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   Dear editor,

Along  with  the  progress  of  science  and  technology  and  the
development  of  social  civilization,  control  system  brings  an
increasingly significant function in daily life. The application field of
control  system is  very  wide,  for  instance,  in  mobile  technology [1],
artificial earth satellite [2], pest control [3], etc.

Ribeiro [4] first put forward the concept of random pulse in 1967.
At present, impulsive control is used in networked control [5], secure
communication [6], etc. In the 21st century, the impulsive control has
been  used  in  synchronization  of  coupled  system,  intelligent  fault
identification,  image  encryption,  etc.  [7]–[9].  Meanwhile,  alternate
control  is  often  applied  to  traffic,  irrigation  of  crop  and  current
switching  control  [10]–[12],  etc.  Adaptive  control  is  often  used  in
robots [13], neural networks [14], etc.

At present, there are lots of means to stabilize a nonlinear system.
For  example,  impulsive  control  [1]–[9],  [15]–[17],  alternate  control
[10]–[12], adaptive control [13], [14], [18], etc. In this letter, the goal
is  to  devise  some  superior  control  systems  after  researching  the
general means of system control being used currently.

C1x (t)
H1 C1x (t)

C2x (t) H2
C3x (t)

In  some  cases,  the  state  is  complicated,  so  the  exact  state  of  the
system  is  not  known.  In  this  letter,  in  order  to  stabilize  the  current
system, we propose a new method, which is called sandwich control
system with dual stochastic impulses (SCSDSI). By derivation, it can
be obtained that the exponential stability criterion of the system is in
terms of a set of linear matrix inequalities (LMIs). Fig.1 reveals the
operating principle of SCSDSI. In the first portion of the cycle, there
exists  a  continuous  input ,  it  ends  stochastically,  and  an
impulse  is  imposed  after .  The  second  portion  also  has

 and  in a similar way to the first one. In the third portion
of  the  cycle,  there  also  exists  a  continuous  input ,  but  no
impulse  anymore.  At  the  end  of  this  letter,  the  use  of  this  method
controls the Chua’s oscillator [19].

Problem statement: A classical nonlinear system is of the form
 {ẋ =Gx (t)+ f (x( t ))+µ (t)

x (t0) = x0
(1)

x ∈ Rn f : Rn→ Rn

f (0) = 0
where  is  the  state  vector,  is  a  continuous
nonlinear  function which satisfies .  Suppose that  there is  a

L = diag(ν1, ν2, . . . , νn) ≥ 0 || f (x) ||2 ≤
xT Lx x ∈ Rn Gx (t)

f (x( t )) µ (t)
(1) x (t0) = x0

diagonal  matrix  so  that 
 for  any .  Concurrently,  is  the  linear  part  of  the

system,  is the nonlinear disturbance, and  is the outside
input of system (1). The initial condition of system  is .

Let T be  the  control  cycle  of  the  system.  m  is  a  nonnegative
integer. In order to stabilize the origin of system (1) by SCSDSI, T is
divided into three parts:

mT mT + θ1 µ (t) =C1x (t)
C1 ∈ Rn×n mT + θ1

H1

●  From  to ,  is  installed,  where
 is  a  constant  matrix,  and  at  time ,  a  stochastic

impulse  occurs;
mT + θ1 mT + θ2 µ (t) =C2x (t)

C2 ∈ Rn×n mT + θ2
H2

●  From  to ,  is  installed,  where
 is  a  constant  matrix,  and  at  time ,  a  stochastic

impulse  occurs;
mT + θ2 (m+1)T µ (t) =C3x (t)

C3 ∈ Rn×n
●  From  to ,  is  installed,  where

 is a constant matrix.
Through the above settings, system (1) can be described as

 

ẋ =Gx (t)+ f (x (t))+C1x (t) , mT < t < mT + θ1
x (t) = x

(
t−
)
+H1x

(
t−
)
, t = mT + θ1

ẋ =Gx (t)+ f (x (t))+C2x (t) , mT + θ1 < t < mT + θ2
x (t) = x

(
t−
)
+H2x

(
t−
)
, t = mT + θ2

ẋ =Gx (t)+ f (x (t))+C3x (t) , mT + θ2 < t ≤ (m+1)T

(2)

C1 C2 C3 H1 H2 ∈ Rn×n T > 0

C1, C2, C3, H1, H2 θ1 θ2

where , , , ,  are constant matrices and 
is the control cycle. Our purpose is to find conditions to make system
(2)  stable.  So,  it  is  of  great  necessity  to  determine

, ,  and T.

