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   Dear editor,

Recently,  researchers  have  obtained  many  new  results  about  the
multi-agent  systems  (MASs)  [1]–[3].  In  [1],  the  fixed-time
cooperative control (FTCC) algorithm of linear MASs with matched
disturbances  was  proposed.  The  nonholonomic  chained-form
dynamics  case  was  considered  in  [2].  In  [3],  the  output  tracking
problem with data packet dropout was solved for high-order MASs.
Moreover,  delay  frequently  occurs  because  of  the  non-ideal  data
transmission  [4],  and  the  corresponding  FTCC  algorithm  of  MASs
with delay was given in [5].

However,  the  above  results  required  continuous  updates  of
controllers. An event-triggered control (ETC) was presented to solve
the consensus problems [6]–[10]. In [7], the lossy sensors and cyber-
attacks were considered for the MASs. In [8], a new distributed ETC
was developed for the heterogeneous linear MASs. Furthermore, the
FTCC  problem  was  solved  for  the  discrete-time  nonlinear  MASs
with  constraints  via  neural-network-based  ETC  control  in  [9].  In
[10],  the  output  consensus problem was addressed for  the  nonlinear
MASs under  unknown control  directions.  In  addition,  some follow-
up  studies  have  employed  a  dynamic  ETC  for  FTCC  [11]–[17].  In
[11],  a  new formation  protocol  was  proposed  as  required  under  the
dynamic ETC. In [12], the dynamic ETC algorithm can guarantee the
agents  converge  exponentially  to  the  average  consensus.  Moreover,
the  formation-containment  control  problem  was  addressed  in  [13].
Furthermore,  a  new  bandwidth-aware  dynamic  ETC  scheduling
algorithm  was  applied  to  the  automated  vehicles  in  [14].  In  [15],  a
new  framework  of  cooperative  control  was  developed  for  MASs
based  on  fault-estimation-in-the-loop.  In  [16],  the  dynamic  ETC
algorithm was  applied  to  industrial  systems  based  on  reinforcement
learning,  and  more  control  algorithms  and  applications  of  dynamic
ETC were given in [17].

Considering the FTCC with the ETC, there are some good results
[18],  [19].  In  [18],  the  dynamic  ETC  was  considered  for  the  linear
MASs  to  guarantee  finite-time  consensus.  In  [19],  fixed-time  ETC
problem  of  leader-follower  MASs  was  considered,  and  a  new  self-
triggered  scheme  was  developed.  However,  the  abovementioned
studies  need  continuous  listening.  Hence,  some new ETC strategies
were  designed  in  [20]–[23].  In  [20],  the  FTCC  consensus  was
obtained  via  ETC,  and  the  input  delay  was  considered  in  [21].

Moreover, the output-based FTCC algorithm was developed in [22].
Furthermore,  the  dynamic  mechanism  was  adopted  in  [23].  In
addition,  the  self-triggered  scheme  was  presented  in  [24],  and  the
dynamic  mechanism  was  not  considered  both  in  the  ETC  and  self-
triggered scheme, which may lead to more triggering times.

Motivated  by  these  existing  literature,  we  investigate  the  FTCC
problem  of  delayed  leader-follower  MASs  subject  to  external
disturbances via dynamic ETC. However,  the dynamic ETC implies
less information exchange. Hence, the difficulty is how to obtain the
FTCC  when  the  dynamic  ETC  is  considered.  The  contributions  are
listed  as  follows.  First,  different  from  the  leaderless  FTCC  results
based  on  ETC  [18],  [21]–[23],  we  additionally  consider  situations
that include a dynamic leader. Second, compared with the triggering
mechanism  in  [19],  [20],  [24],  a  new  dynamic  ETC  mechanism  is
designed herein, which can effectively reduce triggering times under
the  same  convergence  rate.  Third,  the  consensus  tracking  can  be
reached  in  a  finite  time  under  arbitrary  initial  conditions  even  with
input delay and external disturbances. Furthermore, few results have
been  reported  for  the  practical  FTCC  problem  for  delayed  leader-
follower MASs via dynamic ETC hitherto.
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Preliminaries: Consider  an  undirected  graph  with   nodes.
The  Laplacian  matrix  and  the  can  be  seen  in  [19].
The  delayed  MASs  have  followers  and  one  leader,  and  the
dynamics models are described as
 

ẋi (t) = ui (t−τi)+ωi (xi (t) , t) , i ∈ {1, . . . ,N}
ẋ0 (t) = u0 (t) (1)

xi (t) x0 (t) ui (t) u0 (t)
τi ωi (xi (t) , t)

where  and   are  the  states;  and   are  the
controllers;  is  the  known  delay,  and  is  the  unknown
disturbance.

