of testing micro F1 score between subgraph-based sampling methods
Method3 PPI Flickr Reddit Yelp Amazon

Cluster-GCN [52] 0.875±0.004 0.481±0.005 0.954±0.001 0.609±0.005 0.759±0.008

Parallelized Graph Sampling [55] 0.696±0.004 0.494±0.003 0.960±0.002 0.622±0.004 0.771±0.001

GraphSAINT-EDGE [53] 0.981±0.007 0.510±0.002 0.966±0.001 0.653±0.003 0.807±0.001

GraphSAINT-RW [53] 0.981±0.004 0.511±0.001 0.966±0.001 0.653±0.003 0.815±0.001

Note3: The authors of RWT did not give out the F1 micro score or the available code of the project in their paper. Therefore, the test result
of RWT is empty in this table.

Algorithm 11. A subgraph sampled in each batch is generated
by an increasingly expanding node set. The generation process
of a subgraph is similar to the neighbor sampling process in
GraphSAGE [35]. Differently, GraphSAGE samples a fixed
number of neighbors for each node in the training graph, while
RWT simultaneously extends r of neighbors for multiple nodes
in Vs and gradually expands the scope of sampled neighbor
set for subgraph generation. Taking the form of the formula in
Equation 11, we argue that the subgraph sampling process in
RWT can be given by modifying the typical form of node-wise
sampling:

NS(k) = GetAllNeighbors
(
V(k)

)
, (30a)

V(k) = Sampling(k)
(
NS(k), P, r

)
, (30b)

subgraph← Union
{
V(k)

}
. (30c)

Here, the probability P obeys uniform distribution, and r
is set to 0.5 to ensure half percent of neighbors of each node
are sampled for extension. The neighbor extension stops when
the size of Vs is not less than the preset size of the target
subgraph. By repeating the above process, multiple subgraphs
are sampled for training GCN.

The proposed subgraph-based sampling method in RWT has
the following characteristics.
• Elastic. Both the size M of a mini-batch and the size S of

a sampled subgraph can be preset before training. Therefore,
the mini-batch training using subgraphs is well controlled and
can be designed elastically.
• Alternative. Ripple walk sampler shows advantages in

maintaining the connectivity and randomness of the subgraph.
The ripple walk sampler is equivalent to Breadth First Search
(BFS) when r is close to 0. Differently, the ripple walk sampler
randomly selects the neighbors of nodes in Vs to guarantee
the randomness. Meanwhile, each expansion of the subgraph

in ripple walk sampler is based on the neighbors of nodes in
Vk, which guarantees the connectivity.

5) Comparisons within the category: In the preceding sub-
sections, we have introduced typical subgraph-based sampling
methods. Distinctly, all these methods sample one or more
subgraphs in each sampling batch based on different mech-
anisms. To summarization and analysis, we compare these
methods from multiple perspectives and explain the differences
between these methods in a Q&A manner. A summary of the
comparisons is given in TABLE VI.
• How do they work?
An understanding of the mechanism is the primary work

for analyzing the availability. Based on the common ground
that all these methods output subgraphs leveraging the given
input, we therefore focus on how a subgraph is generated.
Cluster-GCN uses a graph clustering algorithm to partition
the full graph into multiple clusters and form a subgraph with
some randomly chosen clusters. Parallelized Graph Sampling
modifies the frontier sampling algorithm to an approach that
is executed in parallel. In RWT, a subgraph is generated by
neighbor searching and sampling under the condition that an
initial node is randomly chosen as a root node. Similarly,
GraphSAINT-RW uses a random walk strategy to sample
neighbors of a node in the root node set and generate sub-
graphs leveraging the selected neighbors and the root node set.
The differences in sampling between RWT and GraphSAINT-
RW are the root node set’s initial capacity and neighbor
sampling strategy. GraphSAINT-EDGE samples edges based
on a pre-computed probability. In sum, subgraphs generated in
all these above works are commonly induced from the nodes
and edges which are selected in a random or probability-based
manner.
• Can they be faster?
Efficiency is a crucial metric to quantize the execution of a

method. Although all methods have been proven to be avail-
able in their papers, we hope that the sampling process in these
methods can be further accelerated by reducing computation

18

cost. Intuitively, we focus on the most time-consuming part of
these methods. In Cluster-GCN, graph clustering consumes a
lot of time due to the complexity of the original graph. In Par-
allelized Graph Sampling, the dashboard’s cleanup is proven
to be the most time-consuming process by the authors. In
RWT and GraphSAINT-RW, the sampling process is based on
neighbor searching and selecting. Therefore, neighbor traversal
causes non-trivial computation overhead. In GraphSAINT-
EDGE, edge sampling is the heaviest part. In this way, a
potential idea for accelerating sampling is to reduce the cost
of the most time-consuming operation. For some operations
which are only executed once, such as graph clustering and
probability computation, we consider performing them in the
pre-processing and leave the resource to frequently executed
operations. For some operations which are time-consuming
and unavoidable, such as dashboard cleanup, we can add some
unique mechanisms to reduce the number of occurrences of
these operations. Herein, since we only focus on the impact on
the sampling process, the impact on the entire training should
also be taken into consideration when adding new mechanisms
to a sampling method.
• How to evaluate?
Evaluation of the sampling method depends on multiple

metrics. Accuracy is a fundamental metric for evaluation.
Since all these works have experimentally demonstrated their
methods to be accurate, we summarize the reported results in
TABLE VII. Moreover, scalability is a non-negligible metric
to evaluate a method’s performance, especially when adopting
the model on large datasets. It has been proven that the mini-
batch training approach is more flexible and scalable than the
full-batch approach. And sampling methods are also supposed
to follow a mini-batch manner to maintain this characteristic
of training. Last but not least, we evaluate a method based on
its unique points. For example, Cluster-GCN uses a heuristic
method to perform the sampling in large-scale graphs. We
highlight these unique points so that readers can quickly get
through to the mechanism of a method.

D. Heterogeneous sampling method

Heterogeneous sampling method is a novel strategy to
handle the heterogeneity in graphs and accelerate the training.
In this category of sampling methods, the main target is to per-
form sampling among various types of nodes reasonably and
efficiently. Typically, a heterogeneous graph includes nodes
and edges in different types. For example, we take the form
of the definition of the heterogeneous graph given in work
[57], that is, G = (V, E ,OV ,RE). V and E denote sets that
consist of various types of nodes and edges, respectively. OV
represents node types that correspond to nodes in V , and RE
represents edge types that correspond to edges in E . Generally,
relations between nodes in G are complex and imbalanced,
which is reflected in that the number of neighbors of each
node is different, and one single node can have different types
of neighbors with an unbalanced number. In this situation,
imbalanced neighbors’ numbers in different types bring about
a significant challenge in sampling neighbors and capturing
neighborhood representation.

Therefore, it is critical for a sampling method to distinguish
different types of nodes and compute the effect. We formally
divide the sampling process for heterogeneous graphs into two
phases. In phase one, the effect of different types of neighbors
on the target node is computed to capture the importance
and influence in neighborhood. We modify the typical format
of sampling in Equation 7 and propose a general form of
heterogeneous sampling methods:

E(v) = Effect(N(v),ON(v), E(v),RE(v)), (31a)

SN (k)(v) = Sampling(k)
(
E(v), N(v), R(k)

)
. (31b)

Here, N(v) and E(v) denote neighbor set and edge set of node
v, respectively. ON(v) and RE(v) denote sets that consist of
node types and edge types, respectively. E(v) is a set that
stores the effect of different types of neighbors on node v.
Based on the pre-computed E(v), sampling is performed for
each node v to select different types of neighbors orderly. And
R is a restrict factor in guaranteeing a balanced distribution
of different types of neighbors in terms of number.

Since heterogeneous sampling methods generally vary in
mechanism especially in capturing neighborhood representa-
tion, we thereby compare these methods in the last part of
this section to emphasize the differences and commonness
between the heterogeneous sampling methods. Next up, we
will introduce some typical works leveraging the heteroge-
neous sampling method in detail and highlight each method’s
characteristics in the following subsections.

1) Time-related sampling: Time-related sampling [56] is
a heterogeneous sampling method proposed in a GCN-based
Anti-Spam (GAS) model for sampling comments in a time-
related manner. Since the spam comment on the online shop-
ping website will badly affect consumers’ buying decisions,
the GAS model is proposed to identify adversarial actions
and filter spam comments. The execution of the GAS model
is based on two graphs, that is, a heterogeneous graph and a
homogeneous graph. The heterogeneous graph is a directed bi-
partite graph, namely Xianyu Graph, where users and items are
abstracted as nodes while comments are abstracted as edges
between a user and a commented item. The homogeneous
graph includes nodes abstracted by comments. The two graphs
capture the local context and global context of a comment,
respectively. And the GAS model can therefore identify spam
comments and alleviate the impact of adversarial actions by
mixing the local and global context of comments.

To identify the validity of a comment, the authors sample
neighbors of the associated nodes (user and item) on both
sides of the edge (comment), leveraging the time-related
sampling method. As illustrated in Fig. 5, several comments
form a batch for identification. To obtain the embedding of
the comment e0, the embeddings of user u0 and item i0
are primarily required. Specifically, the time-related sampling
method samples M comments whose published times are
closest to the e0 to compute the embedding of i0, for example,
e3 and e5. In this way, the embedding of i0 is computed
by aggregating the embedding from {e3, u1} and {e5, u3}.

