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   Dear editor,

This  letter  designs  the  event-triggered  control  (ETC)  to  achieve
finite-time  stabilization  (FTS)  of  linear  systems  with  input
constraints.  The  key  idea  of  the  established  algorithm  is  that  the
designed  time-varying  high-gain  is  only  scheduled  on  a  specified
time determined by an event-triggered mechanism. By exploring the
properties  of  the  parametric  Lyapunov  equation,  a  positive  lower
bound of inter-event times associated with the designed ETC can be
obtained,  such  that  the  Zeno  phenomenon  is  avoided.  Moreover,
semi-global  FTS  of  linear  systems  with  input  constraints  is  also
achieved  by  the  designed  ETC.  Finally,  the  application  of  the
spacecraft rendezvous control system verifies the effectiveness of the
designed ETC.

Related  work: With  the  advancement  of  computer  and
communication technologies, (shared) wired and wireless networked
control  systems  (NCSs)  have  been  an  increasing  popularity  since
they  have  the  merits  of  high  flexibility,  efficient  reconfigurability,
and  low  cost  on  the  installation  and  maintenance  compared  to  the
conventional  point-to-point  digital  control  system  [1].  However,
NCSs  may  meet  some  new  challenges  such  as  network  traffic
congestion, which cannot be solved well by using traditional periodic
sampling  control.  Due  to  the  reason,  the  ETC  algorithm  that  can
greatly save communication resources has been paid much attention.
Especially  the  appearance  of  the  literature  [2],  which  greatly
promotes  the  systematic  design  of  ETC  methods  [3].  Since  then,
many results  for  ETC have  also  been  emerged  and  can  be  found in
[4], [5] and the references therein.

Since  the  saturation  nonlinearity  is  ubiquitous  among  every
practical system, the ETC of systems subject to input constraints has
also  received  much  attention.  For  example,  the  local  exponential
stability of the linear system with input constraint has been achieved
by  the  simultaneous  design  of  a  state  feedback  law  and  an  event-
triggering condition in [6]. The global stabilization of general linear
systems  with  input  constraints  has  been  well  achieved  by  the
nonlinear  ETC  algorithm  in  [7].  A  controller  based  on  the  general
Riccati  equation  was  designed  in  [8],  where  the  event-triggered
mechanism is conservative and the solution of the parameters is too
complicated.  Recently,  a  series  of  ETC  algorithms  based  on  the

parametric Lyapunov equation (PLE) have been designed in [9], [10],
where  the  relationship  between  the  design  parameters  and  the
minimal inter-event time (MIET) is clearly and simple.

In addition, the faster convergence (even finite-time convergence)
is  pursued  in  reality  and  some  corresponding  results  have  been
obtained in [11]–[13]. Since the ETC algorithm with performance of
FTS  can  obtain  a  rapid  convergence  rate  with  less  cost  on  the
communication  resources,  it  is  very  meaningful  and  has  received
much  attention.  For  example,  an  ETC  method  with  an  exponential
time-varying gain was designed to achieve FTS of nonlinear systems
in [14]; global FTS of a class of uncertain nonlinear systems has been
achieved by designing an ETC based on the backstepping technique
in [15]; finite-time path following of underactuated vessels has been
achieved by designing an adaptive neural network ETC in [16]. More
results can be found in [17] and the reference therein. Nevertheless,
the  input  constraints  are  not  considered  in  the  above  mentioned
articles,  which  is  not  expectable  in  practice  since  any  practical
actuators  can  only  generate  bounded  control  signals.  To  the  best  of
our  knowledge,  how  to  design  an  ETC  with  an  easily  designable
MIET to achieve FTS of linear systems with input constraints has not
been well investigated.

