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Adaptive Control with Guaranteed Transient

Behavior and Zero Steady-State Error for Systems

with Time-Varying Parameters
Hefu Ye, and Yongduan Song, Fellow, IEEE

Abstract—It is nontrivial to achieve global zero-error regula-
tion for uncertain nonlinear systems. The underlying problem
becomes even more challenging if mismatched uncertainties and
unknown time-varying control gain are involved, yet certain
performance specifications are also pursued. In this work, we
present an adaptive control method, which, without the persistent
excitation (PE) condition, is able to ensure global zero-error
regulation with guaranteed output performance for parametric
strict-feedback systems involving fast time-varying parameters in
the feedback path and input path. The development of our control
scheme benefits from generalized t-dependent and x-dependent
functions, a novel coordinate transformation and “congelation
of variables” method. Both theoretical analysis and numerical
simulation verify the effectiveness and benefits of the proposed
method.

Index Terms—Guaranteed performance, uncertain nonlinear
systems, adaptive control, global property

I. INTRODUCTION

WE consider the following SISO nonlinear systems with

fast time-varying parameters [1]






































ẋ1 = φ⊤1 (x1)θ(t) + x2
...

ẋi = φ⊤i (xi)θ(t) + xi+1

...

ẋn = φ⊤n (xn)θ(t) + b(t)u
y = x1

(1)

where xi = [x1, · · · , xi]
⊤ ∈ Ri is the state vector, u ∈ R

is the input, y ∈ R is the output. The regressors φi : R
i →

Rq, i = 1, · · · , n, are smooth mappings and satisfy φi(0) = 0.
θ(t) ∈ Rq and b(t) ∈ R satisfy the following Assumptions [1].

Assumption 1 (Bounded parameters): The parameter θ(t) is

piecewise continuous and θ(t) ∈ Θ0, for all t ≥ 0, where Θ0

is a compact set. The “radius” of Θ0 is assumed to be known,

while Θ0 can be unknown.

Assumption 2 (Sign-definite parameter): The control gain

b(t) is bounded away from zero in the sense that there exists

This work was supported by the National Natural Science Foundation
of China under grant (No.61991400, No.61991403, No.61860206008, and
No.61933012). (Corresponding Author: Yongduan Song.)

H. F. Ye is with Chongqing Key Laboratory of Autonomous Systems, Insti-
tute of Artificial Intelligence, School of Automation, Chongqing University,
Chongqing 400044, China, and also with Star Institute of Intelligent Systems
(SIIS), Chongqing 400044, China. (e-mail: yehefu@cqu.edu.cn).

Y. D. Song is with Chongqing Key Laboratory of Autonomous Systems, In-
stitute of Artificial Intelligence, School of Automation, Chongqing University,
Chongqing 400044, China. (e-mail: ydsong@cqu.edu.cn).

a constant ℓb, such that sgn(ℓb) = sgn(b(t)) 6= 0 and 0 <
|ℓb| ≤ |b(t)|, for all t ≥ 0. The sign of b(t) is known and does

not change.

Stabilization of system (1) satisfying Assumptions 1-2 is

originally investigated in [1]–[3], where it is shown that

asymptotic stability can be achieved by the so-called con-

gelation of variables method and both full state feedback

and partial state feedback approaches are considered. By

“congelation of variables” it means that the time-varying θ(t)
can be substituted by constant ℓθ (ℓθ can be regarded as

the average of θ(t)) to avoid unnecessary time derivatives

while not destroying the certainty equivalence principle [6].

It is noted that if the parameter θ(t) in (1) is unknown but

constant, numerous adaptive control results have been reported

in literature during the past decades, including the well-known

adaptive backstepping control, robust and adaptive control,

adaptive observers, immersion and invariance adaptive control,

neural adaptive control, etc. (see [6]–[12] and the references

therein).

However, real-word engineering systems with fast time-

varying parameters are frequently encountered. For instance,

the value of a circuit resistor might change with temperature,

some morphing aerial vehicles are normally designed with

varying structures and parameters in order to complete some

specific tasks, where the parameters might change with time

or system states swiftly [13], [14]. For this type of systems,

traditional adaptive methods might not be able to ensure

desired control performance in terms of transient behavior

and convergence accuracy, or even unable to maintain system

stability. Efforts have been made (see, for instance [15] and

[16]) in developing adaptive control methods with the aid

of the persistence of excitation (PE) to achieve exponential

stability of linear time-varying systems. In [17], it is shown

that the PE condition is not necessary to stabilize a linear

time-varying system. The results in [18] and [19] imple-

ment the asymptotic/exponential tracking of robotic systems

with/without time-varying parameters. In [20]–[22], along

with observer based adaptive control, projection algorithm

is proposed to ensure the boundedness of slow time-varying

parameter estimate. In the context of adaptive control for time-

varying nonlinear systems, the work [23] explorers a soften

sign function based approach to deal with unknown time-

varying parameters. Recently, an elegant method based on

“congelation of variables” is proposed in [1]–[3] to asymp-

totically stabilize a class of nonlinear system with fast time-

varying parameters, which is further extended to address multi-

http://arxiv.org/abs/2202.06320v1
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agent systems in [4] and [5]. Thus far, meaningful results

on adaptive control of systems with unknown and fast time-

varying parameters are still limited, rendering the underlying

problem interesting yet challenging.

In this note, we address the stabilization problem of fast

time-varying system as described in (1) and our goal is

to achieve zero-error full state regulation and at the same

time maintaining global output performance, i.e., regulating

each state to zero asymptotically and meanwhile confining

the convergence process of the output within an prescribed

boundary. Our development consists of three major steps:

i) disassociating the recursive controller design from the

initial condition of system (1) via two generalized functions

and a novel coordinate transformation; ii) designing adap-

tive laws to estimate fast time-varying parameters involved

in the constrained systems; and iii) separating the lumped

nonlinear terms and exploiting additional nonlinear damping

terms in each virtual control input to finally offset the unde-

sired perturbations caused by unknown time-varying control

gain. With this comprehensive treatment, output convergence

transient behavior is well preset and asymptotic (zero-error)

regulation is achieved in the presence of mismatched time-

varying uncertainties.

