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This  letter  develops  two  new  self-training  strategies  for  domain
adaptive  semantic  segmentation,  which  formulate  self-training  into
the  processes  of  mining  more  training  samples  and  reducing
influence  of  the  false  pseudo-labels.  Particularly,  a  self-training
strategy based on entropy-ranking is  proposed to mine intra-domain
information.  Thus,  numerous  false  pseudo-labels  can  be  exploited
and  rectified,  and  more  pseudo-labels  can  be  involved  in  training.
Meanwhile,  another  novel  self-training  strategy  is  developed  to
handle the regions that  may possess  false  pseudo-labels.  In detail,  a
specific uncertain loss, that makes the network automatically decide
whether  the  pseudo-labels  are  true,  is  proposed  to  improve  the
network  optimization.  Consequently,  the  influence  of  false  pseudo-
labels  can  be  reduced.  Experimental  results  prove  that,  compared
with the baseline, the average mIoU performance gain brought by our
method  can  attain .  Extensive  benchmark  experiments  further
highlight  the  effectiveness  of  our  method  against  existing  state-of-
the-arts.

Learning-based  image  semantic  segmentation  requires  numerous
labeled  images.  However,  annotating  pixel-wise  image  semantic
segmentation  labels  is  extremely  time-consuming  [1].  To  this  end,
several  unsupervised  methods  [2],  [3]  have  been  investigated  and
achieved  competitive  results  compared  with  supervised  methods.
Specifically,  some  recent  works  [3],  [4]  use  data  collected  from
simulators  and  game  engines  or  similar  real-world  scenes  with
precise  pixel-level  semantic  annotations  to  train  segmentation
networks.  However,  the  trained  model  often  suffers  significant
performance  degradation  when  handling  unseen  data  from  another
new scene  due  to  the  cross-domain  difference.  To  alleviate  the  gap
between  different  domain  data,  several  methods  based  on  the
unsupervised  domain  adaptation  (UDA)  technique  have  been
developed.  Normally,  we  call  the  data  with  pixel-level  semantic
annotations  as  the  source  domain  data  and  the  data  from  the  new
scene (e.g., without annotation) as the target domain data. UDA aims
to use the source and target domain data to produce a model that has
favorable  segmentation  performance  on  the  target  domain.  Among
the  UDA  methods,  the  ones  based  on  self-training  [5],  [6]  can
achieve better segmentation performance on the target domain due to
the  consideration  of  the  intra-domain  relation  (e.g.,  important
information  for  improving  segmentation  accuracy  [7],  [8])  of  the
target  domain.  These  methods  first  train  a  network  to  align  the
distribution  shift  between  the  source  and  target  domain  data.  Then,
they  generate  pseudo-labels  of  the  target  domain  images  from  the
trained  network.  Finally,  they  select  pseudo-labels  with  high
confidence  as  the  training  samples  to  implement  self-training.
Generally,  the  pseudo-labels  with  high  confidence  are  referred  to
easy  samples  while  those  with  low  confidence  are  referred  to  hard
samples.  However,  the  hard  samples  inevitably  contain  numerous

true pseudo-labels, leading to waste of the training samples. And the
easy  samples  also  contain  false  pseudo-labels,  influencing
optimization  efficiency  of  the  network.  To  solve  above  mentioned
problems,  this  letter  investigates  two  varied  self-training  strategies
for  mining  more  training  samples  and  reducing  influence  of  false
pseudo-labels, respectively.

Related  Work: Due  to  the  domain  otherness,  the  semantic
segmentation  model  obtained  from  source  domain  usually  suffer
obvious  performance  decrease  when  processing  images  from  target
domain. The UDA technology can address this problem by aligning
the distribution shift between the source and the target domain data.
For  example,  AdvEnt  [3]  uses  a  generator  to  generate  the  predicted
feature  maps  of  the  source  and  target  domain  data,  and  uses  a
discriminator to distinguish which domain are the feature maps from.
The distribution shift between the source and the target domain data
can  be  aligned  by  confusing  the  discriminator.  In  [9],  a  maximum
squares  loss  is  proposed  to  balance  the  gradient  of  well-classified
target  samples,  which  can  prevent  the  training  process  being
dominated by easy-to-transfer samples in the target domain.