Motivated  by  the  above  discussion,  we  aim  to  establish  an  ETC
algorithm  to  achieve  FTS  of  linear  systems  with  input  constraints.
This  is  done  by  designing  the  PLE  based  time-varying  high-gain
feedback that is only scheduled at a specified time determined by an
event-triggered  mechanism.  Specially,  in  the  designed  ETC,  a  clear
MIET that avoids the complicated relationship with system matrix is
given  such  that  the  Zeno  phenomenon  is  avoided  and  a  trade-off
between  communication  resources  and  the  stabilized  time  can  be
easily found. Finally, the established algorithm is used to the design
of the spacecraft rendezvous control system.

tr (A)
λmax (P) λmin (P)

φ(A) =mini=1,2,...,n
{Re(λi(A))} λi

σϖ (ui) = sign (ui)min {ϖ, |ui|}
i = 1,2, . . . ,m ϖ > 0

Notation: let N denote the set of nonnegative integers. Let I denote
the identity matrix whose dimension is clear from the context, 
define the trace of A, and  and  denote the maximal
and  minimal  eigenvalues  of P ,  respectively. 

,  where  represent  i the  eigenvalue  of  the  matrix.  The
saturation  function   for  each

, where  is the saturation level.
Problem  statement: We  consider  the  linear  system  with  input

constraints
 

ẋ = Ax+Bσϖ (u) (1)
x = x (t) ∈ Rn u = u (t) ∈ Rm

(A,B) ∈ (Rn×n,Rn×m)
where  is  the  state,  is  the  control,  and

 is controllable. In this letter, we aim to design
an ETC algorithm to achieve FTS of input constrained linear system
(1).  To  accomplish  this  mission,  the  following  important  lemma  is
firstly given.

(A,B) γ > −2φ(A)Lemma  [9],  [13]:  Let  be  controllable  and .
Then, the PLE
 

AT P+PA−PBBT P+γP = 0 (2)
P = P(γ)

P(γ) =W−1(γ) W(γ)
W(A+ (γ/2) I)T + (A+ (γ/2) I)W = BBT

has  a  unique  positive  definite  solution  if  and  only  if
,  where  is  a  polynomial  function  of γ  and

satisfies  the  equation .
Moreover,  we  give  the  following  important  properties  of P  in
association with PLE (2).

εγ ≜ 2tr (A)+nγ1) Define , then
 

tr(BT PB) = εγ, PBBT P ≤ εγP. (3)
γ ≥ γ0 > −2φ (A)2) For any ,

 

0 <
P (γ)
εγ
≤ P ≤ δc

P (γ)
εγ

(4)

P = P(γ) = dP(γ)/dγ, δc = δc(γ0) ≥ 1where  is  a  constant  of
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independent γ.
AL = A−BBT P/23) Let , then

 

AT
LPAL ≤

3ε2γ
2
−γεγ −2γtr (A)−2tr

(
A2

)P ≜ πγP (5)

πγwhere  increases as γ increases.
γ̇ ≥ 0 Pe = P(γ(t))−P(γ(ti)) t ≥ ti4) Let  and . Then, for any ,

 

PeBBT Pe ≤ n (γ−γi) Pe ≤ εγPe ≤ εγP. (6)

γ = γ(t), P = P(γ(t)) x(ti) = xi
γi = γ(ti) Pγi = P(γ(ti))

Event-triggered control:  In this  letter,  for  a  simple clarification,  if
not  specified,  we  omit  the  dependence  of  variables  of t  in  the
remaining  of  this  letter,  such  as, , ,

, . We define a measurement error
 

e = xi− x, ∀t ∈ [ti, ti+1), i ∈ N (7)

Es (γ) =
{
x ∈ Rn : εγxT Px ≤ 4ϖ2

}
and an ellipsoid .  Moreover, we
denote
 

T̄ =
1

2ᾱ1
ln

(
1+

2tr (A)
nγ0

)
, ᾱ1 =

(1−β) tr (A)
n+1

T =
1

2α1
ln

(
1+

2tr (A)
nγ0

)
, α1 =

(1−β) tr (A)
n+δc

β ∈ (0,1) T̄ T
tr (A) = 0

where  is a design parameter. We notice that both  and 
are well defined if  [13].

γ0 >max{0,−2φ(A)}Theorem  1:  Let  be  a  prescribed  number.
Consider the following bounded control:
 

u(t) = −
BT Pγi xi

2
, t ∈ [ti, ti + 1) (8)

tiwhere  is  determined  by  the  following  static  event-triggered
mechanism (ETM):
 

ti+1 = inf
{
t > ti : βγxT Px+ f (t) ≤ 0

}
(9)

f (t) = xT PBBT Pγie− xT PBBT Pex
γ̇ = (1−β)γ/

(
δ1 (t)+δ2 (t)

)in  which ,  and γ  satisfies  the
scalar differential equation , where
 

δ1 (t) =
n
εγ
, δ2 (t) =


xTPx

(xT Px)
, x , 0

1+
δc

(2εγ)
, x = 0.