Unlike most prescribed performance control methods that

only achieve uniformly ultimately bounded (UUB) for non-

linear systems with unknown but constant parameters [30]–

[41], the proposed method ensures zero-error stabilization and

global output performance for systems with fast time-varying

parameters and mismatched uncertainties.

II. PRELIMINARIES

A. Two Useful functions & Coordinate transformation

Before presenting the control algorithm, we introduce two

useful functions and a novel coordinate transformation, which

plays important roles in control design.

Definition 1: The generalized performance function β(t)
satisfies the following properties:

• β(t) : [0,∞) → R+ is a n-times differentiable function;

• β(0) = 1 and limt→+∞ β(t) < 1;

• β(t) ∈ L∞ and β̇(t) ∈ L∞, ∀t ∈ [0,+∞).

Remark 1: There are many (in fact, infinite number of) func-

tions that satisfy the aforementioned properties. For example,

β(t) =

{

(1− β∞)
(

T−t
T

)n
+ β∞, 0 ≤ t < T

β∞, t ≥ T ;
(2)

where β∞ = limt→+∞ β(t), T > 0 is a constant and n
is the system order. Note that the performance function is

not necessarily monotonically decreasing, which might be

advantageous in various applications, e.g., when the system

time-varying parameter changes strongly or the system is

perturbed by some calibration so that a large error would

enforce a large input action.

Definition 2: The generalized normalized function ψ(x)
satisfies the following properties:

• ψ(x) : R → (−1, 1) is a monotonically increasing and

n-times differentiable function;

• limx→±∞ ψ(x) = ±1 and ψ(0) = 0;

• ψ′(x) is bounded below by a positive constant over

[0,∞), where ψ′(x) = dψ
dx

.

Remark 2: We list two choices for ψ(x) as follows:

ψ(x) = x√
x2+1

; ψ(x) = tanh(x), (3)

and for the above two choices, we have:

ψ′(x) = 1
(
√
x2+1)3/2

; ψ′(x) = sech2(x). (4)

Denoting the inverse function by ψ−1, it is seen that1

ψ′(x) > 0, ψx ,
ψ

x
> 0,

ψ−1(β(0)) = ψ−1(1) = +∞.
(5)

Making use of such β(t) and ψ(x), we construct the following

coordinate transformation function to enable the properties on

z and x as stated in Lemma 1.

z(β, ψ) =
β(t)ψ(x)

β2(t)− ψ2(x)
. (6)

Lemma 1: For any β(t) as defined in Section-II and z
as defined in (6), if ∀t ≥ 0, z ∈ L∞, then it holds that

−ψ−1(β) < x < ψ−1(β).
Proof: We first consider the moment when t = 0. Ac-

cording to β(0) = 1 and ψ(x) ∈ (−1, 1), we know that

β(0) − ψ(|x(0)|) > 0, i.e., |x(0)| < ψ−1(β(0)). Next, we

continue the proof by contradiction. Note that z ∈ L∞ implies

β(t) − ψ(x) 6= 0. Assume that ∃ t ∈ (0,∞) such that

|x(t)| ≥ ψ−1(β(t)), i.e., β(t) − ψ(|x(t)|) ≤ 0. As a result,

by recalling that β(0) − ψ(x(0)) > 0, we have ∃ t1 ∈ (0, t]
causes ψ(|x(t1)|) = β(t1), and therefore yields an unbounded

z1, which, however, contradicts the premise z ∈ L∞. This

completes the proof. �

This coordinate transformation introduced in (6) appears

as a more straightforward approach compared to the tuning

function modified transformation [34] and the multiple cas-

cade transformation [28], by reason of its simple structure,

smoothness and nonsingularity.

B. Control Objective

The control objective is to design an adaptive control law

such that the closed-loop system is asymptotically stable, while

the system output is always confined within a prescribed

performance funnel ̥β(t). Furthermore, the boundary of ̥β(t)
is β(t), which can be pre-defined at user’s will, irrespective

of initial conditions.

Remark 3: If we choose a function β(t) with an exponential

decay rate, e.g., β(t) = (1 − β∞)e−t + β∞. By qualitative

analysis, ψ−1(β) is a function that increases monotonically as

β → ∞, and β(t) is a function that decays exponentially as

t → ∞, thus ψ−1(β) is a function that decays exponentially

as t → ∞ and ψ−1(β(0)) → ∞. Therefore, |x| < ψ−1(β)
implies that there exist some positive constants l1, l2 and ǫ
such that |x(t)| < l1e

−l2t + ǫ for any x(0), resulting in that

the system output converges at least e−l2t exponentially fast to

1Property 1 and Property 2 of ψ(x) ensue that ψx is positive and invertible
for all x ∈ R.
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the corresponding set. Similarly, if we choose β(t) as defined

in (2), one can find that the system output converges to a

prescribed set at a prescribed time T , a favorable feature in

practice.

III. MOTIVATING EXAMPLE

Consider the following first-order system2

ẋ = b(t)u+ θ(t)x (7)

where x is the state, u is the control input, θ(t) ∈ R satisfies

Assumption 1, and b(t) ∈ R satisfies Assumption 2.

