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   Dear Editor,

Dimensionality  reduction  (DR)  plays  a  prominent  role  in  the
processing  of  hyperspectral  imagery.  Considering  the  high
dimensionality  of  multiple  features,  this  letter  presents  a  new
unsupervised DR method named multiview locally linear embedding
(MLLE), which captures the local linearity and global nonlinearity of
the  data  sufficiently.  We  formulate  MLLE  as  an  optimization
problem,  where  the  diversity  and  complementarity  of  multiple
features  is  fully  exploited.  An  effective  alternating  optimization
scheme  is  derived,  and  a  linear  model  based  on  ridge  regression  is
extended to alleviate the high correlation among single-view features.
Experimental  results  on  the  Indian  Pines  and  Pavia  University
datasets demonstrate the superiority of our proposed MLLE.

Introduction: Hyperspectral  imaging,  as  an  emerging  technology
in the field of remote sensing, makes it possible to collect data about
spectral  channels  and  spatial  pattern  of  ground  objects  simul-
taneously  [1].  Any  pixel  of  hyperspectral  imagery  (HSI)  can  be
represented by different views [2],  e.g.,  spectral,  texture,  and shape,
providing  detailed  and  complementary  information  on  a  variety  of
applications  especially  in  classification.  Nevertheless,  the  high
dimension  of  multiple  features  also  introduces  several  difficulties,
such  as  the  computational  burden and the  Hughes  phenomenon [3].
Therefore, it is necessary to reduce the dimensionality of HSI, which
learns a common low-dimensional embedding of different views.

Over  the  past  decades,  various  unsupervised  DR  methods,  which
can be categorized into feature selection and feature extraction (FE),
have  been  proposed  for  HSI.  This  letter  will  focus  on  unsupervised
FE.  Instead of  conventional  linear  technique [4],  manifold learning-
based  methods  aim  to  explore  the  nonlinear  structure  of  HSI,
including Isomap [5], locally linear embedding (LLE) [6], Laplacian
eigenmaps (LE) [7], etc. In [8], a local manifold learning is proposed
for  hyperspectral  DR,  which  obtains  a  discriminative  low-
dimensional embedding. To enhance the aggregation of the data, the
work [9] models the scatter information and the dual graph structure
of  HSI.  Additionally,  Laplacian  regularized  collaborative
representation  projection  (LRCRP)  [10]  attempts  to  preserve  the
local manifold structure fully, by adding Laplacian regularization and
local  enhancement  into  the  collaborative  representation  projection.
However, these methods are merely designed for spectral signatures,
and  concatenating  features  from  different  views  as  a  new  vector
serves no practical purpose.

To  conquer  the  aforementioned  difficulties,  a  multiple  features
combining (MFC) framework [2] is presented, which learns a unified
low-dimensional  representation  successfully.  Afterwards,  [11]
investigates  an  unsupervised  approach  which  incorporates  multiple
features  into  orthogonal  nonnegative  matrix  factorization  (ONMF)
for  effective  DR.  Rather  than utilizing the  spatial  feature  directly,  a
novel  FE  approach  based  on  superpixelwise  principal  component
analysis  (SuperPCA)  is  proposed  in  [12],  which  performs  PCA  on

various homogeneous regions.
Among all these methods, the MFC framework grabs our attention.

Firstly,  MFC  constructs  the  weight  matrix  of  each  single  view
separately  based  on  LE.  Then,  the  objective  functions  of  different
views  are  incorporated  as  a  unified  one.  By  optimizing  a  set  of
combination  weights,  a  unified  low-dimensional  embedding  is
obtained. Although the framework has proven to be effective in [2],
[13],  [14],  the  heat  kernels  in  the  weight  matrices  of  all  views  are
artificially  designed,  leading  to  relatively  weak  representation  of
local  manifold  without  exploiting  the  natural  property  of  local
neighbors.  Besides,  when  coping  with  the  out-of-samples  problem,
the linear version of MFC neglects the multicollinearity of features in
single  view,  particularly  in  the  spectral  domain.  Therefore,  in  this
letter,  we  propose  a  new  unsupervised  DR  method  named  MLLE.
Specifically,  MLLE  explores  and  models  the  manifold  structure  of
different observation spaces assuming local linearity. To fully exploit
the  complementary  information  of  various  views,  we  use  the
reciprocal  of  the  combination  weights  to  determine  the  contribution
of  each  view.  Moreover,  we  have  further  extended  to  a  new  linear
model  based  on  the  ridge  regression.  Finally,  experimental  study
verifies  the  effectiveness  of  the  proposed  method.  Compared  to
MFC,  the  classification  performance  of  MLLE  is  significantly
improved, even comparable to those of state-of-the-art techniques.