The  above  UDA  methods  just  consider  the  distribution  shift
between  the  source  and  target  domain  data  while  ignoring  the
distribution  shift  between  intra-target  domain  data.  To  address  this
issue, self-training has been adopted. For instance, Pan et al. [6] used
an image-wise entropy-based ranking function to separate the target
domain  images  into  easy  and  hard  samples  and  then  used  the  easy
samples  as  the  source  domain  and  the  hard  samples  as  the  target
domain  to  implement  a  new  round  of  UDA  training,  which  can  be
regarded  as  a  round  of  self-training  inside  of  the  target  domain.
MRNet [10] proposes a memory regularization in vivo to exploit the
intra-domain knowledge and regularize the model training, benefiting
the initialization of pseudo-labels and reducing the influence of false
pseudo-labels.  Based on MRNet,  RPLUE [11] leverages uncertainty
estimation  to  integrate  the  memory  regularization  in  vivo,  which
significantly enhances the network optimization efficiency. However,
these methods rarely consider the influence of true hard samples and
false easy samples, leading to their limited performance. In this letter,
our  proposed  self-training  not  only  involves  more  samples  for
training  but  also  limits  the  influence  of  false  samples,  resulting  in
more efficient self-training and higher segmentation accuracy.

Self-training with entropy-ranking: Due to that the hard samples
contain  a  large  number  of  false  pseudo-labels,  they  can  not  be
considered  as  the  training  samples  even  they  have  several  true
pseudo-labels.  But,  if  the  numbers  of  the  false  pseudo-labels  in  the
hard  samples  can  be  reduced,  they  will  have  positive  effect  for  the
network optimization and can be considered as the training samples.
According  to  this  analysis,  we  use  first  round  of  self-training  to
refine  the  false  pseudo-labels.  How  to  select  and  rectify  the  false
pseudo-labels are critical in this stage. Previous works prove that, if a
pixel  has  a  high  entropy  value,  it  will  have  high  uncertainty  and  a
high  probability  of  getting  a  false  pseudo-label.  Considering  this
property,  a  pixel-wise  entropy-ranking  method  is  developed  as  a
coarse pseudo-label filter to remove false pseudo-labels, namely hard
samples. Meanwhile, the rest pixels after excluding the hard samples
can  be  regarded  as  the  pixels  with  true  pseudo-labels,  namely  easy
samples.  Although there are still  some easy samples whose pseudo-
labels  are  false,  the  ratio  of  false  samples  is  greatly  reduced.  By
mining  the  relationship  of  easy  samples,  we  could  get  beneficial
information to rectify the false pseudo-labels.
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For  getting  the  pseudo-labels  and  their  corresponding  entropy
maps,  we  use  recent  proposed  popular  UDA method  to  generate  an
optimized  model.  When  we  input  image  from  the  target
domain  as  the  input  of  the  optimized  model,  we  can  get  a  soft
predicted  feature  map ,  where C  is  the  number  of
classes.  With  the  soft  predicted  feature  map,  the  pseudo-label

 and  the  entropy  map  of   can  be
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produced. Particularly, the pseudo-label is obtained as
 

PLt = argmax
c

Pt (1)

argmax EMtwhere  is  operated  on  the  channel-dimension.  can  be
calculated as follows:
 

EMt=

C∑
c=1

−P(c)
t log P(c)

t . (2)

ItThrough  traversing  all  of  the  target  domain,  we  can  obtain  the
pseudo-labels  of  the  target  domain  images. Figs. 1 (b)  and 1(c)
display the pseudo-label and entropy map of a typical target image.
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Subsequently,  an  entropy-ranking  method  is  developed  to  select
the  hard  samples.  Particularly,  we  generate  a  mask  to
distinguish  the  easy  and  hard  samples  according  to  the  values  of
pixels  in  the  entropy  map.  For  the  hard  samples  that  possess  high
entropy values in the entropy map, their values are set to 0 in . On
the  contrary,  for  the  easy  samples  with  low  entropy  values,  their
values are set to 1 in . In this letter, we leverage a hyper-parameter

 to judge a high or low entropy value. Particularly, we first
sort the pixel values of the entropy maps in descending order and get
a vector , where  is the pixel number of the whole target
domain images. Subsequently, we select the -th element of

 as the boundary. For the pixels whose entropy values surpass this
element, we set them as the hard samples, and vice versa. As a result,
we can get  easy samples and  hard samples.