By using the coordinate transformation (6), we can convert

(7) into the following z-dynamics

ż = Π(x, t)ẋ +Ψ(x, t) (8)

with

Π(x, t) =
(β2(t)− ψ2(x))2β(t)ψ′(x) + 2ψ2(x)ψ′(x)β(t)

(β2(t)− ψ2(x))2

Ψ(x, t) =
β̇(t)ψ(x)(β2(t)− ψ2(x))− 2β2(t)β̇(t)ψ(x)

(β2(t)− ψ2(x))2
,

where Ψ and Π are known time-varying smooth functions and

are bounded as long as z is bounded. In addition, Π > 0
for ∀z ∈ L∞. These facts ensure the controllability of (8).

Motivated by [1], we design u = ρ̂ū, with ρ̂ being an

“estimate” of 1
ℓb

, and ū being the compensating signal to be

specified later, then (8) can be written as

ż =Π
(

ū+ θ̂x+ (θ(t)− ℓθ)x + (b(t)− ℓb)ρ̂ū

+ (ℓθ − θ̂)x − ℓb

(

1

ℓb
− ρ̂

)

ū+
Ψ

Π

) (9)

where θ̂ is an “estimate” of ℓθ, Ψ/Π ∈ L∞ for ∀z ∈ L∞. Note

that ℓθ and ℓb are unknown constants, which can be regarded

as the “average” of θ(t) and b(t), respectively. Consider the

Lyapunov function candidate

V =
1

2
z2 +

1

2γθ
(ℓθ − θ̂)2 +

|ℓb|

2γρ

(

1

ℓb
− ρ̂

)2

. (10)

Then, the derivative of (10) along the trajectory of (7) becomes

V̇ =Π

(

zū+ zθ̂x+ z∆θx+
Ψ

Π
z

)

+ Πz∆bρ̂ū+
1

γθ
(ℓθ − θ̂)(γθzΠx−

˙̂
θ)

−
|ℓb|

γρ

(

1

ℓb
− ρ̂

)

(

γρsgn(ℓb)zΠū+ ˙̂ρ
)

(11)

where ∆θ = θ(t)− ℓθ and ∆b = b(t)− ℓb. The last two lines

of (11) will be canceled by the following adaptive laws:

˙̂
θ(x, β) = γθzΠx, (12)

˙̂ρ = −γρsgn(ℓb)zΠū. (13)

2For simplicity, arguments of functions are sometimes omitted if no
confusion is occur.

Remark 4: Note that z(x, β) as defined in (6) is a smooth

function and x = 0 ⇔ z = 0, thus we can directly express x
as x = W (x, β)z by using Hadamard’s Lemma (see [1]–[3],

[26]), where W (x, β) is a bounded smooth mapping for every

bounded z. As a matter of fact, here W = x
z
= x(β2−Ψ2)

βΨ =
β2−Ψ2

βΨx
∈ R+.

According to Remark 1 and formula (5), the perturbation

terms in the first line of (11) can be rewritten as

zθ̂x+
Ψ

Π
z =zθ̂x+

Ψx
Π
zx =

(

θ̂ +
Ψx
Π

)

W (x, β)z2

z∆θx =∆θW (x, β)z2.

(14)

By applying Young’s inequality, then

(

θ̂ +
Ψx
Π

)

W (x, β)z2 ≤
1

2

(

θ̂ +
Ψx
Π

)2

W 2z2 +
1

2
z2,

(15)

∆θW (x, β)z2 ≤
1

2
δ∆θW

2z2 +
δ∆θ
2
z2, (16)

where δ∆θ ≥ |∆θ| is the “radius” of the compact set of θ(t).
Now consider ū with a nonpositive nonlinear gain as

ū =−

(

k

Π
+

1

2
(δ∆θ + 1) +

W 2

2

(

θ̂ +
Ψx
Π

)2
)

z

=− κ(x, β, θ̂)z

(17)

where k > 0.

We are now in the position to state the following theorem.

Theorem 1: System (7) with the control law (17)

and the parameter update laws (12) and (13) is glob-

ally asymptotically stable. Furthermore, the state x(t) is

always confined within the prescribed performance fun-

nel ̥β :=
{

(t, x) ∈ R≥0 × R
∣

∣|x(t)|/ψ−1(β(t)) < 1
}

, and

ultimately converges to zero. Furthermore, limt→∞ θ̂ and

limt→∞ ρ̂ exist (although not necessarily equal to ℓθ and 1/ℓb,
respectively). In addition, the control input and update laws

remain uniformly bounded over [0,∞).
Proof: Substituting (17) into (11), yields

V̇ ≤− kz2 +Π

(

z∆θx−
1

2
δ∆θW

2z2 −
δ∆θ
2
z2
)

+Π



zθ̂x−
β̇

β
zx−

W 2

2

(

θ̂ −
β̇

β

)2

z2 −
1

2
z2





+Πz∆bρ̂ū

≤− kz2 −Πκ(x, β, θ̂)∆bρ̂z
2.

(18)

Then, substituting (17) into (13) yields ˙̂ρ(t) = γρΠsgn(ℓb)κz
2,

where Π > 0 and κ(x, β, θ̂) > 0. When b(t) > 0, according to

Assumption 2, we can obtain 0 < ℓb < b(t) and thus sgn(ℓb) >
0 and ∆b > 0, implying that ˙̂ρ(t) ≥ 0. It follows from ρ̂(0) >
0 that ρ̂(t) > 0, and therefore z∆bρ̂ū = −κ∆bρ̂(t)z

2 ≤ 0.

Similarly, when b(t) < 0, according to Assumption 2, we can

obtain ∆b < 0, sgn(ℓb) < 0, ˙̂ρ(t) ≤ 0 and therefore z∆bρ̂ū =
−κ∆bρ̂(t)z

2 ≤ 0 by selecting the initial condition ρ̂(0) < 0.