(10)

x (0) = x0 ∈ Es (γ0) T0 =

T0 (x0,γ0) T̄ ≤ T0 ≤ T limt→T0 ∥x∥ = 0
Then,  for  any ,  there  exists  a  constant 

 satisfying  such that .
x , 0Proof: By using (4), we know from (10) that if ,

 

1
εγ
≤ δ2 ≤

δc
εγ

x = 0 δ2 = 1+δc/2εγ 1/εγ ≤ δ2 ≤ δc/εγif ,  then .  Thus,  we  have 
for any x. It then follows from the definition of γ that:
 

(1−β)
εγγ

(n+δc)
≤ γ̇ ≤ (1−β)

εγγ

(n+1)
. (11)

Then, we define
 

γ̄ =
exp

(
2ᾱ1T̄

)
−1

exp
(
2ᾱ1

(
T̄ − t

))
−1
γ0, ∀t ∈

(
0, T̄

)
,

γ =
exp

(
2α1T

)
−1

exp
(
2α1

(
T − t

))−1
γ0, ∀t ∈ (

0,T
)
. (12)

By the comparison lemma [18], it follows from (11) and (12) that:
 

γ ≤ γ̄, ∀t ∈ (0, T̄ ); γ ≥ γ, ∀t ∈ (0,T )

T0 = T0(x0,γ0) ∈ [T̄ ,T ]from  which  it  follows  that  there  exists  a 

limt→T0 γ =∞such that . The closed-loop system consisting of (1)
and (8) is
 

ẋ = Ax+Bσϖ
(
−

BT Pγi xi

2

)
, ∀t ∈ [ti, ti + 1). (13)

B = [b1 b2 · · · bm]
k ∈ I[1,m] εγxT Px ≤

ϖ2⇒ σϖ
(
−(1/2)bT

k Pγi xi
)
= −(1/2)bT

k Pγi xi

We  define ,  then  according  to  the  proof  of
Theorem  1  in  [10],  for  any ,  we  have 

.  This  implies  that
(13) can be continued as
 

ẋ = Ax− 1
2

BBT Pγi xi = Ax− 1
2

B
(
BT Px−BT Pex+BT Pγie

)
(14)

Pe
V(x, t) = εγxT Px

V(x(t), t)

where we have noted the definition of  and e. Then, we choose the
Lyapunov-like  function .  It  follows  from  the
definition  of γ  and  (11)  that  the  time-derivative  of  along
system (14) can be given as:
 

V̇(x, t) = γ̇(nxT Px+εγxTPx)−γV(x, t)−εγ f (t)

≤ −εγ(βγxT Px+ f (t)), ∀t ∈ [ti, ti+1). (15)
βγxT Px+ f (t) ≥ 0, ∀t ∈ [ti, ti + 1)By noting (9),  we have .  This

together with (15) indicates that
 

V (x, t) ≤ϖ2⇒ V̇ (x, t) ≤ 0, ∀t ∈ [0,T0) . (16)

t ∈ [0,T0)
V (x (t) , t) = εγxT Px ≥ εγλmin (P (γ0))∥x∥2 V (x (0) ,0) ≤

εγ0 ∥P (γ0)∥∥x (0)∥2 P > 0 γ ≥ γ0

∥x∥ ≤
√
εγ0 ∥P (γ0)∥/

(
εγλmin(P(γ0))

)
∥x (0)∥

limt→T0 ∥x∥ = 0 limt→T0γ =∞

Es (γ0)

Therefore, the closed-loop system consisting of (1) and (8) can be
written as (14), and (16) is satisfied for all . Moreover, we
have  and 

, where we have used  and . Theses

implies , from which
it  follows  that  since  .  This  implies
that  the  closed-loop  system  is  locally  finite-time  stabilized  with

 contained in the domain of attraction.

t→ T0

Remark  1:  Although  FTS  can  be  achieved  by  Theorem 1,  it  may
possess some numerical problems in computing u  when . To
solve these problems, we will replace γ in Theorem 1 with
 

