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   Dear editor,

In this letter, we use a distributed optimization approach to solve a
class of multi-robot formation problem with virtual reference center.
We investigate the design and analysis of the constrained consensus
algorithm to solve the optimization problem with a sum of objective
functions with some local constraints. In the multi-robot system with
virtual  reference  center,  each  robot  has  messages  on  its  own
constraints  and objective function,  as  well  as  the message about  the
formation that interacts with the virtual reference center. At the same
time,  all  the  robots  collaborate  to  find  the  minimum  value  of  the
function defined by the formation. To find the optimal formation, we
propose an algorithm with fixed step size with better performance. In
addition,  we  use  a  combination  of  the  Hungarian  assignment
algorithm  and  the  proposed  formation  algorithm  to  get  the  optimal
matching formation of the multi-robot system.

Distributed formation control  of  multi-robot  systems has  emerged
as an active research area over the past decades. This problem finds
applications in different fields, such as path planning, goal searching,
formation  and  rendezvous  [1],  [2].  Generally,  the  distributed
formation  optimization  is  described  with  a  connected  network  of
many robots. In the literature, distributed formation control of multi-
robot  systems  has  been  extensively  studied.  For  the  problem  of
formation forming and changing, [3]–[5] use the coordination errors
between  robots  to  propose  a  distributed  formation  control  strategy
without  assuming  each  robot  knowing  the  complete  state  of  the
leader.  Reference  [6]  proposes  a  control  framework  in  a  nonlinear
multi-agent  system  to  deal  with  the  problem  of  distributed  fault-
tolerant  containment  control  (FTCC).  For  the  assignment  strategy,
[1]  proposes  a  method  to  assign  the  best  goal  to  each  robot  and
calculate the collision-free path for each robot to its goal destination
iteratively.  The  convex  optimization  strategy  for  a  large-scale  robot
team  is  considered  with  both  algorithm  scalability  and  real-time
performance in [7] and [8]. Besides, [9] investigates the dynamic task
assignment for multi-robot system and propose two task assignment
strategies.

The  main  contribution  of  this  letter  is  the  proposition  of  the
distributed  optimization  with  gradient  projection  (GP)  algorithm  to
minimize  the  formation  distance  and  the  Hungarian  algorithm  to
minimize  the  assignment  cost  function.  The  formation  is  controlled
using  the  relative  position  between  the  robots  and  the  virtual
reference  center.  The  simulations  are  presented  to  verify  the
effectiveness  of  the  proposed  algorithm  with  good  convergence

performance for obtaining the global optimal solution, especially for
the case of large-scale formations.

Problem description and formation algorithm: The optimization
problem  for  the  distributed  multi-robot  formation  with m robots  is
described as 

min f (q,χ) =
1
2

m∑
i=1

∥pi−qi+

m∑
j=1

χi j∆
i j∥2 (1)

 

s.t.
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qi ∈Ωi, i = 1,2, . . . ,m
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χi j =

{
1, robot i is assigned to goal j
0, robot i is not assigned to goal j

(3)

∥ · ∥ pi

qi
∆i j = ∆i−∆ j

∆i ∈ Rn

Ωi

Rn

where  is the Euclidean norm,  is the initial coordinate of robot
i,  is  the  coordinate  of  destination i.  is  the  desired
relative coordinate between robots i and j when they reach the final
destinations,  represents the desired relative position for robot
i to  the  virtual  reference  center,  and  is  a  nonempty  and  closed
convex set in  which represents the restricted area for robot i.

f (q,χ) ∇ f
For the objective function in (1), as it is a quadratic function, it is

easy to  get  that  is  convex and the gradient  is  Lipschitz
continuous with respect to q.

∆i ∈ Rn

∆ = (∆1,∆2, . . . ,∆m)T ∈ Rmn, q̃ = (q1,q2, . . . ,qm)T ∈ Rmn

qi∈ Rn

Lm ∈ Rm×m G
L = Lm⊗ In ∈ Rmn×mn ⊗ In

g (u)
Rn S ⊆ Rn g (u) = argv∈S minv−u

Assume that  the desired relative position for  robot i to  the virtual
reference  center  is  known,  so  the  desired  formation  for  the  multi-
robot  system  is  predescribed  by .  Then,  we  define

 with
 to  denote  an  estimated  solution  of  (1)  by  robot i.  Let

 be  the  Laplacian  matrix  of  graph  and
, where  is the Kronecker product and  is

n-dimensional  identity  matrix.  Besides,  a  function  is  called  a
projection  operator  from  to  if ,
where S is a closed convex set.