It
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As  the  hard  samples  contain  more  false  pseudo-labels  compared
with  the  easy  samples,  using  them  as  training  samples  to  exploit
intra-domain information is improper. Hence, a round of self-training
just involving the easy samples is developed, as illustrated in the left
part  of Fig. 2 .  During  the  training  stage,  the  network  takes  target
image  as  the  input  and  produces  a  soft  segmentation  map

.  The  corresponding  pseudo-label  of  is  
.  Then, the network uses  to generate a one-hot vector

.  The  segmentation  network  is  optimized  in  a
supervised way by minimizing the cross-entropy loss
 

Lseg1(Pt,OHplt,Mt)

=
−1

H×W

H∑
h=1

W∑
w=1

M(h,w)
t

C∑
c=1

OH(h,w,c)
plt log P(h,w,c)

t . (3)

With  the  introduction  of  masks,  the  hard  samples  will  not
contribute  to  model  optimization,  which  ensures  the  stability  of
training  stage.  As  a  result,  the  intra-domain  relationship  and  false
pseudo-labels  can  be  better  exploited.  Subsequently,  we  input  the
original  training  images  of  the  target  domain  into  the  optimized
model  of  the  first  round  of  self-training,  and  we  can  obtain  the
updated  pseudo-labels.  In  the  updated  pseudo-labels,  the  false
samples  of  hard  samples  are  much  fewer  than  the  true  samples,
similar to the easy samples. Hence, each pixel in the updated pseudo-
labels  can  be  considered  as  an  easy  sample,  avoiding  waste  of
pseudo-labels.

Self-training based on uncertain learning: Since the first  round
of  self-training can tackle  the  problem of  easy  sample  shortage,  the
existence  of  false  pseudo-labels  still  has  a  non-negligible  influence
on  network  optimization.  We aim to  address  the  main  problem that
causes the false pseudo-labels, e.g., intra-domain gap problem [6]. In
general,  different  objects  always  show  disparate  features  even  they
belong to the same class.  Sometimes the difference between objects

of the same class inside the target domain is more obvious than that
across  the  source  and  target  domains.  However,  the  first  round  of
self-training  enhances  the  intra-domain  relationship  without
considering  this  phenomenon  and  hence  may  provide  some  false
update  information.  In  other  words,  some  pixels  with  true  pseudo-
labels  may  possess  false  ones  after  the  first  round  of  self-training.
Hence, the second round of self-training should not only consider the
updated pseudo-labels but also the original pseudo-labels. To achieve
this  goal,  we  propose  a  self-training  based  on  uncertain  learning.
Particularly,  the  updated  pseudo-labels  will  play  the  main  role  and
the original pseudo-labels play an auxiliary role in the loss function.
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The detailed process of the second round of self-training is shown
in the right part of Fig. 2. The segmentation network takes the target
domain image  as the input and produces a soft predicted
feature map . Subsequently, we use the original pseudo-
label  and the updated pseudo-label 
to  produce  two  one-hot  vectors  and  

,  respectively.  With ,  and  ,  the  loss  of  the
second round of self-training can be calculated as follows:
 

Lseg2(Pt,OHplt,OHplu)

=
−1

H×W

H∑
h=1

W∑
w=1

e−UC(h,w)
C∑

c=1

OH(h,w,c)
plu log(P(h,w,c)

t )

+λuc
1

NUMue

H∑
h=1

W∑
w=1

UC(h,w) (4)

 

UC(h,w) =
{0, OHplt = OHplu
Ent(h,w)+Dis(h,w), otherwise

λuc
NUMue

UC

UC UC
Ent Dis

where  is a hyper-parameter used to balance every loss term and
 is  the  pixel  number  of  the  regions  that  possess  different

pseudo-labels.  The  uncertain  term  is  an  important  term  of  this
loss function. If  a region has the same label in original and updated
pseudo-labels,  will be set to 0. Otherwise,  will be obtained
by computing an entropy term  and a distance term 
 

Ent(h,w) =
C∑

c=1

−P(h,w,c)
t log(P(h,w,c)

t )

Dis(h,w)=
∥∥∥∥∥ C∑

c=1

P(h,w,c)
t OHplt −

C∑
c=1

P(h,w,c)
t OHplu

∥∥∥∥∥. (5)

Ent

Dis Pt OHplt
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e−UC UC

Specifically,  can control the prediction results not tend to the
classes  that  do  not  belong  to  the  original  or  updated  pseudo-labels,
and  can  limit  the  response  difference  between  to   and

. If  of a region satisfies the above requirements, the weight
term  will tend to 1 and the uncertain term  will tend to 0. In
other words, this region has small uncertainty, and the loss provided