γ̇ (t) =


(1−β)γ

(δ1 (t)+δ2 (t))
, γ ≤ γ∗

0, γ > γ∗
γ∗
γ = γ∗ t ≥ t∗ t∗

γ(t∗) = γ∗ γ̇ = 0 t > t∗ Pe = 0

where  is  a  prescribed  sufficiently  large  number.  By  this  we  can
see  that  when   where   is  the  minimal  time  such  that

. Moreover, since  when ,  and the static
ETM (9) equals to
 

ti+1 = inf
{
t > ti : βγ∗xT Pγ∗ x+ xT Pγ∗BBT Pγ∗e ≤ 0

}
.

γ̇ = 0 V̇ (x, t) ≤ (1−β)γ∗V (x, t)
t > t∗ Es (γ0)
∥x∥ ≤

√
λmax (P (γ∗))/λmin (P (γ∗))exp[−((1−β)γ∗/2)(t−t∗)] ∥x (t∗)∥ ,

t > t∗
t∗

Since ,  we  have  from  (15)  that ,
,  which  implies  is  still  an  invariant  set  and

.  Thus  the  state  converges  to  zero  exponentially  with  a  fast
convergence rate after  (which can be called as practical FTS) [12].

■
Theorem  2:  The  IETs  associated  with  the  designed  ETC  are

bounded below by
 

τe =



τ1 =
w β2γ20

2ε2γ∗
0

1

(πγ∗ +εγ∗ +γ∗+ (1+γ∗+2εγ∗ )τ+
3εγ∗τ2

4 )dτ
,

t ≤ t∗

τ2 =
w β2γ2∗
ε2γ∗

0

1

(πγ∗ + (1+γ∗+
4εγ∗

3 )τ+ 3εγ∗τ2

4 )dτ
,

t > t∗.
t ≤ t∗Proof: For , by using (3) and (6), we have 
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βγxT Px+ f (t) ≥ βγ0

2
xT Px−

ε2γ∗
βγ0

(
eT Pγie+ xT Pex

)
γ0 ≤ γ ≤ γ∗

E1 = E1 (t) = (eT Pγie+
xT Pex)/xT Px β2γ2

0/(2ε
2
γ∗ )

Pe

where we have noted . This indicates that the inter-event
times (IETs)  associated with  the  static  ETM (9)  are  bounded below
by  the  time  needed  by  the  function 

 going  from  0  to .  By  noting  the  defin-
ition of e and , we have from (14) that
 

ė = −ẋ = −ALi x+BBT Pγi

e
2

ALi = A−BBT Pγi/2where . With this we obtain
 

2eT Pγi ė ≤ πγi x
T Px+ (1+εγi )e

T Pγie (17)
where we have used (3) and (5). Again by the triangle inequality, (2)
and (3), we can obtain from (14) that
 

2xT Pe ẋ = −γxT Px+ xT PBBT Px+γixT Pγi x

− xT Pγi BBT Pγi x− xT PeBBT Pγi xi

≤ xT PBBT Px− xT Pγi BBT Pγi x

+
1
2

2xT PeBBT Pex+
xT

i Pγi BBT Pγi xi

2


≤ xT PBBT Px− xT Pγi BBT Pγi x+ xT PeBBT Pex

+

(
4xT Pγi BBT Pγi x+

4eT Pγi BBT Pγi e
3

)
4

≤ εγxT Px+εγxT Pex+
εγi

3
eT Pγie (18)

xi = e+ xwhere we have used (6) and noted . Hence, it follows from
(17) and (18) that:
 

2eT Pγi ė+2xT Pe ẋ ≤ (εγ∗ +πγ∗ )xT Px

+

(
1+

4εγ∗
3

)
(xT Pex+ eT Pγie) (19)

γ ≤ γ∗in which we have noted . Similar, by using (2), (3), (6) and the
triangle inequality again, we also have
 

−2xT Pẋ ≤
(
γ∗+

2
3
εγ∗

)
xT Px+

3εγ∗
4

(
eT Pγie+ xT Pex

)
(20)

γ ≤ γ∗ x , 0
γ̇ Ṗe = Ṗ

where  we  have  noted .  In  addition,  for  any ,  we  have
from the definition of  and  that
 

xT Ṗex
xT Px

= γ̇
xTPx
xT Px

≤ (1−β)γ
δ2 (t)

xTPx
xT Px

= (1−β)γ ≤ γ∗.