Recalling (12) and (13), and noting the fact −Πκ∆bρ̂z
2 ≤ 0,

it can be concluded that for any bounded initial z(0), V (t) ≤
V (0), which yields z(t), θ̂, ρ̂, and W (x, β) are bounded.
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The boundedness of Π, 1/Π, Ψ and κ is guaranteed

by the boundedness of z and β(t), it follows from (9)

and (18) that ż ∈ L∞ and z ∈ L2. Therefore, invoking

Barbalat’s lemma one can conclude that limt→∞ z(t) =
0, which further indicates that limt→∞ x(t) = 0, hence

the closed-loop system (7) is asymptotically stable. Fur-

thermore, by using Lemma 1, we have x(t) ∈ ̥β =
{

(t, x) ∈ R≥0 × R
∣

∣|x(t)|/ψ−1(β(t)) < 1
}

.

To show the asymptotic constancy of θ̂ and ρ̂, recalling

(12), (13), (18) and the fact that z ∈ L2, we have
˙̂
θ ∈ L1 and

˙̂ρ ∈ L1. Then, by using the argument similar to Theorem 3.1

in [27], it is concluded that θ̂ and ρ̂ have a limit as t → ∞.

Furthermore, it is seen from (12), (13) and (17) that the update

laws
˙̂
θ ∈ L∞, ˙̂ρ ∈ L∞, and the control input u = ρ̂ū ∈ L∞.

This completes the proof. �

IV. DESIGN FOR HIGH-ORDER TIME-VARYING SYSTEMS

Motivated by the design process for the first-order system,

we now explore its applicability to more general higher-order

system as described in (1). For such strict-feedback system,

we use classical backstepping method [25], with additional

special treatment in each step, as detailed in what follows:

Step 1: Let α1 = x2 − z2 and according to (6), we can

convert ẋ1 = φ⊤1 θ(t) + x2 into the following z1-dynamics

ż1 =Π

(

α1 + z2 + φ⊤1 θ(t) +
Ψ

Π

)

=Π

(

α1 + z2 + φ⊤1 θ̂ + φ⊤1 (θ(t)− ℓθ) +
Ψ

Π

+ φ⊤1 (ℓθ − θ̂)
)

.

(19)

where Π(x1, t) and Ψ(x1, t) are given below equation (8),

and ℓθ ∈ Rq is an unknown constant vector. By Hadamard’s

Lemma, one can express the regressor φ1 as φ1(x1) =
Φ1(x1)x1, where Φ1(x1) ∈ Rq is smooth mapping. The third

line of (19) will be treated by the following tuning function

τ1(x1, β) = Γz1Φ1Πx1 (20)

where Γ = Γ⊤ ∈ Rq×q is the positive adaptation gain.

Consider the Lyapunov function candidate

V1 =
1

2
z21 +

1

2
(ℓθ − θ̂)⊤Γ−1(ℓθ − θ̂), (21)

then, by recalling Remark 4

V̇1 =Π

(

z1α1 + z1z2 +
Ψx1

Π
z1x1 + z1φ

⊤
1 θ̂ + z1φ

⊤
1 ∆θ

)

+ (ℓθ − θ̂)⊤Γ−1(τ1 −
˙̂
θ).

(22)

where Ψx1 = Ψ/x1 is positive and invertible for all x1 ∈ L∞.

Invoking Young’s inequality, yields

z1φ
⊤
1 ∆θ = z1Φ

⊤
1 ∆θx1 ≤

δ∆θ
2

Φ⊤
1 Φ1W

2
1 z

2
1 +

δ∆θ
2
z21 (23)

where W1 is shown in Remark 4. The virtual control law α1

is designed as

α1(x1, β̄
(1), θ̂) =−

1

Π
(k1 + ζ1) z1 −

Ψx1

Π
x1 − φ⊤1 θ̂ (24)

where β̄(1) = [β, β̇]⊤, k1 > 0, and

ζ1 =
1

2

(

1

ǫψ
+ δ∆θΠΦ

⊤
1 Φ1W

2
1 +Πδ∆θ + (n− 1)δ∆θ

)

is the nonlinear damping gain with ǫψ > 0 and δ∆θ being the

“radius” of the compact set of θ(t). Π(x1, t) ∈ R+, Φ1 ∈ Rq

and W1 ∈ R are computable functions. The resulting V̇1 is

V̇1 ≤− k1z
2
1 +Πz1z2 −

(n− 1)

2
δ∆θz

2
1 −

1

2ǫψ
z21

+ (ℓθ − θ̂)⊤Γ−1(τ1 −
˙̂
θ).

(25)

The second term Πz1z2 in the right hand side of (25) can be

canceled at the next step.

Step 2: Recall ẋ2 = x3+φ
⊤
2 (x2)θ(t) and let α2 = x3− z3,

we rewrite ż2 = ẋ2 − α̇1 as

ż2 =α2 + z3 −
∂α1

∂x1
x2 −

∂α1

∂θ̂

˙̂
θ −

∂α1

∂β
β̇ −

∂α1

∂β̇
β̈

+ φ⊤2 θ(t) −
∂α1

∂x1
φ⊤1 θ(t).

(26)

Define w2(x2, θ̂, β̄
(1)) = φ2 −

∂α1

∂x1
φ1, then the second line of

(26) can be rewritten as

w⊤
2 θ(t) = w⊤

2 θ̂ + w⊤
2 (θ(t) − ℓθ) + w⊤

2 (ℓθ − θ̂). (27)

Denote θ(t)−ℓθ by ∆θ , and according to Assumption 1, there

exist a known constant δ∆θ such that δ∆θ ≥ |∆θ|. Also note

that z1, and α1(x1, β̄
(1), θ̂) are smooth and α1(0, β̄

(1), θ̂) = 0,

and the θ̂- and β̄(1)-dependent change of coordinates between

z2 and x2 is smooth, invertible, and x2 = 0 ⇔ z2 = 0.