19

The computation of the embedding of u0 is similar. Note
that the authors use placeholders to pad the samples when
the number of alternative comments is less than M . The
computation of the padded placeholders is ignored in training.
Typically, time-related sampling similarly corresponds to the
two-phase general sampling process defined in Equation 31
but is simplified in distinguishing neighbors since they only
sample edges (comments) in the Xianyu Graph.

Batch

i0
e0

e1e1

e2e2

e4e4

e3e3

e5e5

u0u0

u1u1

u2u2

u3u3

i1

e6e6

Fig. 5: Illustration on a case of time-related sampling.

The proposed heterogeneous sampling method in GAS has
the following characteristics.
• Time-related. The time-related sampling method samples

edges abstracted from comments based on the published time.
In this way, the closest M comments in the aspect of time are
sampled for aggregating embeddings of users or items.
• Reasonable. Compared with randomly sampling neigh-

bors, the time-related sampling method samples the most
related comments in terms of the publish time instead of
random neighbors since the published comments have a more
significant impact on the comment to be identified in a short
time. Generally, comments on an item may be sparse. There-
fore, when the sampling size M is greater than the number
of alternative comments, the time-related sampling method
uses placeholders to pad the samples instead of sampling with
replacement. And the padded placeholders’ computation is
ignored to maintain the neighborhood distribution, which also
reduces the cost in terms of training time and storage.

2) HetGNN: HetGNN [57] is a heterogeneous graph neural
network model to handle the issue of the structural information
in heterogeneous graphs and attributes or contents correlated
to each node. The authors propose three critical challenges
faced with heterogeneous graphs: the strategy to sample highly
related neighbors in a heterogeneous distribution, the method
to design an encoder for all types of nodes with heterogeneous
contents, and the approach to aggregate information of het-
erogeneous nodes with considering the influence of the node
type. Herein, we mainly focus on the heterogeneous sampling
method used in HetGNN.

To solve the issue of heterogeneous neighbor sampling,
HetGNN proposes a heterogeneous sampling method based
on random walk with restart (RWR). Specifically, the het-

erogeneous sampling method starts traversal among nodes
in a random walk manner. Assuming that u is an arbitrary
intermediate node in the traversal while v is the start point, and
the target is to get a set of nodes RWR(v) with a fixed length
N . For each walking step, the heterogeneous sampling method
performs one of the following operations with probability p:
samples the neighbors of u and adds them into RWR(v);
directly returns to the start point. The random walk process
ends up with returning the RWR(v) with length N , and it is
ensured that all types of nodes can be sampled in the random
walk process. Next, the second sampling based on the sampled
nodes in RWR(v) is to group the most related neighbors of
v by the node type. The authors sample kt neighbors in type
t according to the visit frequency and take them as the most
related neighbors of v in type t.

Especially, the heterogeneous sampling method performs a
neighbor traversal and sifting based on a restartable random
walk before sampling neighbors. Since neighbors in RWR(v)
are sampled according to the visit frequency, we suppose that
RWR(v) includes multiple identical neighbors for recording
the visit frequency. We abstract the sampling process as:

N(v) = RWR(V, p), (32a)

E(v) = Effect(N(v),ON(v)), (32b)

SN(v) = Sampling(k) (E(v), N(v), kt) . (32c)

The proposed heterogeneous sampling method in HetGNN
has the following characteristics.
• Restricted. Two principles restrict the process of ran-

dom walk in the heterogeneous sampling method. Firstly, the
sampling size of neighbors is restricted to a fixed number.
Secondly, the number of neighbors in each type is restricted
to be reasonable, ensuring all types of nodes are sampled
ultimately.
• Frequency-based. The second phase of the heterogeneous

sampling method samples the top kt neighbors in type t that
are most frequently visited in RWR(v). After this, the selected
neighbors are grouped by the type of nodes to make the
aggregate efficient since nodes in the same type include the
same content features.

3) HGSampling: Heterogeneous Mini-Batch Graph Sam-
pling (HGSampling) is a heterogeneous sampling method
proposed in Heterogeneous Graph Transformer (HGT) [58]
to train web-scale heterogeneous graphs efficiently. Specifi-
cally, HGT leverages heterogeneous graphs’ meta-relations to
parameterize weight matrices for several critical steps: het-
erogeneous mutual attention, heterogeneous message passing,
and target-specific aggregation. To further handle the graph
dynamics, a relative temporal encoding technique is designed
to simulate dynamic dependencies for assisting HGT. Last but
not the least, the authors use HGSampling to optimize the
training in terms of scalability, which makes it possible that
all the proposed GNN models, including HGT, can train het-
erogeneous graphs in an arbitrary size by using HGSampling.

20

Based on the fact that the number of each type of nodes
and the degree distribution are dramatically different in hetero-
geneous graphs, HGSampling solves the issue in a balanced
approach. A detailed procedure of HGSampling is given in
Algorithm 12. Firstly, HGSampling initializes the sampled
node set NS and a node budget B that is used to store different
types of nodes separately. Next, for each node t in NS,
HGSampling adds all direct neighbors of t to B and updates
corresponding budgets in B (that has stored these neighbors)
with the normalized degree of t. Then, HGSampling computes
the sampling probability prob[τ] for each node of each type
using the budget. Based on prob[τ], HGSampling samples n
nodes in type τ and updates B by swapping out the already
sampled nodes. Finally, after the output node set OS is padded
by sampled nodes, HGSampling reconstructs the adjacency
matrix with the sampled nodes. The abovementioned sampling
process repeats L times to obtain a sampled subgraph that is
dense and includes a similar number of nodes in different
types. Compared with the general heterogeneous sampling
process in Equation 31, HGSampling uses the budget B to
store all direct neighbors of OS and dynamically updates B
and the sampled neighbor set OS in each sampling batch.
The effect on a node is quantized in the form of the sampling
probability. We thereby abstract the execution process of
HGSampling as:

B = GetAllNeighbors(OS), (33a)

P (k−1)[τ] = Convert2Prob(B), (33b)

OS(k)[τ] = Sampling(k)
(
B,P (k−1)[τ]

)
. (33c)

The proposed heterogeneous sampling method in HGT has
the following characteristics.
• Balanced. The heterogeneity of graphs is distinctly re-

flected in the number and degree distribution among all types
of nodes. HGSampling samples a similar number of nodes for
each type to maintain a balanced sampling result.
• Probability-based. In the prior update of the budget B,

HGSampling adds the normalized degree of a node to its
neighbors stored in corresponding budgets, which alleviates
the impact by some high degree nodes. In this way, nodes
with higher value in the corresponding budgets are given a
higher probability of being sampled.
• Subgraph-induced. In HGSampling, a subgraph is gener-

ated by repeating the main procedure of sampling for L times.
The induced subgraph with L depth is adequately dense due
to importance sampling and normalization technique, which is
beneficial to variance reduction.

4) Text Graph Sampling: Text Graph Sampling is a het-
erogeneous sampling method proposed in Text Graph Trans-
former (TG-Transformer) [59] to construct the mini-batch for
learning node representations. Since some GCN-based models
for classifying texts and training heterogeneous text graphs
have trouble preserving scalability and heterogeneity, the au-
thors propose the TG-Transformer to address these issues.
Specifically, TG-Transformer uses the text graph sampling to

Algorithm 12: Heterogeneous Mini-Batch Graph Sam-
pling [58]
Require: Adjacency matrix A for each
〈τ(s), φ(e), τ(t)〉 relation pair; Output node Set OS;
Sample number n per node type; Sample depth L.

Ensure: Sampled node set NS; Sampled adjacency
matrix Â.
NS ← OS // Initialize sampled node set as output node set.
Initialize an empty Budget B storing nodes for each node

type with normalized degree.
for t ∈ NS do

Add-In-Budget(B, t, A,NS) // Add neighbors of t to B.
end
for l ← 1 to L do

for source node type τ ∈ B do
for source node s ∈ B[τ] do

prob(l−1)[τ][s]← B[τ][s]2

‖B[τ]‖22
// Calculate sampling

probability for each source node s of node
type τ .

end
Sample n nodes {ti}ni=1 from B[τ] using
prob(l−1)[τ].

for t ∈ {ti}ni=1 do
OS[τ].add(t) // Add node t into Output node

set.
Add-In-Budget(B, t, A,NS) // Add neighbors

of t to B.
B[τ].pop(t) // Remove sampled node t from

Budget.
end

end
end
Reconstruct the sampled adjacency matrix Â among the

sampled nodes OS from A.
return OS and Â

reduce the computation cost and make the model scalable for
a large-size corpus. The authors then leverage two structural
encodings to capture the nodes’ types and structure of the text
graph and jointly add the information as the model’s input.
The transformer can thereby learn the target node embedding
by aggregating the information from mini-batches generated
by sampling.