Proposed method:
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1)  MLLE:  Given  a  hyperspectral  image  with N  pixels,  it  can  be
described  by V  different  views 

, where  is the dimension of features in the vth view.
MLLE  aims  at  learning  a  common  low-dimensional  embedding
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Considering the vth single view, we firstly find k nearset neighbors
of each pixel using pairwise Euclidean distance. Suppose  deno-
tes the jth neighbor of pixel  in the vth view, so the matrix includ-
ing k  nearest  neighbors  (kNN)  of  can  be  denoted  as 

.
Afterwards,  to  explore  the  local  linearity  among  neighboring

pixels, the errors of linear reconstruction should be minimized, which
can be formulated as a following optimization problem:
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where  is  the  weight  vector  including  the
reconstruction  weights  between  the i th  pixel  and  its  neighbors.  Let

, where 1  is a column vector
whose elements are 1. According to the Lagrange multiplier method,
the optimal solution to (1) is denoted as
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By solving (1) of each pixel in single view independently, we get

the coefficient matrices  whose entries meet 

c(v)
i j =

w(v)
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i )

0, otherwise.
(3)

LLE says that  in a  low-dimensional  space,  the linear  combination
between each original feature and its neighbors should be preserved.
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Therefore,  the  goal  of  linear  embedding  in  single  view  can  be
denoted as
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Y
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tr(·)
L(v) := (I−C(v))(I−C(v))T
where  indicates the trace of matrix, I is the identity matrix, and

 encoding  the  objective  function  of vth
view.  Equation  (4)  embeds  the  raw  features  of  HSI  into  a  low-
dimensional space which can be effective on preservation of locally
linear structure.
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In order to combine multiple features as a unified representation, a
simple  and  effective  method  is  to  give  nonnegative  combination
weights  to objective functions of different views.
To avoid the weights being zero, MFC makes a relaxation by setting

 to  replace ,  with ,  which  introduces  an  additional
parameter r .  Assuming  that  is  minimal  over  different
views.  If ,  is  close  to  1.  As r  becomes  larger,  different
weights  will  get  closer.  Let  denoting  the
normalized weights, we have  (where ) as long as the
difference  of  weights  exists.  That  is  to  say,  introducing  may
attenuate  the  contributions  to  the  low-dimensional  embedding Y  of
the  other  views  implicitly.  So  in  this  letter,  we  pick  (i.e.,

)  to  replace ,  which  avoids  the  challenge  of  adjusting r.
And  most  importantly,  this  could  fully  mine  the  diversity  and
complementarity of multiple features. In this case, the calculation of
low-dimensional embedding can be restated as
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αvObviously, the smaller  is, the more important role the vth view
plays  in  the  low-dimensional  representation.  Note  that  (5)  is  a
nonlinearly  constrainted  nonconvex  optimization  problem,  so  it  is
almost  impossible  to  find  the  global  optimal  solution.  Therefore,  in
the  next  section,  we will  adopt  the  alternating  optimization  strategy
to solve it.