 

(a) Original image (b) Pseudo-label (c) Entropy map (d) Mask
 
Fig. 1. Pseudo-label, entropy map and mask after entropy-ranking of a target
image.  In  the  entropy map,  bright  color  represents  high entropy regions  and
dark  color  means  low entropy  regions.  In  the  mask,  white  regions  represent
easy samples and black regions represent hard samples.
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Fig. 2. The proposed self-training strategy. In the first  round of self-training,
the network takes original target domain image , pseudo-label  and mask

 as  the  inputs.  The  network  is  optimized  by  the  loss .  After  the  first
round of  self-training,  the  model  (i.e., )  used to  update  the  pseudo-labels
can be obtained. We input original target domain image  into  to get the
updated  pseudo-label .  In  the  second round of  self-training,  the  network
takes original target domain image , original pseudo-label  and updated
pseudo-label  as  the  inputs.  The  network  is  optimized  by  the  loss .
The  model  (i.e., )  leveraged  to  evaluate  network  performance  will  be
produced after the second round of self-training.
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by  this  region  is  dependable.  By  minimizing  this  loss  function,  the
prediction  results  will  be  close  to  updated  pseudo-labels  without
ignoring  the  influence  of  original  pseudo-labels.  Thus  the  false
pseudo-labels  brought  the  intra-domain  gap  problem  can  be
restrained greatly.

9

120k
1028×720 0.9

5exp(−4) 100k

9 1024×512 0.9
5exp(−4)

Experimental  setup: We  choose  DeepLab  V2  [12]  as  the
segmentation  network,  which  can  provide  a  fair  comparison.  We
leverage  two  representative  UDA  methods  (i.e.,  AdvEnt  [3]  and
MRNet  [10])  to  align  the  distribution  shift  between  the  source  and
target domain data, which can provide optimized models to generate
the  coarse  pseudo-labels.  We select  four  typical  road scene datasets
to perform our experiments, including GTA5, SYNTHIA, Cityscapes
and  Oxford  RobotCar  benchmarks.  When  performing  GTA5→
Cityscapes  and  SYNTHIA5→Cityscapes  tasks,  the  Cityscapes
dataset  is  adopted  as  a  target  domain  dataset,  and  the  GTA5  and
SYNTHIA  datasets  are  selected  as  the  source  domain  data.  When
performing  Cityscapes→Oxford  RobotCar  task,  the  Oxford
RobotCar  dataset  is  adopted  as  the  target  domain  dataset,  and  the
Cityscapes  dataset  is  selected  as  the  source  domain  data.  For
GTA5→Cityscapes  task,  we  consider  19  categories  for  evaluation.
For  SYNTHIA→Cityscapes  task,  13-class  and  16-class  subsets  are
used to evaluate the performance. For Cityscapes→Oxford RobotCar
task,  we  consider  categories  for  test.  Since  AdvEnt  and  MRNet
adopt different training settings, for a fair comparison, we adopt the
setting  provided  by  original  papers  to  optimize  the  network.  When
selecting AdvEnt to generate the pseudo-labels, we train our model in

 iterations and use mini-batch stochastic gradient descent with a
batch  size  of  1,  input  size  of ,  momentum  of ,  and
weight decay of .  For MRNet,  we train our model in 
iterations and use mini-batch stochastic gradient descent with a batch
size  of ,  input  size  of ,  momentum  of ,  and  weight
decay of .

Ablation experiments:

43.8%

λr λr
{0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0}

46.3% λr = 0.7

λr = 0.7
λr

1)  Self-training  based  on  entropy-ranking:  We  perform  ablation
experiments on GTA5→Cityscapes task. We input the original target
domain  image  into  the  optimized  model  provided  by  AdvEnt  to
obtain  the  original  pseudo-label.  The  segmentation  performance  is
evaluated  by  the  mIoU  metric.  To  evaluate  the  performance  gain
brought  by  our  proposed  self-training  strategy,  we  first  input  the
validation images of the Cityscapes dataset into the optimized model
provided by AdvEnt directly, and it is worth noting that the mIoU of
the  original  model  is .  Subsequently,  we  input  the  training
images of the Cityscapes dataset  into the optimized model provided
by  AdvEnt  to  produce  the  pseudo-labels  and  entropy  maps.
According to the values of the entropy maps, we can get the easy and
hard samples. Next,  we conduct an ablation study to select a proper
value  for  hyper-parameter .  Particularly,  we  adopt  among