Lemma 1: Problem (1) with respect to q subject to constraints (2)
and (3) is equivalent to the following optimization problem
 

min f̃ (q̃) =
m∑

i=1

f i
(
qi
)
=

1
2

m∑
i=1

∥pi−qi+

m∑
j=1

χi j∆
i j∥2

 

s.t. L (q̃−∆) = 0, q̃ ∈Ω (4)
Ω =
∏m

i=1Ω
iwhere  is the Cartesian product.

q1−∆1 = q2−∆2 = · · · = qm−∆m

L (q̃−∆) = 0

Proof: Since all the robots share the same coordinate of the virtual
reference  center,  we  have ,
which follows the equality constraint . ■

G

q̃∗ ∈Ω ⊆ Rmn

ỹ∗ ∈ Rmn

Lemma 2  [10]:  Assume the  graph  of  the  multi-robot  system is
undirected and connected, α is a positive constant. Then the optimal
solution  to  (4)  can  be  represented  by  if  and  only  if
there exists  such that
 {

q̃∗−g
[
q̃∗−α

(
∇ f̃ (q̃∗)+Lỹ∗

)]
= 0

L (q̃∗−∆) = 0.
(5)

q̃k = q̃ (k) h̃k = h̃ (k)
We  use  the  subscript  to  simplify  the  formulas  of  the  iterations,

, . From (5), the proposed algorithm to solve the
equalities is described as
 q̃k+1 = g

[
q̃k −α

(
∇ f̃ (q̃k)+ h̃k +L (q̃k −∆)

)]
h̃k+1 = h̃k +L (q̃k+1−∆)

(6)

h̃ = vec
(
h1,h2, . . . ,hm

)
where  is the vectorization of matrix.

k+1Robot i generates  its  new  estimate  at  time  according  to  the
following formula:
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(7)
h̃k = LỹkLet , then the algorithm (6) becomes

 q̃k+1 = g
[
q̃k −α

(
∇ f̃ (q̃k)+L (ỹk + q̃k −∆)

)]
ỹk+1 = ỹk + q̃k+1−∆.

(8)

h̃0 = Lỹ0
ỹ0 ∈ Rmn

Lemma 3 [10]: Assume that the initial conditions satisfy 
for  any ,  then  algorithm  (6)  and  algorithm  (8)  are
equivalent.

q̃∗ ∈ Rmn

ỹ∗ ∈ Rmn
Assume  that  is  an  optimal  solution  for  problem  (4).

According  to  Lemma  2,  we  can  get  that  there  exits  to
satisfy the equations in (5).

Lemma  4:  Following  the  above  notations,  we  construct  the
following two functions:
 

M1(q̃k) = ∥q̃k − q̃∗∥2, M2(ỹk) = (ỹk − ỹ∗)T L(ỹk − ỹ∗)
then, we have
 

M1 (q̃k+1)−M1 (q̃k) ≤ − (1−2α) q̃k+1− q̃k
2

 

−2α
(
q̃k+1− q̃∗

)T L
(
ỹk − ỹ∗+ q̃k −∆

)
and
 

M2 (ỹk+1)−M2 (ỹk) = 2
(
q̃k+1− q̃∗

)T L
(
ỹk − ỹ∗+ q̃k −∆

)
 

+ (q̃k+1− q̃k)T L (q̃k+1− q̃k)− (q̃k − q̃∗
)T L
(
q̃k − q̃∗

)
.

Proof: Since the proof is similar with that of Lemma 4 in [11], we
omit it here due to the page limit. ■

G

α < 1/ [2+λ1 (L)] λ1

Theorem 1:  Assume  the  graph  of  the  multi-robot  system to  be
undirected  and  connected.  The  algorithm  in  (6)  is  convergent  if

, where  is the maximum eigenvalue of matrix.
Proof: We construct a Lyapunov function as

 

V (q̃k, ỹk) = M1 (q̃k)+αM2 (ỹk) .
M1 M2The definition of the  and  in V is the same as that in Lemma 4.

From  the  inequalities  in  Lemma  4, assuming  that I is  the  identity
matrix, one gets
 

V (q̃k+1, ỹk+1)−V (q̃k, ỹk)

≤ −(q̃k+1− q̃k)T [I−α (2I+L)] (q̃k+1− q̃k)

−α(q̃k − q̃∗
)T L
(
q̃k − q̃∗

)
.