Text graph sampling constructs mini-batches on a hetero-
geneous text graph G = (U ,V, E ,F), where nodes U and
V denote words and documents, respectively, while edges E
and F represent word-document edges and word-word edges,
respectively. Firstly, the intimacy matrix S of G is computed
by using the PageRank algorithm [70] in the following form:

S = α ·
(
I − (1− α) · Ā

)−1
, (34)

where parameter α is set as 0.15, and the normalized matrix
Ā = D−

1
2AD−

1
2 . For each document node in V , text graph

sampling forms its context graph by sampling the most inti-
mate k word nodes as neighbors. For each word node U , text
graph sampling forms its context graph by sampling totally
the most intimate k neighbors, where the document node and
word node each occupy a certain proportion. Detailedly, for
each word node ui ∈ U , most intimate k · rw(ui) and rd(ui)
neighbors in the type of word and document are respectively

21

TABLE VIII: Summary of the comparisons between heterogeneous sampling methods
Method Sampling Target Sampling Condition Extra Trick

Time-related Sampling [56] Comments (Edges)
Sample the Closest Comments

in terms of Publish Time
Use of Padded Placeholders

HetGNN [57] Nodes in (random) All Types
Sample the Most Frequently

Visited Nodes in RWR(v)
Random Walk with Restart

Grouping by Types

HGSampling [58] Nodes in (ordered) All Types
Sampling Probability Various

in Different Node Types
Budget Stores

Nodes by Types

Text Graph Sampling [59] Document Nodes and Word Nodes
Sample the Most Intimate

Nodes by Types
Strategy to Calculate
the Intimacy Matrix

sampled. The proportionality coefficients ·rw(ui) and k·rd(ui)
can be computed as:

rw(ui) =
|F(ui)|

|F(ui)|+ |E(ui)|
, (35a)

rd(ui) =
|E(ui)|

|F(ui)|+ |E(ui)|
, (35b)

where F(ui) and E(ui) denote different types of edge sets
that associated with node ui with especial intimacy score
requirement. Obviously, text graph sampling satisfies the form
of general heterogeneous sampling in Equation 31. Besides,
it explicitly considers the sampling mechanism among word
nodes and document nodes by applying proportional division.

The proposed heterogeneous sampling method in TG-
Transformer has the following characteristics.

• Intimacy-based. Text graph sampling samples the most
intimate k neighbors to form the context graph for each docu-
ment node and word node. And each mini-batch is constructed
based on sampled subgraphs (context graphs), which improves
the scalability of the model when learning a large-size corpus.
• Categorized. Since nodes in the heterogeneous text graph

are categorized into two types, text graph sampling performs
different flows according to the node type. For document
nodes, the most intimate word nodes are directly sampled to
form the context graph. For word nodes, the most intimate
neighbors that include a mixture of word and document nodes
are proportionally sampled to form the context graph.

5) Comparisons within the category: In the preceding
subsections, we have introduced some typical heterogeneous
sampling methods. It is explicit that the common ground
of these methods is to handle the heterogeneity in graphs,
especially heterogeneous neighbor connection and distribution.
Since most heterogeneous sampling methods are used in
application-driven scenarios, the experiments and evaluations
can be quite diverse. Herein, we focus on the differences in
these methods’ mechanisms instead of directly comparing the
evaluation results. And we explain the differences between
these methods in a Q&A manner. A summary of the compar-
isons is given in TABLE VIII.
• How do they work?
To analyze the availability of a sampling method, we pay

special attention to some aspects in the sampling process,

that is, the sampling target and the sampling condition. Time-
related sampling method samples edges from the heteroge-
neous graph, where edges in the graph are abstracted by
comments between users and items. The sampling method
proposed in HetGNN samples nodes in all types randomly
as the neighbors of v and stores them in RWR(v), while
HGSampling samples nodes in each type orderly with the help
of the budget B. Text graph sampling samples document nodes
and word nodes as neighbors to form a context graph.

As for the efficiency, it is unreasonable to sample neighbors
randomly from a graph due to its heterogeneity. Therefore, the
sampling condition then highlights its role in the sampling
process. In time-related sampling, the closest comments in
terms of the publish time are sampled as neighbors of the
target one. In HetGNN, the most frequently visited nodes
are sampled as neighbors of the node v. In HGSampling, the
sampling probability is pre-computed according to correspond-
ing budgets in B, which are based on the neighbors and the
normalized degree. In text graph sampling, the most intimate
nodes are sampled as neighbors for a document or word node.
Distinctly, all these heterogeneous sampling methods follow a
common idea: the most related neighbors are sampled with a
higher probability.
• What’s the special?
The scalability is a critical indicator to estimate the model

performance. All of these sampling methods execute in a mini-
batch manner, which benefits the execution of subsequent
steps, e.g., aggregation and gradient update, in the training
process. Besides, there are some extra tricks: time-related
sampling uses placeholders to pad the samples when the
number of alternative comments is less than the required
sampling size. This trick helps to maintain the neighborhood
distribution and lower the computation cost. HetGNN lever-
ages a restartable random walk strategy to select the initial
neighbor set for further sampling. And the grouping trick
also helps the aggregation. HGSampling designs an efficient
budget B, and B can not only store the neighbors by type
but also be used in computing the sampling probability. Text
graph sampling computes the intimacy matrix leveraging the
PageRank algorithm novelly. Obviously, all these methods
have some special points to assist the original sampling.

IV. COMPARISON AND ANALYSIS

The previous section has clearly explained the mechanisms
of sampling methods and put forward detailed comparisons

22

TABLE IX: Summary of the characteristics of sampling methods
Method Characteristic

GraphSAGE [35] Heuristic, Stochastic, Storage-friendly
PinSage [44] Conditional, Storage-friendly

SSE [47] Asynchronous, Alternating
VR-GCN [48] Time-saving, Approximated
FastGCN [49] Fast, Possibly-sparse
AS-GCN [50] Adaptive, Efficient, Empirical
LADIES [51] Layer-dependent, Importance-based

Cluster-GCN [52] Heuristic, Scalable
Parallelized Graph Sampling [55] Parallelizable, Scalable

GraphSAINT [53] Flexible, Precise, Conditional
RWT [54] Elastic, Alternative

Time-related sampling [56] Time-related, Reasonable
HetGNN [57] Restricted, Frequency-based

HGSampling [58] Balanced, Probability-based, Subgraph-induced
Text Graph Sampling [59] Intimacy-based, Categorized

TABLE X: Summary and classification of descriptions of the characteristics
Category Characteristic Description

Computation-related

Adaptive, Elastic,
Alternative, Flexible

Could benefit the method by providing more
flexible and appropriate sampling configuration

Time-saving, Fast
Could benefit the method by reducing

the sampling size
Approximated,

Empirical
Could benefit the method by providing an

alternative approach for hard-to-compute metrics
Parallelizable,

Efficient
Could benefit the method by leveraging

special mechanisms in sampling or training
Possibly-sparse,

Stochastic
Could deteriorate the method by introducing

unessential or redundant computation

Storage-related

Storage-friendly,
Scalable

Could benefit the method by reducing
the storage requirement

Reasonable
Could benefit the method by avoiding

unimportant data for storage

Layer-dependent
Could weaken the efficiency of the method

by introducing extra data for storage

within each category for highlighting the similarities and
differences. In this section, we adequately compare the intro-
duced sampling methods together for summary and analysis.

A. Comparison in characteristics

In the previous section, we have highlighted the character-
istics of each sampling method for emphasizing similarities
and differences between diverse sampling methods. Herein,
we provide a summary in TABLE IX for characteristics of the
introduced sampling methods. Most of the characteristics are
unique to each sampling method and reflect the pros and cons
of a sampling method from the computation or storage aspect.
Thereby, we summarize in TABLE X for descriptions about
how the characteristics affect a method from the perspective
of computation or storage.

B. Comparison in applications

We divide the applications into two categories, that is,
general applications and specific applications. The general

application is the basic usage of a method, where the trained
model can be directly used in node classification and pre-
diction. The specific application is the particular usage or
scenario, which varies with different methods. Besides, in
most works, the specific application usually corresponds to
the target problem of a method. For instance, time-related
sampling is designed to alleviate adversarial actions and can
be applied to an industrial-level anti-spam system. A summary
of these applications is shown in TABLE XI.

C. Comparison in experiments

We conduct extensive experiments of vanilla GCN and
various sampling methods on common benchmark datasets
(which are introduced in TABLE II) and exhibit the time-
accuracy plots for comparison and analysis. As HetGNN [57]
and HGSampling [58] place emphasis on different applica-
tions of the heterogeneous graph respectively and have not
conducted experiments on common benchmark datasets, we
do not consider conducting experiments for the two methods

23

TABLE XI: Summary and classification of the applications of sampling methods
Application Method

General Application
Node Classification

and Prediction

GraphSAGE [35], SEE [47], VR-GCN [48], FastGCN [49], RWT [54],
AS-GCN [50], LADIES [51], Cluster-GCN [52], HetGNN [57],

GraphSAINT [53], Parallelized Graph Sampling [55]

Specific Application

Variance Reduction
and Elimination

VR-GCN [48], AS-GCN [50], LADIES [51],
FastGCN [49], GraphSAINT [53]

Anti-spam
Syatem

Time-related Sampling [56]

Text
Classification

Text Graph Sampling [59]

Prediction and
Disambiguation

HGSampling [58]

Recommendation
and Clustering

HetGNN [57]

Recommender
System

PinSage [44]

Algorithm
Learning

SSE [47]

TABLE XII: Available links and the corresponding models
Method Available Link Commit

GCN [21] https://github.com/tkipf/gcn 39a4089

GraphSAGE(Cora&Pubmed) [35] https://github.com/williamleif/graphsage-simple d3105e5

GraphSAGE(PPI&Reddit) [35] https://github.com/williamleif/GraphSAGE a0fdef9

VR-GCN [48] https://github.com/thu-ml/stochastic gcn da7b781

FastGCN [49] https://github.com/matenure/FastGCN b8e6e64

AS-GCN [50] https://github.com/huangwb/AS-GCN 5436ecd

LADIES [51] https://github.com/acbull/LADIES c10b526

Cluster-GCN [52] https://github.com/google-research/google-research/tree/master/cluster gcn 0c1bbe5