2)  Alternating  optimization:  In  order  to  solve  for Y  and  α
simultaneously,  we  develop  an  alternating  iteration  optimization
approach to attaining a local minimum, which is detailed as follows.

a) Fix α and update Y. The optimization can be reduced to
 

argmin
Y

tr
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)
s.t. YYT = I (6)
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L(v)where , which is a symmetric matrix. According to
[15],  the  global  optimal Y  is  given  as  the  eigenvectors  associated
with the smallest d eigenvalues of L.

b) Fix Y and update α. Then, the optimization becomes
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L(v)Note  that  is  symmetric  positive  semi-definite,  so  the  global
optimal solution to (7) can be given as
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3) Linearization: Using the alternating optimization above, we map
the hyperspectral data into an underlying lower space. However, the
cost of storing and manipulating the matrix L makes it infeasible for
large  scale  samples.  For  example,  considering  the  Pavia  University
dataset containing more than 2 × 105 pixels, both the computing and
eigenvalue  decomposition  of L  are  intractable.  This  poses  a  tricky
problem in practical application.

{X(v)
s ∈

RDv×n,v = 1, . . . ,V,n << N} Ys ∈
Rd×n

In  [2],  a  linear  approximation  trained  by  a  subset  of  samples  has
been  proposed  to  construct  an  explicit  projection  matrix,  which
reduces  the  burden  of  storage  and  computation.  However,  in  this
linear  regression  model,  the  high  correlation  (i.e.,  multicollinearity)
of features from the same view is neglected, especially in the spectral
perspective. This phenomenon easily results in poor generalization of
the  projection  matrix.  To  mitigate  the  multicollinearity  among
multiple features, in this letter, a ridge regression model is designed.
Therefore,  when  randomly  selecting  a  subset  of  pixels 

 and its  low-dimensional  features 
,  an  unconstrained  optimization  with  respect  to  the  projection

matrix U can be summarized as
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parameter. The optimal solution to (9) can be easily solved as
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4) Computational complexity analysis: According to the above, the
computational  complexity  of  MLLE  consists  of  three  parts.  To  be
specific,  the  calculation  of  the  reconstruction  weights  of  each  view
attempts to solve n  set  of  linear  equations in size of  requiring

. The  computational  complexity  of  the  alternating  optimiz-
ation is , where T is the number of iterations. With respect
to  linearization,  the  computational  complexity  is .  Therefore,
the total time complexity of MLLE is .

Experiments: To  evaluate  the  performance  of  MLLE,  the  pixel-
oriented  classification  experiments  are  conducted  on  two  HSI
datasets, compared with some state-of-the-art unsupervised methods.

1)  Datasets:  Collected  by  the  airborne  visible/infrared  imaging
spectrometer  (AVIRIS)  sensor  over  North-western  Indiana  in  1992,
the  Indian  Pines  (IP)  dataset  provides  detailed  information  through
220 spectral channels ranging from 0.4 μm to 2.5 μm. By removing
20  bands  with  high  water  absorption,  the  size  of  data  available  is
145 × 145 × 200. Specifically, the first dataset contains 16 classes of
interests with a total of 10 249 labeled pixels. The second dataset was
called  the  Pavia  University  (PU)  dataset,  which  was  captured  by
reflective optics system imaging spectrometer（ROSIS）sensor over
the  University  of  Pavia  in  2002.  PU  has  103  bands  and  610  ×  340
pixels, including nine different groundtruth classes.

2)  Experimental  design:  In  the  experiment,  spectral,  texture,  and
shape, which can profile different feature attributes, are introduced as
input  of  the proposed method.  Specifically,  the spectral  feature of  a
pixel  can  be  characterized  by  its  reflectance  value  of  all  bands.  To
exploit  the  texture  details,  the  2-D  Gabor  filters  [16]  with  12
orientations  and  5  scales  are  implemented  on  the  first  principal
component of IP dataset (only 8 orientations for PU). Finally, we use
the pixel shape index (PSI) method [2] to extract shape feature with
20 orientations.