The rest of the proof is similar with that of Theorem 2 in [11], so
we omit it here due to the page limit. ■

Multi-robot  task  assignment: In  the  process  of  seeking  the
optimal solution, the idea of assignment is also used to find a way to
minimize the total path length of all robots. To solve the problem, we
choose  the  Hungarian  algorithm  (HA)  [12],  through  which  the
optimal  solution  of  the  problem  can  be  obtained  just  by  matrix
transformation.

Ci j = ∥pi−q j∥2
We construct an efficiency matrix C in order to find the minimum

value  of f in  (1)  under  the  constraints  (2)  and  (3),  and
.  According to the basic  principle of  the Hungarian

algorithm, a new matrix, which is obtained by subtracting or adding
the same constant to each element of a row or column of C,  has the
same optimal solution as the original matrix C.

For solving the problem, we first subtract the minimum element of
each row in C, and subtract the minimum element of each column in
C. Then, we can find out the independent zero elements in the matrix
(that is, only one 0 element in each row and column). If the number
of independent zero elements is the same as the order of the matrix,
the  assignment  is  completed.  Otherwise,  the  matrix  needs  to  be
adjusted  and  we  need  to  keep  calculating  until  the  number  of
independent  zero  elements  are  equal  to  the  order  of  the  matrix.
Finally,  we  transform  all  zero  elements  in  matrix  into  one  and  the

χi j = 1

other elements into zero to obtain the optimal matrix. The position of
the non-zero element  represents  the assigned result.  For  example,  if

, it means that the ith robot matches the jth target point.

χi j = 1

After  obtaining  the  optimal  solution,  there  is  only  one  element  in
each row and column of the matrix with the value of 1 and the rest is
0.  The  position  of  the  non-zero  element  represents  the  assigned
result. For example, if , it means that the ith robot matches the
jth  target  point.  Then  we  give  the  Hungarian  task  assignment
algorithm  combining  with  the  proposed  formation  formulas  in
Algorithm 1.

Algorithm  1 Distributed  Formation  Algorithm  with  Virtual
Reference Center

Initialization:
p, q, h, q01: Set , (virtual reference center’s position).

∆,L2: Calculate  and α.
3: Initialize the task assignment matrix χ.
Iterations:
4: while The objective function f is not convergent do

k = 15:　for : Maximum number of iterations do
i = 1: m6:　　for  do

7:　　　the iterations in (7) in distributed manner.
8:　　 end for
9:　 end for
10:  Calculate  the  assignment  matrix χ using  the  Hungarian

algorithm.
11:   Update q and h according to the new assignment matrix χ.
12:   Calculate the values of the objective function and output.
13: end while
14: return q

Simulation  results: In  this  section,  we  will  show  the  optimal
matching between the initial formation and the optimal formation of
the  multi-robot  system  by  a  simulation  example.  We  consider  the
formation  problem  on  a  two-dimensional  plane.  We  set  the  target
formation  is  composed  of  three  concentric  circles,  the  number  of
robots is  48,  and the virtual  reference center is  the origin point.  We
obtain the optimal solution in (4) by the iterations in (6).

The  final  result  is  shown  in Fig.1,  in  which  the  green  points
represent the initial positions of robots, the red points form the final
formation, and the dotted lines represent the relationship and moving
tracks  between  each  robot  and  the  target  point.  Furthermore,  the
value of the objective function f in (1) is shown in Fig.2, from which
we  can  see  that  the  objective  function  decreases  as  the  algorithm
iterates.
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Fig. 1. Optimal formation solved by the proposed algorithm.
 

Compared  with  the  algorithm  in  [11]  for  solving  the  above
formation  problem,  the  proposed  algorithm  gets  the  optimal
formation after 10 projection iterations and 1 task assignment with 1
outer  loop,  but  the  algorithm  in  [11]  needs  20  projection  iterations
and 1 task assignment with 300 outer loop. Therefore,  the proposed
algorithm  simplifies  the  iterations  with  better  performance  for  the
scenario of large-scale formation.
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Conclusions: In  this  letter  we  propose  a  fixed  step  algorithm for
multi-robot  formation  with  virtual  reference  center  and  analyze  its
convergence  to  obtain  the  global  optimal  solution.  Furthermore,  we
combine the Hungarian task assignment algorithm with the proposed
formation  algorithm  and  apply  it  to  the  global  formation
optimization.  The  simulation  shows  the  results  and  some  properties
of the proposed algorithm. The convergence of the algorithm can be
seen  to  be  fast  for  large-scale  formations,  which  is  a  potential
advantage of the algorithm.
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Fig. 2. The evolution of the objective function using the proposed algorithm.
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