P1
λM (P1) λm (P1) PT

1 x ∈ Rn

|| x || PT
1 = P1 > 0

P1 PT
1 = P1 < 0

PT
1 = P1 ≥ 0

PT
1 = P1 ≤ 0

f (x(b− ))

In  this  letter,  the  maximum  eigenvalue,  the  minimum  eigenvalue
and the transpose of a square matrix  are denoted respectively by

,  and .  The  Euclidean  norm of  vector  is
denoted as . When  it is considered that the matrix

 is  symmetric  positive-definite  while,  if ,  it  is
regarded that the matrix is symmetric negative-definite. Furthermore,

 is regarded that the matrix issymmetric positive semi-
definite  and  is  regarded  that  the  matrix  is  symmetric
negative semi-definite.  is defined as
 

f (x(b−)) = lim
t→b−

f (x(t)).

P1 ∈ Rn×n T > 0, g1 > 0 g2 > 0 g3 > 0 θ1 > 0
θ2 > θ1

Theorem  1:  If  there  is  a  symmetric  and  positive  definite  matrix
 and real numbers  , , , ,

and  such that the following inequalities hold:
 

P1G+GT P1+P1C1+CT
1 P1+ϑ1P2

1+ϑ
−1
1 L+g1P1 ≤ 0

 

P1G+GT P1+P1C2+CT
2 P1+ϑ2P2

1+ϑ
−1
2 L+g2P1 ≤ 0

 

P1G+GT P1+P1C3+CT
3 P1+ϑ3P2

1+ϑ
−1
3 L+g3P1 ≤ 0

 

g1θ1+g2(θ2− θ1)+g3(T − θ2)− lnλ1− lnλ2 > 0

then, system (2) has global exponential stability.
Proof: The Lyapunov function constructed is shown as follow:
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Fig. 1. Operating principle of SCSDSI within one control cycle T.
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V1 (x( t )) = xT (t) P1x (t) (3)
thus, it can be obtained that

P1G+GT P1+P1C2+CT
2 P1+ϑ2P2

1+ϑ
−1
2 L+g2P1 ≤ 0Since ,

the following is obtained
 

λm (P1) ||x (t) ||2 ≤ V (x( t )) ≤ λM (P1) ||x (t) ||2. (4)
mT < t < mT + θ1Suppose ,  then  by  (2)  and (4),  the  following is

obtained
 

V̇1 (x) = 2xT P1 ẋ
= xT [P1G+GT P1+P1C1+CT

1 P1]x+2xT P1 f (x)

≤ xT [P1G+GT P1+P1C1+CT
1 P1]x

+ϑ1xT P2x+ϑ−1
1 xT Lx

= −g1V1 (x)+ xT [P1G+GT P1+P1C1+CT
1 P1

+ϑ1P2
1+ϑ

−1
1 L+g1P1]x.

P1G+GT P1+P1C1+CT
1 P1+ϑ1P2

1+ϑ
−1
1 L+g1P1 ≤ 0Since ,

the following formula can be derived
 

V̇1 (x) ≤ −g1V (x) .
Thus,

 

V1 (x( t )) ≤ V1 (x(mT )+)exp(−g1(t−mT )) (5)
mT < t < mT + θ1where .

t = mT + θ1Suppose , then
 

V1(x)|t=mT+θ1 = (x(t−)+H1x(t−))T P1(x(t−)+H1x(t−))

= x(t−)T (I+H1)T P1(I+H1)x(t−)
≤ λ1V1(x(t−)) (6)

λ1 = λM (( I+H1)T P1(I+H1))/λm (P1)where .
mT + θ1 < t < mT + θ2Suppose , then

 

V̇1 (x) ≤ vxT [P1G+GT P1+P1C2+CT
2 P1]x

+ϑ2xT P2
1x+ϑ−1

2 xT Lx

= −g2V1 (x)+ xT [P1G+GT P1+P1C2+CT
2 P1

+ϑ2P2+ϑ−1
2 L+g2P1]x.