[50,60, . . . ,120] 5× [10−5,10−4, . . . ,105]
k = 100 β = 5 k = 100

β = 0.5

There  are  three  parameters  needed to  be  determined.  The  number
of  neighbors k  and  the  regularization  parameter β  are  selected  from

 and  5 ,  respectively.  After
cross-validation, we pick  and  for IP as well as 
and  for  PU.  Besides,  the  number  of  the  extracted features d
should  be  no  more  than  50  in  light  of  the  purpose  of  DR.  With
respect to the projection matrix, we randomly sample 5000 pixels to
train it. The 1-nearest neighbor (1NN) is used as classifier, where the
number of training and test samples of each class from two datasets
are showed in Tables 1 and 2. Moreover, we choose the training data
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randomly and average the classification results over ten runs.
To validate the effectiveness of the proposed MLLE, we compare

the  classification  performance  with  original  spectral  feature  (OSF),
the concatenation of all  features (CAF),  two state-of-the-art  spectral
DR  techniques  (a  robust  local  manifold  representation  (RLMR)  [8]
and  LRCRP  [10]),  and  three  state-of-the-art  spectral-spatial  DR
methods  (MFC  [2],  multiple-features  ONMF  (MFONMF)  [11]  and
SuperPCA [12]).

3)  Experimental  results:  The  accuracy  of  each  class,  overall
accuracy (OA), and kappa coefficient (κ) of different methods under
the optimal parameters for IP are illustrated in Table 1 clearly, where
the numbers in the first line are the final dimensions of corresponding
DR methods. From this table, we arrive at some conclusions. Firstly,
for  the  two  spectral-based  DR  methods,  the  improvement  of
classification  performance  is  limited  without  considering  spatial
information.  And unfortunately,  MFC framework cannot exploit  the
multiple  features  effectively  on  IP  dataset,  whose  accuracy  is
significantly  lower  than  MFONMF,  SuperPCA and  MLLE.  Finally,
the proposed MLLE outperforms the other methods, with highest OA
and κ as well as highest accuracy of ten categories.

Also, the observations, which reveal the classification accuracy of

different methods using 1NN on PU dataset, are illustrated in Table 2.
As  we  can  see,  SuperPCA  performs  best,  and  the  proposed  MLLE
can  achieve  the  optimized  goal  of  using  the  fewest  dimensions  to
yield  the  second  best  accuracy,  followed  by  MFONMF,  RLMR,
LRCRP, OSF, CAF and MFC.

r = −1

r > 1

Fig. 1(a)  shows  how  the  objective  function  value  of  MLLE
changes  as  the  iteration  number  increases,  which  proves  a  fast
convergence  speed.  We  now  observe α  and  δ  of  each  feature  with
respect  to r  from  Table 3 .  Obviously,  when ,  the
complementary  nature  of  different  features  can  be  explored  in  an
effective  manner  in  ways  that  cannot  match.  Additionally,  we
compare the OA of the proposed scheme (MLLE-Ridge) to those of
MLLE with full samples (MLLE-Full) and linear regression (MLLE-
Linear).  The  OA  curves  versus  the  dimension d  on  IP  dataset  are
displayed  in Fig. 1 (b).  It  is  shown  that  the  proposed  scheme  has
obvious predominant in accuracy, which lies in the mitigation of the
highly correlated features.

Conclusion: In  this  letter,  we  propose  a  new  unsupervised  DR
framework  for  HSI  based  on  MLLE.  Not  only  does  the  framework
apply  LLE  to  preserve  the  locally  linear  structure  of  each  single
view,  but  it  also  learns  a  unified  and  sufficiently  discriminative

 

Table 1.  Number of Samples as well as Classification Accuracy of Various Methods Using 1NN on IP

No. Class name Train Test OSF/200 CAF/280 RLMR/50 LRCRP/30 MFC/15 MFONMF/32 SuperPCA/30 MLLE/50