This together with (19) and (20) indicates that
 

Ė1 ≤ πγ∗ +εγ∗ +γ∗+
(
1+γ∗+2εγ∗

)
E1+

3εγ∗
4

E2
1

Ṗ ≥ 0
E1 ≤ h1 h1 = h1 (t)

where  we  have  noted .  It  then  follows  from  the  comparison
lemma [18] that , where  is the solution of:
 

ḣ1 = πγ∗ +εγ∗ +γ∗+
(
1+γ∗+2εγ∗

)
h1+

3εγ∗h
2
1

4
(21)

h1 (ti) = E1 (ti) = 0 ti+τ1
h1 (ti+τ1) = β2γ2

0/
(
2ε2γ∗

)
h1 (t)

E1 (t) ≤ h1 (t) < β2γ2
0/

(
2ε2γ∗

)
, t ∈ [ti, ti + τ1)

τ1

with .  Let  be the solution to the equation
.  Since  is  an  increasing  function

that,  we  have .  This
together with (20) indicates that the IETs are bounded below by .
Hence, the Zeno behavior is avoided.

t > t∗ γ(t) = γ∗For ,  as  mentioned  in  Remark  1,  we  have  is  a

bounded constant and the ETM (9)
 

βγxT Pγ∗ x+ xT Pγ∗BBT Pγ∗e ≥
βγ∗
2

xT Pγ∗ x−
ε2γ∗

2βγ∗
eT Pγ∗e.

t > t∗

E2 = E2 (t) = eT Pγ∗e/(xT Pγ∗ x) β2γ2
∗/ε

2
γ∗

Pγi = Pγ∗ Pe = 0 2eT Pγ∗ ė ≤ πγ∗ xT Pγ∗ x+ (1+εγ∗ )
eT Pγ∗e

This  implies  that  the  IETs  associated  with  the  designed  ETC  for
 are  bounded  below  by  the  time  needed  by  the  function

 going  from  0  to .  Since
 and  ,  we  have 

, and
 

−2xT Pγ∗ ẋ ≤ γ∗xT Px+
εγ∗ x

T Pγ∗ x
3

+
3εγ∗e

T Pγ∗e
4

where (17) and (19) have been noted. With this we can obtain
 

Ė2 =
2eT Pγ∗ ė
xT Pγ∗ x

−E2
2xT Pγ∗ ẋ
xT Pγ∗ x

≤ πγ∗

+

(
1+γ∗+

4εγ∗
3

)
E2+

3εγ∗
4

E2
2.

t ≤ t∗
t > t∗ τ2

τ1 τ2
τ1 ≤ τ2

Similar to ,  we can also obtain that the IETs associated with
the designed ETC for  are bounded below by . We can easily
from  the  definition  of τ  that  /  increases  as β  increases  and

. ■
In  addition,  the  designed  ETC  can  also  achieve  the  semi-global

FTS  of  the  input  constrained  linear  systems  in  the  following
corollary.

(A,B)
∈ (
Rn×n,Rn×m)

Ω ⊂ Rn

γ0 > 0 Ω ⊆ Es (γ0)
x(0) ∈Ω

T0 = T0 (x0,γ0) (n+1)/((1−β)nγ0) ≤ T0 ≤ (n+δc)/
((1−β)nγ0)

Corollary  (Semi-global  FTS  by  ETC):  Assume  that 
 is controllable and all the eigenvalues of A are on the

imaginary axis. For any arbitrarily large but bounded set , let
 be  such  that  and  γ  satisfy  the  definition  in

Theorem  1.  Then,  for  any ,  there  exists  a  constant
 satisfying  

,  such  that  the  closed-loop  system  (13)  with  the  ETM
(9)  is  finite-time  stabilized.  Moreover,  the  IETs  are  bounded  below
by
 

τce =
w β2

2n2

0

1
πγ∗ + (n+1)γ∗+ (1+ (2n+1)γ∗)τ+3nγ∗τ2/4

dτ.