 

V̇1 (x) ≤ −g2V1 (x) .
Thus,

 

V1 (x( t )) ≤ λ1V1 (x(mT + θ1)−)
exp(−g2(t−mT − θ1)) (7)

mT + θ1 < t < mT + θ2where .
t = mT + θ2Suppose , then

 

V1 (x) |t=mT+θ2 ≤ λ2V1 (x( t− )) (8)
λ2 = λM (( I+H2)T P1(I+H2))/λm (P1)where .

mT + θ2 < t ≤ (m+1)TSuppose , then,
 

V̇1 (x) ≤ xT [P1G+GT P1+P1C3+CT
3 P1]x

+ϑ3xT P2
1x+ϑ−1

3 xT Lx

= −g3V1 (x)+ xT [P1G+GT P1+P1C2+CT
3 P1

+ϑ3P2
1+ϑ

−1
3 L+g3P1]x.

P1G+GT P1+P1C3+CT
3 P1+ϑ3P2

1+ϑ
−1
3 L+g3P1 ≤ 0Since ,

the following is obtained
 

V̇1 (x) ≤ −g3V1 (x) .
Thus,

 

V1 (x( t )) ≤ λ2V1 (x(mT + θ2)−)
exp(−g3(t−mT − θ2)) (9)

mT + θ1 < t ≤ (m+1)Twhere .
Similar to the method used in [17], we get.

m = 0Case 1: 
0 < t < θ1Subcase 1: Suppose , then

 

V1 (x( t )) ≤ V1 (( x (0))exp(−g1t)
hence,
 

V1 (x(θ1)−) ≤ V1((x(0))exp(−g1θ1).
t = θ1Subcase 2: Suppose , it can be obtained that

 

V1 (x(θ1 )) ≤ λ1V1 (( x (0))exp(−g1θ1).
θ1 < t < θ2Subcase 3: Suppose , then

 

V1 (x( t )) ≤ λ1V1 (x(0))exp(−g1θ1−g2(t− θ1))
and
 

V1 (x(θ2)−) ≤ λ1V1 (x(0))exp(−g1θ1−g2(θ2− θ1)).
t = θ2Subcase 4: Suppose , it can be obtained that

 

V1 (x(θ2 )) ≤ λ1λ2V1 (( x (0))exp(−gθ1−g(θ2− θ1 )) .
θ2 < t ≤ TSubcase 5: Suppose , then

 

V1(x(t) ≤ λ2V1((x(θ2)−))exp(−g3(t− θ2))
≤ λ1λ2V(x(0))exp(−g1θ1
−g2(θ2− θ1)−g3(t− θ2))

and
 

V1 (x(T )) ≤ λ1λ2V1 (x(0))exp(−g1θ1
−g2(θ2− θ1)−g3(T − θ2)).

n+1 : m = nCase .
nT < t < nT + θ1Subcase 1: Suppose , then

 

V1 (x( t )) ≤ λn
1λ

n
2V1 (x (0))exp(−ng1θ1−ng2(θ2

− θ1)−ng3(T − θ2)−g1(t−nT )) . (10)
t = nT + θ1Subcase 2: Suppose , then

 

V1 (x( t )) ≤ λn+1
1 λ

n
2V1 (x(0))exp(−(n+1)g1θ1

−ng2(θ2− θ1)−ng3(T − θ2)). (11)
nT + θ1 < t ≤ nT + θ2Subcase 3: Suppose , then

 

V1 (x( t )) ≤ λn+1
1 λ

n
2V1 (x(0))exp(−(n+1)g1θ1

−ng2(θ2− θ1)−ng3(T − θ2)
−g2(t−nT − θ1)). (12)
t = nT + θ1Subcase 4: Suppose , then

 

V1 (x( t )) ≤ λn+1
1 λ

n+1
2 V1 (x(0))exp(−(n+1)g1θ1

− (n+1)g2(θ2− θ1)−ng3(T − θ2)). (13)
nT + θ2 < t < (n+1)TSubcase 5: Suppose , then