Parallelized Graph Sampling [55] https://github.com/ZimpleX/gcn-ipdps19 a460035

GraphSAINT [53] https://github.com/GraphSAINT/GraphSAINT 6126102

HetGNN [57] https://github.com/chuxuzhang/KDD2019 HetGNN 2f020ac

HGSampling [58] https://github.com/acbull/pyHGT e5ababa

separately for lacking the control group. Besides, we record
some significant factors in GCN training to provide a de-
tailed performance comparison, including validation accuracy,
total epoch number and time cost before convergence, the
proportion of sampling in the total time cost (excluding the
time of loading data), and the proportion of model training
(without regard to model evaluation) time in the total time
cost. To impartially exhibit the impact of sampling methods
in GCN training, we conduct all experiments on a two-layer
GCN model and mainly use their official configurations in
model training. We evaluate all the models with available
code in GitHub on a Linux server equipped with dual 14-core
Intel Xeon E5-2683 v3 CPUs (2.00 GHz) and an NVIDIA
Tesla V100 GPU (16 GB memory). Available links and the
corresponding sampling methods are listed in TABLE XII.
• Time-Accuracy Comparison
We exhibit the time (sequential training time) and accu-

racy (validation accuracy) comparison of various methods
on benchmark datasets in Fig. 6, where GraphSAGE1 and
GraphSAGE2 are different implementations proposed by their
authors [35], and PGSampling1 is short for Parallelized Graph

Sampling [55]. Note that the sequential training time we
recorded includes the time of data loading and processing,
the computation of critical factors (used for sampling or
training), sampling, model training and evaluating. To make
GCN training efficient, sampling methods improve the training
by reducing computation cost and accelerating the conver-
gence. Firstly, most sampling methods optimize the training
mechanism and select part of neighbors for neighborhood
representation aggregation reasonably, which reduces compu-
tation cost compared to training with entire nodes. Secondly,
sampling methods use a mini-batch strategy to allow the
model to be updated once per batch, which accelerates the
convergence of model compared to the full-batch training.

Distinctly, most sampling methods converge faster than
vanilla GCN in training. Still, some of them may require a
longer time than vanilla GCN in terms of the total training
cost, which can be suggested from comparisons in sequential
training time on each benchmark dataset. For instance, AS-
GCN [50] achieves the top accuracy but requires maximum
sequential training time since the time of computing sam-

https://github.com/tkipf/gcn
https://github.com/williamleif/graphsage-simple
https://github.com/williamleif/GraphSAGE
https://github.com/thu-ml/stochastic_gcn
https://github.com/matenure/FastGCN
https://github.com/huangwb/AS-GCN
https://github.com/acbull/LADIES
https://github.com/google-research/google-research/tree/master/cluster_gcn
 https://github.com/ZimpleX/gcn-ipdps19
https://github.com/GraphSAINT/GraphSAINT
https://github.com/chuxuzhang/KDD2019_HetGNN
https://github.com/acbull/pyHGT

24

0 10 20
Sequential Training Time (s)

0.0

0.2

0.4

0.6

0.8

Va
lid

at
io

n
Ac

cu
ra

cy
Cora

GCN
GraphSAGE¹
VR-GCN
FastGCN
AS-GCN
LADIES

0 20 40
Sequential Training Time (s)

0.0

0.2

0.4

0.6

0.8

Va
lid

at
io

n
Ac

cu
ra

cy

Citeseer

GCN
VR-GCN
FastGCN
AS-GCN
LADIES

0 10 20 30 40
Sequential Training Time (s)

0.0

0.2

0.4

0.6

0.8

Va
lid

at
io

n
Ac

cu
ra

cy

Pubmed

GCN
GraphSAGE¹
VR-GCN
FastGCN
AS-GCN
LADIES

0 200 400 600
Sequential Training Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Va
lid

at
io

n
Ac

cu
ra

cy

PPI

GraphSAGE²
VR-GCN
Cluster-GCN
PGSampling¹
GraphSAINT-EDGE
GraphSAINT-RW

0 500 1000 1500
Sequential Training Time (s)

0.0

0.2

0.4

0.6

0.8

1.0
Va

lid
at

io
n

Ac
cu

ra
cy

Reddit

GraphSAGE²
VR-GCN
FastGCN
AS-GCN
Cluster-GCN
PGSampling¹
GraphSAINT-EDGE
GraphSAINT-RW

0 1000 2000 3000
Sequential Training Time (s)

0.0

0.2

0.4

0.6

Va
lid

at
io

n
Ac

cu
ra

cy

Yelp

PGSampling¹
GraphSAINT-EDGE
GraphSAINT-RW

Fig. 6: Time-Accuracy comparison on benchmark datasets

pling probability and capturing layer-dependent neighboring
relationships is non-negligible, which is a trade-off between
time and accuracy. On the other hand, it is quite appropriate
for sampling methods to handle large datasets which includes
tens of thousands of nodes and millions of edges, e.g., Reddit
[35] and Yelp [53]. The sampling process helps to explore
the neighboring relationship and accelerate the convergence
of training in a batched manner.
• Detailed Performance Comparison
Previously, we have exhibited the time-accuracy comparison

on benchmark datasets, and we further compare each method
on various benchmark datasets and record significant factors
in model training. Detailed performance comparison is given
in TABLE XIII. Specifically, we pay more attention to the fol-
lowing factors: validation accuracy (abbreviated as Accuracy),
the number of training epoch before convergence (abbreviated
as Epoch), the total time cost before convergence (abbreviated
as Total Time), the proportion of sampling time in the total
time cost (abbreviated as Sampling %), and the proportion
of time of model training without regard to model evaluation,
i.e., pure training time, in the total time cost (abbreviated as
Training %).

Instead of simply recording the training time that includes
the forward and backward propagations, we focus on the total
time cost from model initialization to convergence, which
is advantageous for discovering the bottleneck in terms of
time during training. Formally, the sampling process mainly
includes computing necessary factors for sampling, selecting

nodes, and constructing the adjacency matrix for training. As a
result, the sampling process is usually mixed with the process
of pre-processing, which makes it hard to filter the time of
sampling out separately at the code level in most instances.
Thus, the Sampling % can be regarded as a maximum value
of sampling cost in training in this sense.

Sampling methods improve GCN training by reducing the
cost in terms of computation and storage, which makes it
possible to extend the training to larger datasets. However,
it comes from the TABLE XIII that sampling % is becoming
a considerable value as the graph data goes larger, and can
reach a comparable cost to the model training in some cases.
Consequently, it is suggested that the sampling process has
gradually become a non-trivial part of the training that cannot
be ignored.

D. Comparison in deep models

In the previous section, extensive experiments of various
sampling methods have been conducted on the two-layer
model for comparison. Further, we consider the performance
of sampling-based methods in converged sequential training
time and validation accuracy on deep models. We thereby
conduct experiments of node-wise sampling methods and
subgraph-based sampling methods on deep models, i.e., VR-
GCN [48] and Cluster-GCN [52], since the current layer-
wise sampling methods do not support the modification of
the model depth. Time (sequential training time) and accuracy

25

TABLE XIII: Detailed performance comparison on sampling methods
Method Dataset Hyperparameters4 Accuracy Epoch Total Time Sampling% Training%

GCN [21]
Cora - / Adam / 0.01 0.814 110 ± 20 4.80 ± 0.42s - 66.20%

Citeseer - / Adam / 0.01 0.711 90 ± 10 5.44 ± 0.30s - 57.60%
Pubmed - / Adam / 0.01 0.786 120 ± 10 24.77 ± 1.96s - 43.10%

GraphSAGE [35]

Cora 5&5 / SGD / 0.7 0.856 90 ± 10 3.27 ± 0.21s 14.16% 61.80%
Pubmed 10&25 /SGD / 0.7 0.814 170 ± 10 37.94 ± 2.12s 24.06% 71.70%

PPI 25&10 / Adam / 0.01 0.616 83 ± 10 47.51 ± 5.90s 34.4% 28.20%
Reddit 25&10 / Adam / 0.01 0.950 15 ± 5 326.73 ± 31.99s 12.40% 67.3%

VR-GCN [48]

Cora 2 / Adam / 0.01 0.800 76 ± 9 3.65 ± 0.18s 1.23% 24.26%
Citeseer 2 / Adam / 0.01 0.718 140 ± 7 5.07 ± 0.17s 0.92% 23.04%
Pubmed 2 / Adam / 0.01 0.814 111 ± 4 5.92 ± 0.13s 0.80% 15.16%

PPI 2 / Adam / 0.01 0.975 291 ± 7 83.50 ± 2.1s 3.67% 50.73%
Reddit 2 / Adam / 0.01 0.963 86 ± 9 390.62 ± 39.63s 13.26% 84.63%

FastGCN [49]

Cora 50 / Adam / 0.01 0.847 65 ± 10 3.93 ± 0.15s 1.80% 74.90%
Citeseer 50 / Adam / 0.01 0.776 90 ± 5 10.65 ± 0.42s 0.94% 30.90%
Pubmed 50 / Adam / 0.01 0.863 40 ± 5 13.71 ± 1.21s 10.73% 46.70%
Reddit 100 / Adam / 0.001 0.928 30 ± 3 294.52 ± 21.06s 32.40% 28.90%