 and  test  the  valid  mIoU
index  after  the  first  round  of  self-training,  and  the  results  are
illustrated in Table 1. It  can be seen that the first  round of self-train
can obtain the mIoU of  when setting . Compared with
the  optimized  model  provided  by  AdvEnt,  it  is  a  significant
improvement. Therefore, in the following experiments,  will
be adopted. The ablation study regarding hyper-parameter  proves
that  involving  too  many  hard  samples  or  discarding  too  many  easy
samples  both  have  negative  influences  on  self-training  efficiency.
Finally,  we  input  the  training  images  into  the  optimized  model
produced in the first round of self-training and generate the updated
pseudo-labels.  Compared  with  original  pseudo-labels,  the  updated
pseudo-labels  have  fewer  false  samples  and  every  pixel  can  be
considered  as  the  easy  sample  for  further  optimization  of  the
network,  avoiding  waste  of  pseudo-labels.  Some  typical  evaluation
results before and after the first  round of self-training are illustrated
in Figs. 3(c) and 3(d), respectively.

2)  Self-training  based  on  uncertain  learning:  Since  we  introduce
the original pseudo-labels into the second round of self-training, the
negative influence of the false update information can be limited. To

λr

46.3% 46.6%

λuc
47.4%

prove this advantage, in the second round of self-training, we use the
same training strategy as  the  first  round.  In  other  words,  during the
second round of self-training, we first split the updated pseudo-labels
into the easy and hard samples according to the entropy-ranking, and
then use the easy samples to train the network. We set different  to
maximize  the  performance  of  the  network,  and  find  that  the
performance  gain  brought  by  the  second  round  of  self-training  is
small (e.g., from  to ), which proves the negative effect
of the false update information brought by the intra-domain problem.
To  limit  this  negative  effect,  we  use  our  proposed  self-training
strategy  to  perform  the  second  round  of  self-training.  During  the
training  stage,  we  set  to  1.  After  the  second  round  of  self-
training,  the  mIoU on the validation dataset  can reach up to .
Compared  with  the  self-training  based  on  entropy-ranking,  our
proposed method can result  in  higher  segmentation accuracy due to
that  our  proposed  loss  function  can  eliminate  the  misleading
information produced in the first round of self-training and maintain
beneficial information provided by the source domain. Some typical
results after the second round of self-training are shown in Fig. 3(e).

UC
Ent Dis UC

Ent Dis
Ent Dis

UC

λr = 1

Additionally,  we  leverage  another  ablation  study  to  demonstrate
the  influence  of  every  term  in  uncertain  term .  Particularly,  we
remove  entropy  term  and  distance  term  from  ,
respectively. The experimental results are reported in Table 2. It can
be  seen  that  the  and   terms  can  both  contribute  to  the
segmentation  accuracy.  Particularly,  when  removing  and  
terms from  simultaneously, the training loss will degenerate to a
normal  segmentation  loss,  and  the  second round of  the  self-training
will be the same as the first round of self-training (e.g., ).

λr λuc 0.7 0.05

Comparison  with  state-of-the-art: We  first  validate  the  superi-
ority  of  our  proposed  method  on  the  GTA5→Cityscapes  task.  For
achieving higher segmentation accuracy and comprehensive compar-
ison,  we  further  implement  experiments  based  on  MRNet.  Particu-
larly,  we  set  and   to   and  ,  respectively.  The  experi-
mental  results  are  summarized  in Table 3 .  Clearly,  our  proposed
method  achieves  better  results  on  mIoU.  Some  typical  results  are
shown in Fig. 4.

λr λuc 0.8
0.1

Subsequently,  we  compare  our  method  with  state-of-the-arts  on
SYNTHIA → Cityscapes task. Because AdvEnt does not provide an
optimized  model  for  the  initialization  of  the  pseudo-labels,  we  only
implement  experiments  based  on  MRNet.  We  set  and   to  
and , respectively. The quantitative results are reported in Table 4
and  several  typical  qualitative  results  are  shown  in Fig. 5 .  Clearly,
our  proposed  method  still  achieves  the  best  performance  on  the
mIoU.