Using Hadamard’s Lemma, one can directly express w2 as

w2 = W⊤
2 (x2, β̄

(1), θ̂)z2, where W2(x2, β̄
(1), θ̂) ∈ R2×q is a

smooth mapping. Therefore, one can calculate that

z2w
⊤
2 (θ(t) − ℓθ) =z2∆

⊤
θ w2 = z2∆

⊤
θ W

⊤
2 z2

≤
1

2
δ∆θ |W2|

2
F
z22 +

δ∆θ
2
z⊤2 z2

=
δ∆θ
2

(

|W2|
2
F
+ 1
)

z22 +
δ∆θ
2
z21

(28)

where z⊤2 z2 = z21 + z22 is used and |W2|F =
√

∑2
i=1

∑q
j=1(W2ij)2 denotes the Frobenius norm. Choosing

the Lyapunov function candidate V2 = V1+
1
2z

2
2 , its derivative

along the trajectories of (1) is

V̇2 ≤− k1z
2
1 +Πz1z2 −

(n− 1)

2
δ∆θz

2
1 −

1

2ǫψ
z21

+ z2α2 + z2

(

−
∂α1

∂x1
x2 −

∂α1

∂θ̂

˙̂
θ −

∂α1

∂β
β̇

)

+
δ∆θ
2

(

|W2|
2
F
+ 1
)

z22 +
δ∆θ
2
z21 + z2w

⊤
2 θ̂ + z2z3

+ (ℓθ − θ̂)⊤Γ−1(Γw2z2 + τ1 −
˙̂
θ).

(29)

According to (29), we design the tuning function as

τ2(x2, β̄
(1), θ̂) = τ1 + Γw2z2. (30)



5

In addition, the virtual control law α2 is constructed as

α2(x2, β̄
(2), θ̂) =−Πz1 − (k2 + ζ2)z2 − w⊤

2 θ̂

+
∂α1

∂x1
x2 +

∂α1

∂β
β̇ +

∂α1

∂β̇
β̈ +

∂α1

∂θ̂
τ2

(31)

where β̄(2) = [β, β̇, β̈]⊤, k2 > 0, and ζ2(x2, β̄
(1), θ̂) is the

nonlinear damping gain, as follows

ζ2 =
1

2

(

δ∆θ |W2|
2
F
+ (n− 1)δ∆θ +

1

ǫψ

)

. (32)

After some simplifications and using (30) and (31), we express

(29) as

V̇2 ≤− k1z
2
1 − k2z

2
2 −

1

2

(

(n− 2)δ∆θ +
1

ǫψ

)

z⊤2 z2

+ z2z3 +

(

z2
∂α1

∂θ̂
+ (ℓθ − θ̂)⊤Γ−1

)

(τ2 −
˙̂
θ)

(33)

where z2z3 can be canceled at the next step.

Step 3: Introducing α3 = x4 − z4 and according to z3 =
x3 − α2, we can transform ẋ3 = x4 + φ⊤3 (x3)θ(t) to the

following z3-dynamics

ż3 =α3 + z4 −
∂α2

∂x1
x2 −

∂α2

∂x2
x3 −

∂α2

∂β
β̇ −

∂α2

∂β̇
β̈

−
∂α2

∂β̈

...
β −

∂α2

∂θ̂

˙̂
θ + w⊤

3 θ̂ + w⊤
3 (ℓθ − θ̂)

+ w⊤
3 (θ(t) − ℓθ).

(34)

Now we choose the Lyapunov function candidate V3 = V2 +
1
2z

2
3 , then

V̇3 ≤− k1z
2
1 − k2z

2
2 −

1

2

(

(n− 2)δ∆θ +
1

ǫψ

)

z⊤2 z2

+ z3z4 +

(

z2
∂α1

∂θ̂
+ (ℓθ − θ̂)⊤Γ−1

)

(τ2 −
˙̂
θ)

− z3





2
∑

j=1

∂α2

∂xj
xj+1 +

2
∑

j=0

∂α2

∂β(j)
β(j+1) +

∂α2

∂θ̂

˙̂
θ





+ z3α3 + z2z3 + z3w
⊤
3 θ̂ + z3w

⊤
3 (ℓθ − θ̂)

+ z3w
⊤
3 (θ(t) − ℓθ)

(35)

where w3(x3, β̄
(2), θ̂) = φ3−

∂α2

∂x1
φ1−

∂α2

∂x2
φ2 ∈ Rq is the new

regressor vector, and it can be verified that w3(0, β̄
(2), θ̂) = 0.

Using the analysis similar to that used in (27)-(28), one can

express w3 as w3 =W⊤
3 (x3, β̄

(2), θ̂)z3, where W3 ∈ R3×q is

a smooth mapping. Therefore, we obtain an upper bound of

the last line of (35), as follows

z3w
⊤
3 (θ(t) − ℓθ) ≤

δ∆θ
2

(

|W3|
2
F
+ 1
)

z23 +
δ∆θ
2
z⊤2 z2. (36)

Then, we design the following tuning function and virtual

control law, respectively

τ3(x3, β̄
(2), θ̂) = τ2 + Γw3z3 (37)

α3(x3, β̄
(3), θ̂) = −z2 − (k3 + ζ3)z3 − w⊤

3 θ̂ +
∂α2

∂θ̂
τ3

+

2
∑

j=1

∂α2

∂xj
xj+1 +

2
∑

j=0

∂α2

∂β(j)
β(j+1) +

∂α1

∂θ̂
Γz2w3

(38)

where β̄(3) = [β, β̇, β̈,
...
β ]⊤, k3 > 0, and

ζ3 =
1

2

(

δ∆θ |W3|
2
F
+ (n− 2)δ∆θ +

1

ǫψ

)

. (39)

Now, in virtue of (37) and (38), we can rewrite V̇3 as

V̇3 ≤−
3
∑

j=1

kjz
2
j + z3z4 −

1

2

(

(n− 3)δ∆θ +
1

ǫψ

)

z⊤3 z3

+

(

z2
∂α1

∂θ̂
+ z3

∂α2

∂θ̂
+ (ℓθ − θ̂)⊤Γ−1

)

(τ3 −
˙̂
θ).