AS-GCN [50]

Cora 128 / Adam / 0.001 0.877 262 ± 10 28.50 ± 0.93 s 29.66% 69.60%
Citeseer 128 / Adam / 0.001 0.791 106 ± 10 46.64 ± 3.87s 14.60% 35.70%
Pubmed 128 / Adam / 0.001 0.895 15 ± 5 39.06 ± 6.64s 30.10% 43.80%
Reddit 512 / Adam / 0.01 0.965 23 ± 10 1633.67 ± 581.74s 26.21% 27.20%

LADIES [51]
Cora 64 / Adam / 0.001 0.761 9 ± 1 6.10 ± 0.55s 1.10% 93.40%

Citeseer 64 / Adam / 0.001 0.674 9 ± 1 6.2 ± 0.57s 1.01% 93.00%
Pubmed 64 / Adam / 0.001 0.757 10 ± 1 6.386 ± 0.56s 1.72% 90.90%

Cluster-GCN5 [52]
PPI - / Adam / 0.01 0.958 360 ± 10 202.25 ± 4.84s 9.60% 53.30%

Reddit - / Adam / 0.005 0.958 27 ± 3 981.76 ± 20.55s 42.70% 20.10%

Parallelized Graph
Sampling [55]

PPI 8000 / Adam / 0.05 0.68 134 ± 10 267.77 ± 19.71s 22.70% 30.30%
Reddit 8000 / Adam / 0.05 0.959 12 ± 2 822.52 ± 109.69s 11.10% 8.00%
Yelp 4000 / Adam / 0.01 0.617 27 ± 4 3113.03 ± 424.96s 33.40% 17.50%

GraphSAINT
EDGE6 [53]

PPI 4000 / Adam / 0.01 0.988 780 ± 20 587.93 ± 14.74s 6.50% 62.10%
Reddit 600 / Adam / 0.01 0.967 37 ± 3 143.67 ± 5.90s 26.80% 17.60%
Yelp 2500 / Adam / 0.01 0.653 95 ± 5 1178.38 ± 56.22s 12.80% 35.80%

GraphSAINT
RW [53]

PPI 6000 / Adam / 0.01 0.987 740 ± 20 550.08 ± 14.65s 7.00% 62.00%
Reddit 8000 / Adam / 0.01 0.967 26 ± 4 123.95 ± 9.82s 28.70% 21.80%
Yelp 2500 / Adam / 0.01 0.653 67 ± 8 1207.58 ± 126.25s 16.20% 47.50%

Note4: All experiments are conducted on the two-layer GCN with their official configurations, e.g., sampling size and optimizer.
As some parameters are not explicitly specified in some papers, we tune the parameters to achieve better accuracy. The recorded
hyperparameters include the sampling size (per node/layer/subgraph), the optimizer, and the learning rate.
Note5: In Cluster-GCN, they provided the number of clusters for training, validation, and test rather than the sampling size per
subgraph.
Note6: In GraphSAINT-EDGE, the sampling size corresponding to the number of edges to be sampled.

(validation accuracy) comparisons of node-wise and subgraph-
based sampling methods on the deep model (model depth
varies from 2 to 5) are illustrated in Fig. 7. Note that the
configurations for sampling and training of VR-GCN and
Cluster-GCN are given in the “Hyperparameters” column in
TABLE XIII.

Generally, for VR-GCN (node-wise sampling), the sequen-
tial training time increases as the model becomes deeper,
and the validation accuracy decreases as the number of the
model depth increases. Distinctively, on the PPI [61] dataset,
VR-GCN converges fast on the five-layer model since the
validation accuracy converges to a relatively low value (0.725)
and will not be increased further. For Cluster-GCN (subgraph-
based sampling), the sequential training time increases as the
model depth increases, while the validation accuracy is slightly

improved or remaines stable.

Practically, constructing a deep GCN model by simply
adding more layers will suffer from the problem of van-
ishing gradient, which is also known as the phenomenon
of over-smoothing. In this case, the converged features of
nodes in a graph eventually become the same value, which
deteriorates the model ability in various graph-based tasks
[71, 72]. Therefore, the validation accuracy of VR-GCN is
generally declining as the model becomes deeper. However,
Cluster-GCN preserves a relatively stable validation accuracy
since it additionally uses a diagonal enhancement technique
to improve the training in the deep model.

In summary, the sequential training time on the deep model
is generally increasing, and the validation accuracy is generally
declining unless the additional technique on overcoming the

26

2 3 4 5
Model Depth

4

5

6

7

8

9

10

Se
qu

en
tia

l T
ra

in
in

g
Ti

m
e

(s
)

Cora

0.74

0.75

0.76

0.77

0.78

0.79

0.80

0.81

2 3 4 5
Model Depth

5

6

7

8

9

10

Citeseer

0.62

0.64

0.66

0.68

0.70

0.72

2 3 4 5
Model Depth

6

8

10

12

14

16

18

20

Pubmed

0.72

0.74

0.76

0.78

0.80

Va
lid

at
io

n
Ac

cu
ra

cy

2 3 4 5
Model Depth

100

150

200

250

300

350

400

450

Se
qu

en
tia

l T
ra

in
in

g
Ti

m
e

(s
)

PPI

0.75

0.80

0.85

0.90

0.95

2 3 4 5
Model Depth

500

1000

1500

2000

2500

3000

3500
Reddit

Training Time_VR-GCN
Validation Accuracy_VR-GCN
Training Time_Cluster-GCN
Validation Accuracy_Cluster-GCN

0.958

0.959

0.960

0.961

0.962

0.963

0.964

0.965

Va
lid

at
io

n
Ac

cu
ra

cy

Fig. 7: Time-Accuracy comparison of node-wise and subgraph-based sampling methods on deep models.

phenomenon of over-smoothing is added.

E. Comparison in overall
A comprehensive summary of overall comparison on sam-

pling methods in all categories is given in TABLE XIV, and
we pay special attention to the following aspects.
• Random Sampling
It denotes whether a sampling method samples nodes in a

random manner. Random neighbor sampling is widely used
in node-wise sampling methods to guarantee randomness
and uniformity since every node of the same type can be
considered with equal probability. Besides, subgraph-based
sampling methods likewise randomly sample nodes to generate
subgraphs. In some situations, we cannot directly perform
random sampling. For example, when handling heterogeneous
graphs, the heterogeneity of nodes and edges should be well
considered. On the other hand, sampling with probability is
adequately used in layer-wise sampling methods for reducing
variance. Moreover, some methods sample nodes in an ordered
pattern, where the sampling standard is defined by some
metrics, such as visit frequency and publish time.
• Sampling Condition
It denotes the specific sampling condition of each sampling

method. To show the similarities between different methods,
we simply highlight the characteristics of the sampling oper-
ation, for example, we define both the sampling conditions of
AS-GCN and LADIES as layer-dependent sampling though
the two are slightly different throughout the sampling process.
This unified definition is conducive to classifying and analyz-
ing methods based on similarities and differences.

• Target Problem
It denotes the target problem being solved in each work. To

analyze a work comprehensively, we should focus on not only
the sampling algorithm, but also the difficulty to be solved
by sampling and the target problem of the work. Besides,
the target problem is closely related to the motivation of a
work. For example, most layer-wise sampling methods are
proposed to alleviate neighbor explosion caused by recursive
neighbor sampling. And most heterogeneous sampling meth-
ods are devoted to learning representation in heterogeneous
graphs. In this way, the key idea of a work can therefore be
comprehended by jointly considering the sampling condition
and the target problem.

V. CHALLENGES AND FUTURE DIRECTIONS

In this section, we discuss some challenges and future
research directions of sampling methods. Although sampling
methods accelerate the training of GCN efficiently and reduce
the cost of training in terms of computation and storage,
there are still challenges due to some factors in graphs’
characteristics and training.

Firstly, sampling methods inevitably introduce variance
and bias into the training compared with the exact training
approach. In most instances, it is challenging to achieve an
appropriate trade-off between accuracy and runtime. Secondly,
as graphs grow large and complex, sampling methods are
enhancing the requirements in computation and storage for
experimental platforms. Thirdly, it is significant to take
the hardware into consideration when performing sampling
methods to GCN since the hardware is getting increasingly

27

TABLE XIV: Comprehensive summary of sampling methods in all categories
Category Method Random Sampling Sampling Condition Target Problem

Node-wise
Sampling

GraphSAGE [35]
√ Random

Neighbor Sampling
Inductive Learning

PinSage [44] × Normalized
Visit Counts

Scaling up GCN

SSE [47]
√ Random

Neighbor Sampling
Steady-state Condition

Learning

VR-GCN [48]
√ Random

Neighbor Sampling
Receptive Field

Reduction

Layer-wise
Sampling

FastGCN [49] × Layer-independent
Sampling

Neighbor Explosion
Alleviation

AS-GCN [50] × Layer-dependent
Sampling

Neighbor Explosion
Alleviation

LADIES [51] × Layer-dependent
Sampling

Sparse Connection
Alleviation

Subgraph-based
Sampling

Cluster-GCN [52]
√ Random

Cluster Sampling
Constructing

Graph Partition
Parallelized Graph

Sampling [55]
√ Parallel

Frontier Sampling
Model parallelizing

and Scaling up

GraphSAINT [53] × Probabilistic
Edge Sampling

Constructing Unbiased
Subgraph Sampling

RWT [54]
√ Random

Neighbor Expansion
Handling Node Relation

and Over-smoothing

Heterogeneous
Sampling

Time-related
Sampling [56]