γ0 limγ→0+ P(γ) = 0
Re(λi(A)) = 0 i = 1,2, . . . ,n

Proof:  The  existence  of  follows  from  since
, .  Then,  by  combining  the  correspon-

ding semi-global stabilization results in [10] and Theorems 1 and 2,
the proof of Corollary 1 is straightforward and thus is omitted here.

■
Numerical  simulation: In  this  part,  the  spacecraft  rendezvous

control system studied in [13], [19] is considered again. The relative
motion  between  the  target  and  chaser  can  be  described  by  the
following Newton’s equations [20]:
 

ẍ1 = 2ωẏ+ω2 (R+ x1)− θη (R+ x1)+σϖ (u1)

ẍ2 = −2ωẋ1+ω
2x2− θηx2+σϖ (u2)

ẍ3 = −θηx3+σϖ (u3)

(22)

ω = η1/2R3/2where  is the orbit rate of target orbit, η represents the
gravitational parameter [19].

x = [x1, x2, x3, ẋ1, ẋ2, ẋ3]T

u = [u1 u2 u3]T
We choose , then the linearized system

of (21) can be written as (1), in which  and
 

A =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

3ω2 0 0 0 2ω 0
0 0 0 −2ω 0 0
0 0 −ω2 0 0 0


, B =

[
0
I3

]
.

Then,  we  carry  out  simulations  under  different  value  of  to  verify
the  corresponding  results.  All  the  controller  algorithms  will  act
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R = 4.2241×107 m
ω = 7.2722×10−5 rad/s ϖ = 0.1 m/s2 δc = 20.5

x(0) = x0 = [−1000 1000 1000 2 −2 2 ]T

γ0 = 0.006 9099
εTγ0

xT
0 Pγ0 x0 = 4 ∥x1, x2, x3∥

∥u1,u2,u3∥

directly on the nonlinear system (31), although the controller design
is based on the linear system (1).  The corresponding parameters are
the  same  as  the  literature  [13],  [19],  that  is, ,

, ,  and .  Let  the
initial value be , and the
sampling interval be 0.01 s. , can be solved by the
equation .  The  relative  distance  and
2-norm  of  the  control  signals  are  showed  in Fig. 1.
Moreover, for easier comparisons, some key indices associated with
IETs are showed in Table 1, where TNs (times), MIET (s) and AIET
(s)  represent  the  trigger  numbers,  the  minimal  and  average  inter-
event  time,  respectively. Table 1  shows  the  MIET and  AIET (TNs)
increases  (decreases)  as β  increases.  Hence,  it  follows from Table 1
and Fig. 1 that  a trade-off  between the stabilized time and IETs can
be easily found by appropriately selecting the value of β.
 

Table 1.  The MIET/AIET/TNS Associated With Theorem 1

β 0.1 0.5 0.8

Theorem 1 0.56/3.1/386 0.74/5.6/214 69.7/127/9
 
 

γ∗ = 1
T ∗ = T −0.1

γ∗ = 1000

Next, we carry out simulation to compare three different finite-time
stabilized  methods.  Method  1:  An  ETC  in  Theorem  1  with  and

. Method 2:  The finite-time control  algorithm associated with
Theorem  2  in  [19]  with .  Method  3:  The  finite-time
control  algorithm  associated  Theorem  2  in  [13]  with .
These  parameters  are  chosen  to  guarantee  the  best  control
performance  in  terms  of  the  rendezvous  time.  It  can  be  observed
from Fig. 3 that our solution not only saves communication resources
but also has the minimal rendezvous time among others.
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Fig. 2. The relative distance for different methods.
 

Conclusion: This  letter  designed  an  ETC  to  achieve  finite-time
stabilization of linear systems with input constraints. The key idea is
that  an event-triggered mechanism is  designed to update the control
law,  where  the  control  gain  based  on  the  solution  of  the  parametric
Lyapunov equation will approach to infinity at finite time. The Zeno
phenomenon  was  avoided  for  the  ETC algorithm.  In  the  future,  we
will design the dynamic event-triggered control to increase the inter-
event  times  and  self-triggered  control  algorithm  to  avoid  contin-
uously monitor of system states.
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Fig. 1. The relative distance and control signals under different values of β.
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