(40)

where z3z4 can be canceled at the next step.

Step i (i = 3, · · · , n − 1): We are now in the position

to summarize the expression of the input signals by previous

design steps.























































zi = xi − αi−1,

wi(xi, β̄
(i−1), θ̂) = φi −

∑i−1
j=1

∂αi−1

∂xj
φj ,

τi(xi, β̄
(i−1), θ̂) = τi−1 + γθwizi,

αi(xi, β̄
(i), θ̂) = −zi−1 − (ki + ζi)zi − w⊤

i θ̂

+
∑i−1

j=1
∂αi−1

∂xj
xj+1 +

∑i−1
j=0

∂αi−1

∂β(j) β
(j+1)

+
∑i−1

j=2
∂αj−1

∂θ̂
Γzjwi +

∂αi−1

∂θ̂
τi,

ζi =
1
2

(

δ∆θ |Wi|
2
F
+ (n+ 1− i)δ∆θ +

1
ǫψ

)

,

(41)

where ki > 0, ǫψ > 0, β̄(i) = [β, β̇, · · · , β(i)]⊤ ∈ Ri+1,

and Wi ∈ Ri×q is a smooth mapping. Based upon (41), the

derivative of Vi = Vi−1 +
1
2z

2
i can be computed as

V̇i ≤−

i
∑

j=1

kjz
2
j + zizi+1 −

1

2

(

(n− i)δ∆θ +
1

ǫψ

)

z⊤i zi

+
(

i−1
∑

j=1

∂αj

∂θ̂
zj+1 + (ℓθ − θ̂)⊤Γ−1

)

(τi −
˙̂
θ).

(42)

Step n: This step is different from the previous steps. On

one hand, the actual control law and update law of θ̂ should

be designed in this step. On the other hand, we need to extend

the congelation of variables for time-varying parameters in the

feedback path to the scenario that time-varying parameters in

the input path.

To proceed, we rewrite ẋn = φ⊤n θ(t) + b(t)u as

żn =w⊤
n θ(t) + b(t)u−

∂αn−1

∂θ̂

˙̂
θ −

n−1
∑

j=1

∂αn−1

∂xj
xj+1

−

n−1
∑

j=0

∂αn−1

∂β(j)
β(j+1)

(43)

where wn = φn−
∑n−1
j=1

∂αi−1

∂xj
φj . The main different will start

from the following design. For the next developments we need
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the following intermediate result by means of u = ρ̂ū

znżn =znw
⊤
n θ̂ + znw

⊤
n (θ(t)− ℓθ) + znw

⊤
n (ℓθ − θ̂)

+ znū+ zn(b(t)− ℓb)ρ̂ū+ znℓb

(

1

ℓb
− ρ̂

)

ū

− zn
∂αn−1

∂θ̂

˙̂
θ − zn

n−1
∑

j=1

∂αn−1

∂xj
xj+1

− zn

n−1
∑

j=0

∂αn−1

∂β(j)
β(j+1).

(44)

where ℓb is an unknown constant which can be regard as

the average of b(t), ρ̂ is an “estimate” of 1/ℓb and denote

b(t) − ℓb by ∆b. Note that we need δ∆θ to construct the

nonlinear damping gain to cancel the effect of unknown θ(t),
as our previous steps do. However, the same method cannot be

used directly for dealing with b(t) since the perturbation term

z1∆bρ̂ū is coupled with the control input. Here we apply a

special way to cope with the unknown time-varying quantities,

i.e., designing ū skillfully to ensure the perturbation term

zn(b(t)− ℓb)ρ̂ū in the second of (44) is always negative.

Consider the Lyapunov function candidate

Vn = Vn−1 +
|ℓb|

2γρ

(

1

ℓb
− ρ̂

)2

(45)

then,

V̇n =V̇n−1 −
|ℓb|

γρ

(

1

ℓb
− ρ̂

)

˙̂ρ

≤−

n−1
∑

j=1

kjz
2
j −

1

2

(

δ∆θ +
1

ǫψ

)

z
⊤

n−1zn−1

+

(

n−1
∑

j=1

∂αj

∂θ̂
zj+1 + (ℓθ − θ̂)⊤Γ−1

)

(τn−1 −
˙̂
θ)

+ zn−1zn + znw
⊤

n θ̂ + znw
⊤

n∆θ + znw
⊤

n (ℓθ − θ̂)

+ znū+ zn∆bρ̂ū− zn

n−1
∑

j=0

∂αn−1

∂β(j)
β
(j+1)

− zn

n−1
∑

j=1

∂αn−1

∂xj
xj+1 − zn

∂αn−1

∂θ̂

˙̂
θ

+ znℓb

(

1

ℓb
− ρ̂

)

ū−
|ℓb|

γρ

(

1

ℓb
− ρ̂

)

˙̂ρ

(46)

where wn = φn −
∑n−1

j=1
∂αn−1

∂xj
φj . Now, to cancel the third

and last lines of (46), we design the update laws for the

parameters θ̂ and ρ̂, as follows

˙̂
θ =τn = τn−1 + Γwnzn

=Γ
(

z1Φ1Πx1 +
n
∑

j=2

wjzj

)

,
(47)

˙̂ρ = −γρsgn(ℓb)znū. (48)

Remark 5: Define Ω(xn, β̄
(n), θ̂) = zn−1 + w⊤

n θ̂ −
∂αn−1

∂θ̂
τn −

∑n−1
j=1

∂αn−1

∂xj
xj+1 −

∑n−1
j=0

∂αn−1

∂β(j) β
(j+1) −

∑n−1
j=2

∂αj−1

∂θ̂
Γzjwn. It can be further verified, for

i = 1, · · · , n − 1, that αi, wi, τi and Ω are smooth,

and αi = wi = τi = Ω = 0 if xi = 0. Note also that the

coordinate transformation

z1 =
β(t)ψ(x1)

β2(t)− ψ2(x1)
(49)

and zi = xi − αi−1 (i > 1) is also smooth, invertible

and xi = 0 ⇔ zi = 0. According to Hadamard’s Lemma,

wn(x, β̄
(n−1), θ̂) and Ω can be expressed as wn =W⊤

n z and

Ω = Ω̄⊤
z, respectively, with z = [z1, · · · , zn]

⊤, Wn ∈ Rn×q

and Ω̄ ∈ Rn being smooth mappings.