× Publish Time
Adversarial Action

Alleviation

HetGNN [57] × Visit Frequency
Heterogeneous Graph

Learning

HGSampling [58] × Probabilistic Sampling
Nodes by Type

Heterogeneous Graph
Learning

Text Graph
Sampling [59]

× Intimacy Matrix
Heterogeneous Text

Graph Learning

important in GCN training. Fourthly,some sampling methods
designed for homogeneous graphs can hardly be directly
applied to heterogeneous graphs. Moreover, stacking more
layers to form a deeper GCN model is an emerging trend
for improving performance. Performing sampling on deep
models is a challenging task. Therefore, there is still room for
improvement of sampling methods. Next, we suggest some
potential directions of sampling methods in the future.
• Variance reduction and elimination
Instead of training GCN with all nodes in a graph, sampling

methods accelerate the training by conditionally selecting
partial nodes and bring about, where it is unavoidable, a
slight accuracy loss. To solve the problem, some existing
sampling methods leverage importance sampling technique
to reduce variance [49–51], while others reduce variance by
adding special mechanisms [48, 52, 53, 58, 73]. Besides, it is
promising to execute variance reduction in an explicit manner.
For instance, AS-GCN [50] and MVS-GNN [73] adaptively
sample nodes and explicitly reduce variance in the training
of GCN. Therefore, we suggest optimizing sampling methods
with variance reduction and elimination techniques. Through
this way, it is feasible to build time-saving sampling methods
with better accuracy than exact training approachs.
• Co-ordination with experimental platforms
Taking full advantage of experimental platforms benefits

the training and inference of GCN significantly. Recently,

instead of merely performing GCN on GPU (CPU), various
experimental platforms are used for accelerating training and
inference of GCN, for instance, paralleled platform [55],
(multi-) FPGA platform [74–76], and heterogeneous platform
[77, 78]. On the other hand, the costs in terms of computation
and storage of sampling methods are growing large as the
explosion of the graph size, putting pressure on existing
experimental platforms. All these put forward a higher demand
to enhance co-ordination with experimental platforms. There-
fore, we suggest optimizing sampling methods by leveraging
characteristics and advantages of experimental platforms. It is
also useful to design a fitting sampling method for a specified
experimental platform.

• Hardware-friendly sampling

In recent years, a few works have been proposed to optimize
GCN based on the specific hardware design. Most of these
works accelerate the inference process or a certain phase in the
training of GCN leveraging hardware characteristics and spe-
cially designed tools [43, 74, 78–82]. For instance, Hygcn [43]
accelerates the inference process by optimizing two processing
engines in inference with the help of an inter-engine pipeline
and a priority-based memory access coordination. However,
the sampling phase is gradually becoming a time-consuming
process with the drastic extension of graph data, which affects
the execution efficiency of the training to a large extent. Just
as these accelerators use hardware characteristics to speed up

28

the inference process, we suggest accelerating the sampling
process using hardware characteristics. And this raises the
question of what characteristics should be carefully considered
to design a hardware-friendly sampling method.
• Heterogeneous graph sampling
Recently, there has been a growing trend in the study of

heterogeneity of graphs. Compared with homogeneous graphs,
heterogeneous graphs are superior to model complex structures
of graphs in the real world, for instance, Xianyu Graph [56]
and Open Academic Graph (OAG) [83]. However, heteroge-
neous graphs typically include edges and nodes in different
types [57, 84], and most existing sampling methods designed
for homogeneous graphs cannot be directly used since ap-
plying these sampling methods to heterogeneous graphs may
lead to an imbalanced sampling result in terms of different
types of nodes and edges [58]. As a result, there is an urgent
need to extend original sampling methods to heterogeneous
graphs. We suggest improving the original sampling method
by merging the characteristics of several sampling methods in
different categories. It is also useful to design a novel sampling
method for a specific heterogeneous graph.
• Sampling in deep models
Deep GCNs are attracting more attention and are intuitively

regarded as a potentiality for improving model capability since
constructing a deep structure helps CNNs achieve outstanding
performance in tasks of diverse fields [85–87]. However, it has
been theoretically demonstrated that GCN [21] is not appli-
cable to scale a deep model due to the phenomenon of over-
smoothing [88, 89]. Thereby, various approaches are proposed
to overcome the phenomenon of over-smoothing for enabling
deep GCNs training, e.g., adding skip connections [46, 50, 71],
using regularization techniques [88, 90], and concatenating
multi-scale information [91–93]. Most of these approaches
target alleviating destructive impact from over-smoothing by
modifying models or leveraging extra techniques. We argue
that sampling methods could also benefit the address of over-
smoothing. For instance, SHADOW-GNN [94] applies shallow
subgraph-based sampling methods to deep GCNs to guarantee
the unique aggregation of any two nodes and preserve node
feature information, which helps avoid the damage to the
diversity of the converged aggregation features. Thereby, we
suggest designing suitable sampling methods according to the
model depth and aggregation mechanism for overcoming the
phenomenon of over-smoothing synergistically.

VI. CONCLUSION

In this paper, we conduct a thorough survey on sam-
pling methods for efficient training of GCN. Specifically, we
provide a taxonomy that categorizes sampling methods into
four categories, i.e., node-wise sampling, layer-wise sampling,
subgraph-based sampling, and heterogeneous sampling. Based
on the taxonomy, we compare sampling methods from multiple
aspects and highlight their characteristics for each category.
Finally, we discuss challenges faced by the existing sampling
methods and suggest five potential directions of research.

REFERENCES

[1] A. M. Fout, “Protein interface prediction using graph
convolutional networks,” Ph.D. dissertation, Colorado
State University, 2017.

[2] S. Guo, Y. Lin, N. Feng, C. Song, and H. Wan, “Attention
based spatial-temporal graph convolutional networks for
traffic flow forecasting,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 33, no. 01,
2019, pp. 922–929.

[3] Z. Cui, K. Henrickson, R. Ke, and Y. Wang, “Traffic
graph convolutional recurrent neural network: A deep
learning framework for network-scale traffic learning and
forecasting,” IEEE Transactions on Intelligent Trans-
portation Systems, vol. 21, no. 11, pp. 4883–4894, 2019.

[4] Z. Wang, Q. Lv, X. Lan, and Y. Zhang, “Cross-lingual
knowledge graph alignment via graph convolutional net-
works,” in Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing, 2018,
pp. 349–357.

[5] C. Shang, Y. Tang, J. Huang, J. Bi, X. He, and B. Zhou,
“End-to-end structure-aware convolutional networks for
knowledge base completion,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 33, no. 01,
2019, pp. 3060–3067.

[6] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu,
L. Wang, C. Li, and M. Sun, “Graph neural networks:
A review of methods and applications,” AI Open, vol. 1,
pp. 57–81, 2020.

[7] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and
G. Monfardini, “The graph neural network model,” IEEE
transactions on neural networks, vol. 20, no. 1, pp. 61–
80, 2008.

[8] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-
Gonzalez, V. Zambaldi, M. Malinowski, A. Tacchetti,
D. Raposo, A. Santoro, R. Faulkner et al., “Relational
inductive biases, deep learning, and graph networks,”
arXiv preprint arXiv:1806.01261, 2018.

[9] H. Akita, K. Nakago, T. Komatsu, Y. Sugawara, S.-
i. Maeda, Y. Baba, and H. Kashima, “Bayesgrad: Ex-
plaining predictions of graph convolutional networks,”
in International Conference on Neural Information Pro-
cessing. Springer, 2018, pp. 81–92.

[10] R. Ying, D. Bourgeois, J. You, M. Zitnik, and
J. Leskovec, “Gnnexplainer: Generating explanations for
graph neural networks,” Advances in neural information
processing systems, vol. 32, p. 9240, 2019.

[11] F. Baldassarre and H. Azizpour, “Explainability tech-
niques for graph convolutional networks,” arXiv preprint
arXiv:1905.13686, 2019.

[12] P. E. Pope, S. Kolouri, M. Rostami, C. E. Martin,
and H. Hoffmann, “Explainability methods for graph
convolutional neural networks,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2019, pp. 10 772–10 781.

[13] K. Xu, J. Li, M. Zhang, S. S. Du, K.-i. Kawarabayashi,
and S. Jegelka, “What can neural networks reason
about?” arXiv preprint arXiv:1905.13211, 2019.

29

[14] H. Yuan, H. Yu, S. Gui, and S. Ji, “Explainability in graph
neural networks: A taxonomic survey,” arXiv preprint
arXiv:2012.15445, 2020.

[15] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel,
“Gated graph sequence neural networks,” arXiv preprint
arXiv:1511.05493, 2015.

[16] M. Henaff, J. Bruna, and Y. LeCun, “Deep convolu-
tional networks on graph-structured data,” arXiv preprint
arXiv:1506.05163, 2015.

[17] J. Atwood and D. Towsley, “Diffusion-convolutional
neural networks,” in Advances in neural information
processing systems, 2016, pp. 1993–2001.

[18] P. Veličković, G. Cucurull, A. Casanova, A. Romero,
P. Liò, and Y. Bengio, “Graph Attention Networks,”
International Conference on Learning Representations,
2018, accepted as poster. [Online]. Available: https:
//openreview.net/forum?id=rJXMpikCZ

[19] M. Defferrard, X. Bresson, and P. Vandergheynst, “Con-
volutional neural networks on graphs with fast localized
spectral filtering,” Advances in neural information pro-
cessing systems, vol. 29, pp. 3844–3852, 2016.