ϖ
ū |ωi (xi (t) , t)| ≤ϖ |u0 (t)| ≤ ū

Assumption 1: There are two non-negative and known constants 
and  such that  and .

ai0 > 0
Assumption 2: In this paper,  we assume that the undirected graph

of the followers is connected and at least one .
V (x (t))

V̇ (x (t)) ≤ −η1Vµ (x (t))−η2Vν (x (t))+ ι η1 > 0 η2 > 0
ι > 0 µ ∈ (0,1) ν ∈ (1,∞)

Lemma 1 [24]: Consider the system (1), there is a  satisfying
,  where , ,

, ,  is  the ratio of  positive odd numbers;  in
addition, the system (1) is practical fixed-time stable, and we have
 lim

t→T
x (t) |V ≤min

η− 1
µ

1

(
ι

1−Θ

) 1
µ
,η
− 1
ν

2

(
ι

1−Θ

) 1
ν




Θ ∈ (0,1) T ≤Tmax := 1/(η1Θ(1−
µ))+1/(η2Θ (ν−1))
with a constant , and settling time 

.
X ∈ R 0≤|X|−X tanh (ΨX)≤

Π/Ψ Ψ >> 1 Π = 0.2785
Lemma 2 [24]: For any , it yields that 

, where  and .
Main  results: Herein,  we  investigate  how  to  achieve  FTCC  via

dynamic Zeno-free ETC. Firstly, define the following state error:
 

ei (t) = x̂i (t)− x0 (t) (2)
x̂i (t) = xi (t)+

r t
t−τiui (T )dT

ςi = xi (t)− x0 (t)
where .  In  addition,  the  tracking  error
is written as .

iWe present the controller of follower  as follows:
 

ui (t) = −η1γ
ν
i

(
ti
k

)
−η2 tanh

(
Ψγi
(
ti
k

))
−η3γi

(
ti
k

)
(3)

γi(t) =
∑N

j=1 ai j(x̂i(t)− x̂ j(t))+ai0ei(t) η1 η2

ν ∈ (1,∞) η3 > 0 ti
k

i t ∈ [ti
k, t

i
k+1)

Ei(t) = η1γ
ν
i (ti

k)+η2 tanh(Ψγi(ti
k))+η3γi(ti

k)−
η1γ
ν
i (t)−η2 tanh(Ψγi(t))−η3γi(t)

with ,  where , ,  and
 are  the  same  parameters  in  Lemma  1, ,  is  the

latest  triggering  instant  of  follower ,  and .  The

measurement error  

.
Define the following triggering function:

 

Γi (t) = Θ
(
|Ei (t)| − ϵη3 |γi (t)| − ϵη2− ϵη1

∣∣∣γνi (t)
∣∣∣) (4)
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ϵ ∈ (0,1) Θ > 0
Ξi (t)

where  and  .  According  to  our  results  [24]  and
motivated  by  [12],  we  define  a  dynamic  variable ,  which  is
written as
 

Ξ̇i (t) = δ |γi (t)|
(
ϵη1
∣∣∣γνi (t)

∣∣∣+ ϵη2+ ϵη3 |γi (t)| − |Ei (t)|
)

 

−ρ1Ξ
ν+1

2
i (t)−ρ2Ξ

1
2
i (t)−ρ3Ξ

2
i (t) (5)

δ ∈ (0,1) Ξi (0) ρ1 ρ2 ρ3where , , , , and  are positive constants.
Remark  1:  The  dynamics  models  considered  in  this  paper  are

similar to the case in [24]. However, a new dynamic Zeno-free ETC
mechanism  is  constructed  herein,  which  can  effectively  reduce
triggering times. If the dynamic triggering mechanism is excluded, it
will  be  the  result  in  [24].  In  [18],  the  finite-time  consensus  was
obtained  via  dynamic  ETC  for  linear  MASs.  In  this  paper,  the
consensus  tracking  can  be  reached  in  a  finite  time  under  arbitrary
initial conditions even with input delay and external disturbances.

Ξi (t)Based on , the triggering condition is constructed as
 

ti
k+1 = inf{t > ti

k |Γi (t) ≥ Ξi (t)} . (6)
i Γi (t) ≤ Ξi (t)

|Ei (t)| ≤ ϵη1
∣∣∣γνi (t)

∣∣∣+ ϵη2+ ϵη3 |γi (t)| Ξi (t)/Θ

Thus,  for  follower ,  one  derives ,  which  implies

+ .

Ξ̇i(t) ≥ −ρ1Ξ
ν+1

2
i (t)−ρ2Ξ

1
2
i (t)−

ρ3Ξ
2
i (t)− (δ/Θ)|γi(t)|Ξi(t) Ξi (t) ≥ exp(

r t
0χi (s)ds)

× Ξi (0)>0 χi (t) = −ρ1Ξ
ν−1

2
i (t)−ρ2Ξ

−12
i (t)−ρ3Ξi (t)−

(δ/Θ) |γi (t)| t ≥ 0

Based  on  (5)  and  (6),  we  have 
. Thus, we have 

 with  
 for all .