1 Alfalfa 10 36 56.94 98.61 95.56 61.39 91.30 95.65 100.00 97.50

2 Corn-notill 50 1378 40.13 74.77 73.30 43.67 65.34 86.22 83.22 90.01

3 Corn-mintill 50 780 50.60 85.31 72.64 50.03 62.29 83.48 92.21 94.03

4 Cron 50 187 65.94 98.66 81.55 67.59 79.32 95.78 98.40 98.13

5 Grass-pasture 50 433 84.36 92.45 94.57 84.64 77.23 96.27 97.14 96.77

6 Grass-trees 50 680 84.51 95.06 99.12 85.46 88.08 98.08 99.34 99.54

7 Grass-pasture-mowed 10 18 89.44 94.44 93.33 87.78 82.14 96.43 97.22 100.00

8 Hay-windrowed 50 428 93.46 97.87 99.79 91.66 94.98 100.00 99.58 100.00

9 Oats 10 10 62.00 96.00 100.00 64.00 90.00 100.00 100.00 100.00

10 Soybean-notill 50 922 66.48 79.32 89.13 66.23 74.18 80.04 93.11 94.75

11 Soybean-mintill 50 2405 48.91 65.36 71.00 50.90 61.18 73.75 93.13 88.05

12 Soybean-clean 50 543 48.21 93.44 83.55 49.72 59.70 86.00 91.57 96.50

13 Wheat 50 155 94.52 99.74 99.55 92.77 96.59 100.00 99.42 99.48

14 Woods 50 1215 78.07 97.47 90.46 76.97 91.46 94.44 98.49 98.91

15 Building-GTD 50 1336 45.09 99.46 81.64 47.14 70.98 94.56 99.23 99.49

16 Stone-steel-towers 10 83 87.11 99.16 94.94 88.55 96.77 95.70 97.83 98.07

OA (%) 60.61 82.98 82.12 61.59 73.95 87.23 93.92 93.98
κ 0.5577 0.8074 0.7967 0.5682 0.7053 0.8538 0.9304 0.9312

 

 

Table 2.  Number of Samples as well as Classification Accuracy of Various Methods Using 1NN on PU

No. Class name Train Test OSF/103 CAF/163 RLMR/29 LRCRP/30 MFC/19 MFONMF/16 SuperPCA/30 MLLE/15

1 Asphalt 10 6621 60.31 56.89 63.57 64.61 40.69 57.41 70.95 65.81

2 Meadows 10 18639 57.86 57.71 61.72 58.72 46.47 75.91 78.73 81.97

3 Gravel 10 2089 55.75 45.06 50.05 58.40 72.08 83.56 83.61 65.87

4 Tree 10 3054 86.64 95.07 85.33 89.05 88.97 87.27 66.41 92.17

5 Painted metal sheets 10 1335 98.93 98.08 99.47 99.22 98.66 99.63 92.04 99.84

6 Bare soil 10 5019 57.14 42.24 63.97 58.71 72.90 60.99 84.13 78.12

7 Bitumen 10 1320 87.87 66.85 83.20 84.11 63.46 69.85 95.45 80.06

8 Self-blocking bricks 10 3672 62.42 63.34 63.71 65.78 56.84 74.69 82.23 57.69

9 Shadows 10 937 99.80 99.74 99.97 99.59 78.46 91.76 99.90 95.04

OA (%) 63.64 60.82 66.25 65.35 56.75 73.28 79.22 77.65
κ 0.5490 0.5188 0.5792 0.5694 0.4799 0.6597 0.7337 0.7123
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representation  over  multiple  views.  As  an  extension  of  MFC,  the
proposed MLLE alleviates the multicollinearity in the out-of-sample
problem.  Experimental  study  on  two  benchmark  datasets  demon-
strates the effectiveness of the proposed MLLE.
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Fig. 1. Performance  validation.  (a)  Convergence  of  MLLE  on  two  datasets;
(b) Classification results of full samples MLLE and two linear versions using
1NN on IP.
 

 

d = 15
Table 3.  Weights and Performance Comparison of MLLE With Different r on

PU ( )

r = 10 r = 50 r = −1

α δ α δ α δ

Spectral 0.7830 ≈ 1 0.4182 ≈ 1 0.1457 0.5585

Texture 0.1075 2×10−9 0.2904 1×10−8 0.2690 0.3025

Shape 0.1095 2×10−9 0.2914 1×10−8 0.5853 0.1390

OA 62.13 60.66 77.65
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