[20] M. Niepert, M. Ahmed, and K. Kutzkov, “Learning con-
volutional neural networks for graphs,” in International
conference on machine learning. PMLR, 2016, pp.
2014–2023.

[21] T. N. Kipf and M. Welling, “Semi-supervised classifica-
tion with graph convolutional networks,” in International
Conference on Learning Representations (ICLR), 2017.

[22] F. Monti, D. Boscaini, J. Masci, E. Rodola, J. Svoboda,
and M. M. Bronstein, “Geometric deep learning on
graphs and manifolds using mixture model cnns,” in
Proceedings of the IEEE conference on computer vision
and pattern recognition, 2017, pp. 5115–5124.

[23] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral
networks and locally connected networks on graphs,”
arXiv preprint arXiv:1312.6203, 2013.

[24] F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, and K. Wein-
berger, “Simplifying graph convolutional networks,” in
International conference on machine learning. PMLR,
2019, pp. 6861–6871.

[25] X. He, K. Deng, X. Wang, Y. Li, Y. Zhang, and M. Wang,
“Lightgcn: Simplifying and powering graph convolution
network for recommendation,” in Proceedings of the 43rd
International ACM SIGIR conference on research and
development in Information Retrieval, 2020, pp. 639–
648.

[26] H. Nt and T. Maehara, “Revisiting graph neural net-
works: All we have is low-pass filters,” arXiv preprint
arXiv:1905.09550, 2019.

[27] Y. Yang, J. Qiu, M. Song, D. Tao, and X. Wang, “Dis-
tilling knowledge from graph convolutional networks,” in
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2020, pp. 7074–7083.

[28] C. Yang, J. Liu, and C. Shi, “Extract the knowledge of
graph neural networks and go beyond it: An effective
knowledge distillation framework,” in Proceedings of the
Web Conference 2021, 2021, pp. 1227–1237.

[29] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and

S. Y. Philip, “A comprehensive survey on graph neural
networks,” IEEE transactions on neural networks and
learning systems, vol. 32, no. 1, pp. 4–24, 2020.

[30] Z. Zhang, P. Cui, and W. Zhu, “Deep learning on graphs:
A survey,” IEEE Transactions on Knowledge and Data
Engineering, 2020.

[31] S. Zhang, H. Tong, J. Xu, and R. Maciejewski, “Graph
convolutional networks: a comprehensive review,” Com-
putational Social Networks, vol. 6, no. 1, pp. 1–23, 2019.

[32] Y. LeCun, Y. Bengio et al., “Convolutional networks for
images, speech, and time series,” The handbook of brain
theory and neural networks, vol. 3361, no. 10, p. 1995,
1995.

[33] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega,
and P. Vandergheynst, “The emerging field of signal
processing on graphs: Extending high-dimensional data
analysis to networks and other irregular domains,” IEEE
signal processing magazine, vol. 30, no. 3, pp. 83–98,
2013.

[34] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and
G. E. Dahl, “Neural message passing for quantum chem-
istry,” in International conference on machine learning.
PMLR, 2017, pp. 1263–1272.

[35] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive
representation learning on large graphs,” in Proceedings
of the 31st International Conference on Neural Informa-
tion Processing Systems, 2017, pp. 1025–1035.

[36] A. Qin, Z. Shang, J. Tian, Y. Wang, T. Zhang, and Y. Y.
Tang, “Spectral–spatial graph convolutional networks for
semisupervised hyperspectral image classification,” IEEE
Geoscience and Remote Sensing Letters, vol. 16, no. 2,
pp. 241–245, 2018.

[37] C. Wang, B. Samari, and K. Siddiqi, “Local spectral
graph convolution for point set feature learning,” in
Proceedings of the European conference on computer
vision (ECCV), 2018, pp. 52–66.

[38] D. Valsesia, G. Fracastoro, and E. Magli, “Learning
localized generative models for 3d point clouds via graph
convolution,” in International conference on learning
representations, 2018.

[39] Y. Wei, X. Wang, L. Nie, X. He, R. Hong, and T.-S.
Chua, “Mmgcn: Multi-modal graph convolution network
for personalized recommendation of micro-video,” in
Proceedings of the 27th ACM International Conference
on Multimedia, 2019, pp. 1437–1445.

[40] S. Cui, B. Yu, T. Liu, Z. Zhang, X. Wang, and J. Shi,
“Edge-enhanced graph convolution networks for event
detection with syntactic relation,” in Proceedings of
the 2020 Conference on Empirical Methods in Natural
Language Processing: Findings, 2020, pp. 2329–2339.

[41] Z. Liang, M. Yang, L. Deng, C. Wang, and B. Wang, “Hi-
erarchical depthwise graph convolutional neural network
for 3d semantic segmentation of point clouds,” in 2019
International Conference on Robotics and Automation
(ICRA). IEEE, 2019, pp. 8152–8158.

[42] H. Yang, “Aligraph: A comprehensive graph neural
network platform,” in Proceedings of the 25th ACM
SIGKDD international conference on knowledge discov-

https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ

30

ery & data mining, 2019, pp. 3165–3166.
[43] M. Yan, L. Deng, X. Hu, L. Liang, Y. Feng, X. Ye,

Z. Zhang, D. Fan, and Y. Xie, “Hygcn: A gcn accelerator
with hybrid architecture,” in 2020 IEEE International
Symposium on High Performance Computer Architecture
(HPCA). IEEE, 2020, pp. 15–29.

[44] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L.
Hamilton, and J. Leskovec, “Graph convolutional neu-
ral networks for web-scale recommender systems,” in
Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining,
2018, pp. 974–983.

[45] K. Xu, W. Hu, J. Leskovec, and S. Jegelka,
“How powerful are graph neural networks?” in
International Conference on Learning Representations,
2019. [Online]. Available: https://openreview.net/forum?
id=ryGs6iA5Km

[46] K. Xu, C. Li, Y. Tian, T. Sonobe, K.-i. Kawarabayashi,
and S. Jegelka, “Representation learning on graphs with
jumping knowledge networks,” in International Confer-
ence on Machine Learning. PMLR, 2018, pp. 5453–
5462.

[47] H. Dai, Z. Kozareva, B. Dai, A. Smola, and L. Song,
“Learning steady-states of iterative algorithms over
graphs,” in International conference on machine learn-
ing. PMLR, 2018, pp. 1106–1114.

[48] J. Chen, J. Zhu, and L. Song, “Stochastic training of
graph convolutional networks with variance reduction,”
in International Conference on Machine Learning, 2018,
pp. 941–949.

[49] J. Chen, T. Ma, and C. Xiao, “Fastgcn: Fast learning with
graph convolutional networks via importance sampling,”
in International Conference on Learning Representa-
tions, 2018.

[50] W. Huang, T. Zhang, Y. Rong, and J. Huang, “Adaptive
sampling towards fast graph representation learning,”
Advances in Neural Information Processing Systems,
vol. 31, pp. 4558–4567, 2018.

[51] D. Zou, Z. Hu, Y. Wang, S. Jiang, Y. Sun, and Q. Gu,
“Layer-dependent importance sampling for training deep
and large graph convolutional networks,” Advances in
neural information processing systems, 2019.

[52] W.-L. Chiang, X. Liu, S. Si, Y. Li, S. Bengio, and
C.-J. Hsieh, “Cluster-gcn: An efficient algorithm for
training deep and large graph convolutional networks,”
in Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining,
2019, pp. 257–266.

[53] H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and
V. Prasanna, “GraphSAINT: Graph sampling based in-
ductive learning method,” in International Conference on
Learning Representations, 2020.

[54] J. Bai, Y. Ren, and J. Zhang, “Ripple walk training: A
subgraph-based training framework for large and deep
graph neural network,” arXiv preprint arXiv:2002.07206,
2020.

[55] H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and
V. Prasanna, “Accurate, efficient and scalable graph

embedding,” in 2019 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). IEEE,
2019, pp. 462–471.

[56] A. Li, Z. Qin, R. Liu, Y. Yang, and D. Li, “Spam
review detection with graph convolutional networks,” in
Proceedings of the 28th ACM International Conference
on Information and Knowledge Management, 2019, pp.
2703–2711.

[57] C. Zhang, D. Song, C. Huang, A. Swami, and N. V.
Chawla, “Heterogeneous graph neural network,” in Pro-
ceedings of the 25th ACM SIGKDD International Con-
ference on Knowledge Discovery & Data Mining, 2019,
pp. 793–803.

[58] Z. Hu, Y. Dong, K. Wang, and Y. Sun, “Heterogeneous
graph transformer,” in Proceedings of The Web Confer-
ence 2020, 2020, pp. 2704–2710.

[59] H. Zhang and J. Zhang, “Text graph transformer for
document classification,” in Conference on Empirical
Methods in Natural Language Processing (EMNLP),
2020.

[60] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher,
and T. Eliassi-Rad, “Collective classification in network
data,” AI magazine, vol. 29, no. 3, pp. 93–93, 2008.

[61] M. Zitnik and J. Leskovec, “Predicting multicellular
function through multi-layer tissue networks,” Bioinfor-
matics, vol. 33, no. 14, pp. i190–i198, 2017.