η2 (1− ϵ) > ϖ+ ū√
4η3ρ3 (1− ϵ) ≥ (1−δ)/Θ

Theorem 1:  For  the  MASs,  if  the  inequalities ,
and  hold,  the  fixed-time  cooperative
tracking problem is addressed.

V (t) = (1/2)eT (t)He (t)+∑N
i=1Ξi (t) e (t)= [e1 (t) ,e2 (t) , . . . ,eN (t)]T x̂i (t)=

xi (t)+
r t

t−τiui (T )dT ˙̂xi (t) = ui (t)+ωi (xi (t) , t)

Proof: Choose the Lyapunov function as 
, where . Utilizing 

,  it  yields  that .
Then, we have
 

V̇ (t) =
N∑

i=1

γi (t) (ui (t)+ωi (xi (t) , t)−u0 (t))

+

N∑
i=1

δ |γi (t)|
(
ϵη1
∣∣∣γνi (t)

∣∣∣+ ϵη2+ ϵη3 |γi (t)| − |Ei (t)|
)

−ρ1

N∑
i=1

Ξ
ν+1

2
i (t)−ρ2

N∑
i=1

Ξ
1
2
i (t)−ρ3

N∑
i=1

Ξ2
i (t)

≤ (1−δ)
N∑

i=1

|γi (t)| |Ei (t)| −η1 (1− ϵδ)
N∑

i=1

γν+1
i (t)

−η2 (1− ϵδ)
N∑

i=1

|γi (t)|+
(
ϖ+

−
u
) N∑

i=1

|γi (t)|

+
η2ΠN
Ψ
−ρ3

N∑
i=1

Ξ2
i (t)−ρ2

 N∑
i=1

Ξi (t)


1
2

−ρ1N
1−ν

2

 N∑
i=1

Ξi (t)


ν+1

2

−η3 (1− ϵδ)
N∑

i=1

γ2
i (t)

≤ −η1 (1− ϵ)N 1−ν
2

 N∑
i=1

γ2
i (t)


ν+1

2

+
η2ΠN
Ψ

−
(
η2 (1− ϵ)−ϖ− −u

) N∑
i=1

γ2
i (t)


1
2

 

−ρ1N
1−ν

2

 N∑
i=1

Ξi (t)


ν+1

2

−ρ2

 N∑
i=1

Ξi (t)


1
2

. (7)

γi(t) λmaxeT (t)He(t) ≥∑N
i=1 γ

2
i (t) ≥ λmineT (t)He(t) λmin λmax

H V̇(t)
V̇(t) ≤ −(η2(1− ϵ)−ϖ− ū)(2λmin)

1
2 ((1/2)eT (t)He(t))

1
2 −N 1−ν

2 η1(1− ϵ)
(2λmin)

ν+1
2 ((1/2)eT (t)He(t))

ν+1
2 −ρ1N

1−ν
2 (
∑N

i=1Ξi(t))
ν+1

2 −ρ2(
∑N

i=1Ξi(t))
1
2+

η2ΠN
Ψ
≤ −αV

1
2 (t)−2

1−ν
2 βV

ν+1
2 (t)+ η2ΠN

Ψ
α =min{ρ2,

(η2(1− ϵ)−ϖ− ū)(2λmin)
1
2 } β=min{ρ1N

1−ν
2 ,N 1−ν

2 η1(1−ϵ)×
(2λmin)

ν+1
2 }

From  the  definition  of ,  we  have 
, where  and  are the smallest

and the largest eigenvalues of . Hence, the  can be written as

,  where 
 and 

.
limt→T (x̂) V(t) ≤ Y =min{α−2( η2ΠNΨ (1−Θ) )2,

2
ν−1
ν+1 ( η2ΠNβΨ(1−Θ) )

2
ν+1 } T (x̂) ≤ Tmax =

2
αΘ+

2
βΘ(ν−1)∑N

i=1 γ
2
i (t) ≤ 2λmax(Y −∑Ni=1Ξi(t)) ≤ 2λmaxY

t = T (x̂) |
r t

t−τi ui(T )dT | ≤ Ȳ = τi((2NλmaxY)
ν
2+

η2tanh(Ψ
√

2λmaxY)) t = T (x̂)+τi lim
t→T (x)

x̂i(t) =
xi(t)+

r t
t−τiui(T )dT |x̂i(t)− x0(t)| ≤ 2Y/λmin

|xi(t)− x0(t)| ≤ 2Y/λmin+ Ȳ t=T (x) ≤ Tmax+max{τ1, . . . ,
τN }

T (x) ≤ 2/(αΘ)+2/(βΘ(ν−1))+max{τ1, . . . , τN }

Then,  it  follows  that 

, and we can derive ,
which  means  that 
when ,  and 

 when . Because of 
 and  ,  we  can  derive

 when  
. The practical fixed-time cooperative tracking is reached, and it

follows that . ■
Remark 2: Compared with the results in [23], we consider the input

delay  and  external  disturbances  simultaneously  herein.  First,  the
model  reduction  method  was  adopted  in  the  state  error  to  solve  the
input delay problem. Then, the upper bound of the convergence time
can be  obtained,  which is  related to  the  input  delay.  Furthermore,  a
dynamic leader is considered.