 

V1 (x( t )) ≤ λn+1
1 λ

n+1
2 V1 (x(0))exp(−(n+1)g1θ1

− (n+1)g2(θ2− θ1)−ng3(T − θ2)
−g3(t−nT − θ2)). (14)

nT < t ≤ nT + θ1
t = nT + θ1

From  (10)  it  can  be  obtained  that  if ,  and
, then

 

V1 (x( t )) ≤ λn+1
1 λ

n
2V1 (x(0))exp(−(n+1)g1θ1

−ng2(θ2− θ1)−ng3(T − θ2))
≤ V1 (x(0))exp(−(g1θ1+g2(θ2− θ1)
+g3(T − θ2)− lnλ1− lnλ2)n
+ lnλ1−g1θ1 )) .

nT + θ1 < t ≤ (n+1)T
t = (n+1)T

From  (14)  it  is  obtained  that  if ,  and
, then

 

V1 (x( t )) ≤ λn+1
1 λ

n+1
2 V1 (x(0))exp(−(n+1)g1θ1

− (n+1)g2(θ2− θ1)−ng3(T − θ2)
−g3(t−nT − θ2))
≤ V1 (x(0))exp(−(g1θ1+g2(θ2− θ1)
+g3(T − θ2)− lnλ1− lnλ2 )(n+1)) .
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V1 (x( t ))→ 0 t→∞ limt→∞V1(x(t)) =
0

By  the  above  inequalities,  and  the  conditions  of  Theorem  1,  it  is
obtained that  as . Therefore, 

. ■
Numerical  results: The  Chua’s  oscillator  [19]  is  described  as

follow:
 

ẋ1 =ϖ(x2− x2−g1(x1 ))
ẋ2 = x1− x2+ x3
ẋ3 = υx2

(15)

g1 (x)where  ϖ  and  υ  are  two  parameters,  is  a  piecewise  linear
characteristic function of Chua’s diode. It can be defined as
 

g1 (x) = ax+0.5(b−a) (| x+1| − |x−1 |) . (16)
b < a ≤ 0Furthermore, a and b are two constants and .

ϖ = 9.1156, υ = 15.9946,
b = −1.249 05, a = −0.757 35

x (0) = (2,−1,−2)T

Then,  we  select  the  parameters  
 and  which  makes  the  Chua’s

oscillator chaotic at , as shown in Fig.2.
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(a) Chaos of Chua s oscillator in two-dimensional plane
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x(0) = (2,−1,−2)TFig. 2. The chaotic phenomena of Chua’s oscillator with .
 

L = diag(ϖ2(b−a)2,0,0)Setting , and selecting
 

C1 = diag(−7,−8,−5)
 

C2 = diag(−8,−7,−5)
 

C3 = diag(−9,−8,−5)
 

H1 =

 0.08 0 0
0 −0.25 0
0 0 −0.4


 

H2 =

 0.31 0 −0.2
0 −0.5 0
0 0 −0.92


T = 1 ϑ1 = 7,

ϑ2 = 8, ϑ3 = 9, θ1 = 0.0357, θ2 = 0.2321, g1 = 4, g2 = 5, g3 = 6,
with , solving the LMIs listed in Theorem 1, we obtain 

      
and
 

P1 =

 0.6120 −0.1267 0.1338
−0.1267 0.9317 −0.0032
0.1338 −0.0032 0.0793

 .

Therefore,  the  Chua’s  system  (15)  is  exponentially  stable  by
Theorem 1. The time response curves of Chua’s oscillator, using the
proposed method, are shown in Fig. 3.
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Fig. 3. The time response curves of Chua’s oscillator by using SCSDSI.
 

Conclusions: In  this  letter,  a  new  model  of  Sandwich  control
system with dual stochastic impulses (SCSDSI), where the exact time
of occurrence of  impulses  is  uncertain,  was proposed.  It  established
that the chaotic Chua’s circuit can be controlled by this new method.
In fact, by this method, a host of other nonlinear systems in robotics,
electronics and other fields can be controlled.
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