[62] J. McAuley, C. Targett, Q. Shi, and A. Van Den Hengel,
“Image-based recommendations on styles and substi-
tutes,” in Proceedings of the 38th international ACM
SIGIR conference on research and development in in-
formation retrieval, 2015, pp. 43–52.

[63] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado,
and J. Dean, “Distributed representations of words and
phrases and their compositionality,” in Advances in neu-
ral information processing systems, 2013, pp. 3111–
3119.

[64] Y. Bengio, J. Louradour, R. Collobert, and J. Weston,
“Curriculum learning,” in Proceedings of the 26th annual
international conference on machine learning, 2009, pp.
41–48.

[65] C. Eksombatchai, P. Jindal, J. Z. Liu, Y. Liu, R. Sharma,
C. Sugnet, M. Ulrich, and J. Leskovec, “Pixie: A system
for recommending 3+ billion items to 200+ million users
in real-time,” in Proceedings of the 2018 world wide web
conference, 2018, pp. 1775–1784.

[66] Z. Liu, Z. Wu, Z. Zhang, J. Zhou, S. Yang, L. Song,
and Y. Qi, “Bandit samplers for training graph neural
networks,” arXiv preprint arXiv:2006.05806, 2020.

[67] G. Karypis and V. Kumar, “A fast and high quality mul-
tilevel scheme for partitioning irregular graphs,” SIAM
Journal on scientific Computing, vol. 20, no. 1, pp. 359–
392, 1998.

[68] I. S. Dhillon, Y. Guan, and B. Kulis, “Weighted graph
cuts without eigenvectors a multilevel approach,” IEEE
transactions on pattern analysis and machine intelli-
gence, vol. 29, no. 11, pp. 1944–1957, 2007.

[69] B. Ribeiro and D. Towsley, “Estimating and sampling
graphs with multidimensional random walks,” in Pro-

https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km

31

ceedings of the 10th ACM SIGCOMM conference on
Internet measurement, 2010, pp. 390–403.

[70] J. Zhang, H. Zhang, C. Xia, and L. Sun, “Graph-bert:
Only attention is needed for learning graph representa-
tions,” arXiv preprint arXiv:2001.05140, 2020.

[71] G. Li, M. Muller, A. Thabet, and B. Ghanem, “Deep-
gcns: Can gcns go as deep as cnns?” in Proceedings
of the IEEE/CVF International Conference on Computer
Vision, 2019, pp. 9267–9276.

[72] Q. Li, Z. Han, and X.-M. Wu, “Deeper insights into graph
convolutional networks for semi-supervised learning,” in
Thirty-Second AAAI conference on artificial intelligence,
2018.

[73] W. Cong, R. Forsati, M. Kandemir, and M. Mahdavi,
“Minimal variance sampling with provable guarantees for
fast training of graph neural networks,” in Proceedings
of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2020, pp. 1393–
1403.

[74] Q. Cheng, M. Wen, J. Shen, D. Wang, and C. Zhang,
“Towards a deep-pipelined architecture for accelerating
deep gcn on a multi-fpga platform,” in International
Conference on Algorithms and Architectures for Parallel
Processing. Springer, 2020, pp. 528–547.

[75] B. Zhang, H. Zeng, and V. Prasanna, “Hardware ac-
celeration of large scale gcn inference,” in 2020 IEEE
31st International Conference on Application-specific
Systems, Architectures and Processors (ASAP). IEEE,
2020, pp. 61–68.

[76] ——, “Accelerating large scale gcn inference on fpga,”
in 2020 IEEE 28th Annual International Symposium
on Field-Programmable Custom Computing Machines
(FCCM). IEEE, 2020, pp. 241–241.

[77] Y. Meng, S. Kuppannagari, and V. Prasanna, “Accel-
erating proximal policy optimization on cpu-fpga het-
erogeneous platforms,” in 2020 IEEE 28th Annual In-
ternational Symposium on Field-Programmable Custom
Computing Machines (FCCM). IEEE, 2020, pp. 19–27.

[78] H. Zeng and V. Prasanna, “Graphact: Accelerating gcn
training on cpu-fpga heterogeneous platforms,” in Pro-
ceedings of the 2020 ACM/SIGDA International Sym-
posium on Field-Programmable Gate Arrays, 2020, pp.
255–265.

[79] T. Geng, A. Li, R. Shi, C. Wu, T. Wang, Y. Li, P. Haghi,
A. Tumeo, S. Che, S. Reinhardt et al., “Awb-gcn: A
graph convolutional network accelerator with runtime
workload rebalancing,” in 2020 53rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO).
IEEE, 2020, pp. 922–936.

[80] A. Auten, M. Tomei, and R. Kumar, “Hardware accelera-
tion of graph neural networks,” in 2020 57th ACM/IEEE
Design Automation Conference (DAC). IEEE, 2020, pp.
1–6.

[81] S. Liang, Y. Wang, C. Liu, L. He, L. Huawei, D. Xu,
and X. Li, “Engn: A high-throughput and energy-efficient
accelerator for large graph neural networks,” IEEE Trans-
actions on Computers, 2020.

[82] K. Kiningham, C. Re, and P. Levis, “Grip: a graph

neural network accelerator architecture,” arXiv preprint
arXiv:2007.13828, 2020.

[83] F. Zhang, X. Liu, J. Tang, Y. Dong, P. Yao, J. Zhang,
X. Gu, Y. Wang, B. Shao, R. Li et al., “Oag: To-
ward linking large-scale heterogeneous entity graphs,”
in Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining,
2019, pp. 2585–2595.

[84] R. Hussein, D. Yang, and P. Cudré-Mauroux, “Are meta-
paths necessary? revisiting heterogeneous graph embed-
dings,” in Proceedings of the 27th ACM International
Conference on Information and Knowledge Management,
2018, pp. 437–446.

[85] H.-C. Shin, H. R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues,
J. Yao, D. Mollura, and R. M. Summers, “Deep convolu-
tional neural networks for computer-aided detection: Cnn
architectures, dataset characteristics and transfer learn-
ing,” IEEE transactions on medical imaging, vol. 35,
no. 5, pp. 1285–1298, 2016.

[86] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang,
“Beyond a gaussian denoiser: Residual learning of deep
cnn for image denoising,” IEEE transactions on image
processing, vol. 26, no. 7, pp. 3142–3155, 2017.

[87] K. Zhang, W. Zuo, S. Gu, and L. Zhang, “Learning deep
cnn denoiser prior for image restoration,” in Proceedings
of the IEEE conference on computer vision and pattern
recognition, 2017, pp. 3929–3938.

[88] Y. Rong, W. Huang, T. Xu, and J. Huang, “Dropedge:
Towards deep graph convolutional networks on node
classification,” in International Conference on Learning
Representations, 2020.

[89] K. Oono and T. Suzuki, “Graph neural networks expo-
nentially lose expressive power for node classification,”
in International Conference on Learning Representa-
tions, 2020.

[90] A. Hasanzadeh, E. Hajiramezanali, S. Boluki, M. Zhou,
N. Duffield, K. Narayanan, and X. Qian, “Bayesian graph
neural networks with adaptive connection sampling,” in
International conference on machine learning. PMLR,
2020, pp. 4094–4104.

[91] S. Abu-El-Haija, B. Perozzi, A. Kapoor, N. Alipour-
fard, K. Lerman, H. Harutyunyan, G. Ver Steeg, and
A. Galstyan, “Mixhop: Higher-order graph convolutional
architectures via sparsified neighborhood mixing,” in
international conference on machine learning. PMLR,
2019, pp. 21–29.

[92] S. Luan, M. Zhao, X.-W. Chang, and D. Precup, “Break
the ceiling: Stronger multi-scale deep graph convolu-
tional networks,” in Advances in Neural Information
Processing Systems 32, H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,
Eds., 2019, pp. 10 943–10 953.

[93] M. Liu, H. Gao, and S. Ji, “Towards deeper graph neural
networks,” in Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery &
Data Mining, 2020, pp. 338–348.

[94] H. Zeng, M. Zhang, Y. Xia, A. Srivastava, A. Malevich,
R. Kannan, V. Prasanna, L. Jin, and R. Chen, “Deep

32

graph neural networks with shallow subgraph samplers,”
arXiv preprint arXiv:2012.01380, 2020.

	I Introduction
	II Background and categorization
	II-A Background of GCN
	II-A1 Model
	II-A2 Limitations
	II-A3 Sampling in the training of GCN

	II-B Categorization of sampling methods

	III Sampling methods
	III-A Node-wise sampling method
	III-A1 GraphSAGE
	III-A2 PinSage
	III-A3 SSE
	III-A4 VR-GCN
	III-A5 Comparisons within the category

	III-B Layer-wise sampling method
	III-B1 FastGCN
	III-B2 AS-GCN
	III-B3 LADIES
	III-B4 Comparisons within the category

	III-C Subgraph-based sampling method
	III-C1 Cluster-GCN
	III-C2 Parallelized Graph Sampling
	III-C3 GraphSAINT
	III-C4 RWT
	III-C5 Comparisons within the category

	III-D Heterogeneous sampling method
	III-D1 Time-related sampling
	III-D2 HetGNN
	III-D3 HGSampling
	III-D4 Text Graph Sampling
	III-D5 Comparisons within the category

	IV Comparison and analysis
	IV-A Comparison in characteristics
	IV-B Comparison in applications
	IV-C Comparison in experiments
	IV-D Comparison in deep models
	IV-E Comparison in overall

	V Challenges and future directions
	VI Conclusion