Ξi (t) = 0

Remark  3:  Different  from  the  triggering  mechanism  in  [24],  an
improved dynamic ETC mechanism is constructed herein, which can
effectively reduce triggering times under the same convergence rate.
Due  to  the  existence  of  the  new  dynamic  variable,  the  form  of  our
controller  and  measurement  error  have  also  become  more
complicated  to  ensure  the  fixed-time  convergence  of  the  MASs.  If
the variable , it will be the case in [24].

Theorem 2:  Under the abovementioned studies,  the dynamic ETC
is Zeno-free.

D+|Ei(t)| ≤ (η1ν|γν−1
i (t)|+η3+η2Ψ(1− tanh2

(Ψγi(t))))|γ̇i(t)| ≤ (η1ν(2λmaxV(0))
ν−1

2 +η2Ψ+η3)|γ̇i(t)| ≤ Λ1|
∑N

j=1 ai j×
( ˙̂xi(t)− ˙̂x j(t))+ai0ėi(t)| ≤ Λ1(|∑Nj=1 li ju j(t)|+ai0ū+2hiiϖ) ≤ Λ1Λi,2,

Λ1 = η1ν(2λmaxV(0))
ν−1

2 +η2Ψ+η3 Λi,2 =
∑N

j=1 |li j|(η1×
(2λmaxV(0))

ν
2 +η2+η3(2λmaxV(0))

1
2 )+ai0ū+2hiiϖ

|Ei(t)| ≤
r t

tik
Λ1Λi,2ds |Ei(ti

k+1)|=ϵη3|γi(ti
k+1)|+ϵη2+

ϵη1|γνi (ti
k+1)|+Ξi(ti

k+1)/Θ≤
r tik+1

tik
Λ1Λi,2ds

ti
k+1− ti

k ≥ϵη2/(Λ1Λi,2) 0

Proof:  We  have 

where , 
.  We  obtain

 ,  and  the 

.  Hence,  it  is  easy  to

obtain  > . ■

λmin = 0.1308 λmax = 5.4256

Simulation results: We will  give a simple simulation example to
demonstrate  the  effectiveness  of  the  algorithm.  According to Fig. 1,
we have  and .

τi = 0.06 ωi (xi (t) , t) = 1.5sin(xi (t)) u0 (t) = 10
cos(60t) ϖ = 1.5 ū = 10

x (0) = [24 −8 12 2 −20 −7]T

x0 (0) = 2 η1 = 1 η2 =15
η3 = 2 ρ1 = 0.6 ρ2 = 0.7 ρ3 = 1 ϵ = 0.2 ν = 7/5 Θ = 0.5
δ = 0.5 Ξi (0) = 30 Ψ = 100

Then,  we  set , , 
,  which  satisfy  Assumption  1  with  and  .

Moreover,  we assume that  and
.  Furthermore,  the  parameters  are  that , ,

 , , , , , , ,
,  ,  .

Ξi (t)
Ξi (t) > 0

Fig. 2 shows the trajectories of the MASs under the dynamic ETC,
and  the  FTCC  is  obtained  in  0.4 s.  The  evolutions of  the  tracking
errors are given in Fig. 3. The triggering instants under the dynamic
Zeno-free ETC of the six followers are depicted in Fig. 4. Moreover,
Fig. 5 shows the evolution of . According to Fig. 5, it is easy to
find that the dynamic variable ,  which implies the validity

LIU et al.: FIXED-TIME COOPERATIVE TRACKING FOR DELAYED DISTURBED MASS UNDER DYNAMIC ETC 931 



of our theoretical results in Theorem 1.
Conclusions: The  FTCC  problem  is  addressed  for  the  delayed

disturbed leader-follower MASs under dynamic ETC. For the FTCC,

the  upper  bound  of  the  convergence  time  can  be  specified  by
choosing appropriate controller  parameters,  which is  independent of
the  initial  conditions.  Compared with  the  traditional  static  ETC,  the
dynamic ETC can effectively reduce triggering times.
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Fig. 1. The communication graph.
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Fig. 2. Trajectories of the MASs.
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Fig. 3. Tracking errors under the dynamic Zeno-free ETC.
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Fig. 4. Triggering instants of six followers.
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