λr λuc 0.9 0.1

Finally,  we  compare  our  method  with  state-of-the-arts  on  the
Cityscapes→Oxford  RobotCar  task.  Similarly,  the  AdvEnt  does  not
provide  an  optimized  model  for  the  initialization  of  the  pseudo-
labels.  Hence,  we  only  perform  experiments  based  on  MRNet.  We
set  and  to  and , respectively. The quantitative results are
reported in Table 5 and several typical qualitative results are given in
Fig. 6.  It  can  be  observed  that,  compared  with  the  baseline,  the
performance gain  brought  by our  proposed method is  much smaller
than  the  other  two tasks,  which  is  caused  by  the  following  reasons.
On the one hand, the Oxford RobotCar dataset is a real scene dataset

 

λrTable 1.  The Performance of Network With Different Settings of  on the GTA5→Cityscapes Task

λr 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
mIoU (%) 32.1 37.5 39.4 41.2 44.7 45.3 46.3 45.6 45.3 44.9

 

 

(a) (b) (c) (d) (e)
 
Fig. 3. Several  typical  segmentation  results  of  different  stages.  (a)  Original
images;  (b)  Ground  truth;  (c)  Results  before  the  first  round  of  self-training;
(d)  Results  after  the  first  round  of  self-training;  (e)  Results  after  the  second
round of self-training.
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as the same as Cityscapes, leading to their small domain discrepancy
and  limited  effect  of  the  first  round  of  self-training.  On  the  other
hand,  the  images  from  Oxford  RobotCar  have  a  more  similar  style
compared with the Cityscapes dataset, resulting in weak influence of
the  second  round  of  self-training.  Hence,  our  proposed  method  is
more suitable for images that possess obvious style differences.
 

Table 5.  mIoU on the Cityscapes→Oxford RobotCar Task. M1, M2, M3,
M4 Represent PatchAlign [13], MRNet [10], PKA [15] and

MRNet + Ours, Respectively. Bold Indicates the Best

Method M1 M2 M3 M4

mIoU (%) 72.0 72.5 73.9 74.2
 
 

Conclusions: In this work, we proposed a novel self-training stra-
tegy  for  domain  adaptive  semantic  segmentation.  Particularly,  we
used  two  rounds  of  self-training  to  address  the  pseudo-label  waste
and false  pseudo-label  problems,  respectively.  We first  developed a
round  of  self-training  based  on  entropy-ranking  to  generate  more
easy  samples.  Thus,  more  pseudo-labels  can  be  involved  in  the
training,  avoiding  the  waste  of  pseudo-labels.  Subsequently,  we
developed  another  round  of  self-training  based  on  uncertainly
learning  to  reduce  the  influence  of  misleading  information  for
network optimization. Experimental results proved that our proposed
method  can  increase  the  performance  of  baseline  methods  signifi-

cantly.  Meanwhile,  our  proposed  method  can  outperform  several
state-of-the-arts.
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Table 2.  Illustration of the Effect of Different Terms in . None Means
That Neither  nor  is Introduced Into 

None Ent Dis Ent+Dis

mIoU (%) 46.4 47.0 46.8 47.4
 

 

Table 3.  The mIoU on GTA5→Cityscapes. M1, M2, M3, M4, M5, M6, M7 Rep-
resent PatchAlign [13], AdvEnt [3], MRKLD [14], MRNet [10], RPLUE [11],

AdvEnt + Ours and MRNet + Ours, Respectively. Bold Indicates the Best

Method M1 M2 M3 M4 M5 M6 M7

mIoU (%) 46.5 45.5 47.1 45.5 50.3 47.4 50.5
 

 

Table 4.  Quantitative Results on SYNTHIA→Cityscapes. We Present Pre-
Class IoU, mIoU and mIoU*. mIoU and mIoU* are Averaged Over 16 and

13 Categories, Respectively. M1, M2, M3, M4, M5, M6 Represent
AdvEnt [3], MRNet [10], CBST [5], MRKLD [14], RPLUE [11]

and MRNet + Ours, Respectively. Bold Indicates the Best

Method M1 M2 M3 M4 M5 M6

mIoU* (%) 48.0 50.2 48.9 50.1 54.9 55.1
mIoU (%) 41.2 43.2 42.6 43.8 47.9 48.9
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Fig. 4. Qualitative  results  of  semantic  segmentation  adaptation  on  GTA5→
Cityscapes task.
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Fig. 5. Qualitative  results  of  semantic  segmentation  adaptation  on  the
SYNTHIA→Cityscapes task.
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Fig. 6. Qualitative  results  of  semantic  segmentation  adaptation  on  the
Cityscapes→Oxford RobotCar task.
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