Applying Young’s inequality with ǫψ > 0, yields

znΩ = znΩ̄
⊤
z ≤

1

2

(

ǫΩ|Ω̄|
2 +

1

ǫΩ

)

z2n +
1

2ǫΩ
z⊤n−1zn−1,

znw
⊤
n∆θ ≤

δ∆θ
2

(

|Wn|
2
F
+ 1
)

z2n +
δ∆θ
2
z⊤n−1zn−1.

Finally, we choose the actual control law u = ρ̂ū such that

the time-varying perturbed term zn∆bρ̂ū is nonpositive






ū = −κ
(

x, β, · · · , β(n), θ̂
)

zn

κ = kn + 1
2

(

δ∆θ |Wn|
2
F
+ δ∆θ +

1
ǫΩ

+ ǫΩ|Ω̄|
2
) (50)

where kn > 0. Inserting (47)-(50) into (46), yields

V̇n ≤ −

n
∑

j=1

kjz
2
j − κ∆bρ̂(t)z

2
n. (51)

V. STABILITY ANALYSIS

Firstly, it can be shown that ρ̂(t) in the right hand side of

(51) is a monotonic increasing (or decreasing) function by cal-

culating equation (48) as ˙̂ρ = γρsgn(ℓb)κz
2
n. In addition, one

can select ρ̂(0) > 0 when 0 < ℓb ≤ b(t) (in this case, ∆b > 0)

to make sure that ρ̂(t) > 0, thereby obtaining −κ∆bρ̂z
2
n < 0.

Similarly, one can select ρ̂(0) < 0 when b(t) ≤ ℓb < 0 (in this

case, ∆b < 0) to make sure that ρ̂(t) < 0, thereby obtaining

zn∆bρ̂ū = −κ∆bρ̂z
2
n ≤ 0 again. Therefore, formula (51) can

be simplified as V̇n ≤ −
∑n
j=1 kjz

2
j ≤ 0, which guarantees

that z, θ̂, and ρ̂ are bounded for all t ≥ 0.
Next, in view of Remark 4 and the boundedness of z, it

follows that W1, 1/Π and Π are bounded, and therefore τ1 and

α1 are bounded, which further proves the boundedness of x2
along with the coordinate transformation x2 = z2+α1 and the

boundedness of w2 due to (41). Hence W2, τ2 and α2 are also

bounded. Following this line of argument, the boundedness of

state xi, virtual control αi (i = 3, · · · , n− 1), and the actual

control input u are ensured. In addition, it is seen from (47)

and (48) that
˙̂
θ ∈ L∞ and ˙̂ρ ∈ L∞. To show the asymptotic

constancy of θ̂ and ρ̂, it follows from V̇n ≤ −
∑n
j=1 kjz

2
j that

zj ∈ L2, then from (47) and (48) we get θ̂ ∈ L1 and ρ̂ ∈ L1;

by using the argument similar to Theorem 3.1 in [27], it is

concluded that θ̂ and ρ̂ have a limit as t→ ∞.

Finally, it follows from (19), (26), (34), (43) and (51) that

ż ∈ L∞ and z ∈ L2∩L∞, then using Barbalat’s Lemma yields

limt→∞ z(t) = 0, which further indicates that limt→∞ x(t) =
0. Therefore, the closed-loop system is asymptotically stable.

By virtue of Lemma 1, we get the output x1(t) is always

constrained within the prescribed performance funnel ̥β :=
{

(t, x1) ∈ [0,∞)× R
∣

∣|x1(t)|/ψ
−1(β(t)) < 1

}

.
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The above facts prove the following result:

Theorem 2: Suppose that the design procedure is ap-

plied to the nonlinear system (1) with time-varying pa-

rameters. Then, the closed-loop system is asymptoti-

cally stable and the system output x1(t) is always con-

fined within the prescribed performance funnel ̥β :=
{

(t, x1) ∈ R≥0 × R
∣

∣|x1(t)|/ψ
−1(β(t)) < 1

}

and ultimately

decays to zero. Furthermore, limt→∞ θ̂ and limt→∞ ρ̂ exist

but they are not necessarily equal to ℓθ and 1/ℓb. In addition,

the control input and update laws remain uniformly bounded

over [0,∞). �

Remark 6: The proposed controller primarily consists of

three units: robust unit, θ(t)-adaptive unit and b(t)-adaptive

unit. Note that the θ(t)-adaptive unit is completely equivalent

to the design of update laws in classical adaptive control

since we use the unknown constant ℓθ to replace θ(t). The

time-varying perturbation term ∆θ(t) caused by θ(t) − ℓθ
is allocated to the robust unit for processing. This is an

easy-to-understand and easy-to-implement solution, in other

words, the proposed controller is simple in structure and user-

friendly in design. In addition, b(t)-adaptive unit is deliberately

designed for unknown and time-varying control gain, whose

main purpose is to ensure the perturbation term zn∆bρ̂ū ≤ 0,

thereby avoiding the adaptive parameter drifting caused by

unknown gains.

Remark 7: The control scheme involves the selection of

{ki}
n
i=1 > 0, θ̂(0) ≥ 0, ρ̂(0) > 0, δ∆θ > 0, ǫψ > 0, and

Γ > 0, which theoretically can be chosen quite arbitrarily

by users. Certain compromise between convergence rate and

control effort needs to be made when making the selection

for those parameters for a given system. For example, the

parameters ki and δ∆θ are proportional to convergence rate

and control effort in this paper, and thus reducing the input

effort will cause the convergence rate to slow down. However,

it is worth noting that the prescribed constraint rule will not

be violated no matter how the parameters are selected.

Remark 8: Compared with the previous work [29] on

adaptive exponential regulation for systems with time-invariant

parameters, the proposed method provides a simpler solution,

and without loss of final control accuracy, completely elim-

inates the necessity for the control gain to grow with time

ceaselessly.

Remark 9: Different from traditional guaranteed perfor-

mance control (see, for instance, [32]–[34]) that can only

achieve bounded regulation and the size of the regulation

residual set is reversely proportional to the control gain, such

that higher final control precision is essentially at the price

of large control gain, the proposed control method is able to

steer each system state to zero asymptotically without the need

for prohibitively large controller gain. Furthermore, no matter

how small the control gain is, −ψ−1(β) < x1(t) < ψ−1(β)
always holds.

Remark 10: Our control scheme benefits from Chen &

Astolfi’ Method [1]–[3] in dealing with unknown time-varying

parameters, furthermore, by introducing the performance func-

tion and employing a novel coordinate transformation, our

control scheme is able to explicitly address global transient

behavior of system output, together with its steady-state per-

formance.

VI. SIMULATION

To verify the effectiveness of the proposed control method,

we consider the following system3

ẋ1 = θ(t)x1 + x2;
ẋ2 = b(t)u;
y(t) = x1

(52)

with fast time-varying parameters4

b(t) = 2 + 0.1 cos(x1) + sign(x1x2) (53)

θ(t) = 2+0.8 sin(t)+sin(x1x2)+0.2 sin(x1t)+sign(sin(t)).
(54)

It is not difficult to verify that Assumptions 1-2 are satisfied.

The control objective is to make the state x1 moves back

to zero at a prescribed rate no slower than exponential and

ultimately converges to zero. Now we consider three con-

trollers: Controller 1 is the adaptive controller proposed by

Chen & Astolfi in [1]; Controller 2 is the semi-global adaptive

prescribed performance controller which can be obtained by

combining Controller 1 and the controller proposed in [32];

Controller 3 is the global controller proposed in Theorem 2. In

fact, Controller 2 can be viewed as a special case of Controller

3. For fair comparison, we set [x1(0);x2(0)] = [1;−1],
k1 = k2 = γρ = 0.1, δ∆θ = 1, Γ = 0.1I , θ̂(0) = 0
and ρ̂(0) = 0.25 for all controllers. In addition, we select

β(t) = 4e−0.4t + 0.1 and z1 = tan(πx1/(2β)) for Controller

2, and select β1(t) = 0.9e−0.4t + 0.1 for Controller 3.

The responses of the state signals are shown in Figs 1-2,

and the responses of control input signals are shown in Fig

3. The evolution of adaptive parameters θ̂ and ρ̂ are shown in

Fig. 4 and 5, respectively. In addition, we also illustrate the

time-varying parameters θ(t) and b(t) in Fig 6, which shows

that the state-dependent parameters are fast time-varying and

nondifferentiable. From these simulation results, we know that

the proposed controllers outperforms the adaptive controller

in [1], since the transient behavior of the system can be

confined to a prescribed performance boundary. In particular,

compared Controller 1 with Controllers 2-3, one can find a

counterintuitive phenomenon, that is, based on the previous

parameter selection, faster system response can be achieved

without an increase in control effort. In short, all results show

that the proposed methods are powerful enough to stabilize

the nonlinear system with fast time-varying parameters.

3Note that when θ(t) is an unknown constant and b(t) = 1, this model is a
simplified version of the one studied by [29], where the exponential regulation
is proposed for a class of strict-feedback systems with known control gain
and unknown constants θ.

4Here b(t) and θ(t) are fast time-varying parameters and they are only
piecewise continuous yet b(t) may undergo sudden changes. Therefore, some
classical adaptive schemes [17], [21] are not available because those methods
require the parameters be slow time-varying (i.e., here exists a parameter ǫ

such that |θ̇(t)| < ǫ and |ḃ(t)| < ǫ).
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Fig. 1. The evolution of y(t).
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Fig. 6. System time-varying parameters θ(t) and b(t).

VII. CONCLUSION

This work presents an adaptive control strategy with guar-

anteed performance for strict-feedback nonlinear systems in-

volving fast time-varying parameters. It is shown that with

this strategy, not only each system state is regulated to zero

asymptotically, but also the system output is strictly confined

within an exponentially decaying boundary, making system

output well behaved during transient period and steady-state

phase. We start with a simple scalar system with time-

varying parameters in the feedback path and input path to

illustrate our core idea in addressing time-varying parameters

and output performance constraint simultaneously. By using

classical Backstepping technology and nonlinear damping, we

then extend our method to higher-order system and remove

the need for overparametrization. Furthermore, the diversity of

performance function selection and the diversity of normalized

function selection together with the independence on initial

conditions imply the universal of our controller, and simulation

comparisons confirm the effectiveness and benefits of these

methods.

Prior to the work, the prevailing wisdom in adaptive control

in the context of exponential stability for time-varying systems

is that certain persistent excitation conditions (sufficiently rich

signals) must be present. Here in this work we develop a

method that achieves exponential convergence, pointwise in

time, without the need for PE conditions. An interesting future

research topic is to study the exponential stabilization of
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nonlinear systems with unknown time-varying parameters and

control coefficients.
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