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   Dear Editor,
In  recent  years,  multi-modal  medical  image  fusion  has  received

widespread attention in the image processing community.  However,
existing works on medical image fusion methods are mostly devoted
to  pursuing  high  performance  on  visual  perception  and  objective
fusion  metrics,  while  ignoring  the  specific  purpose  in  clinical
applications.  In  this  letter,  we  propose  a  glioma  segmentation-
oriented multi-modal magnetic resonance (MR) image fusion method
using  an  adversarial  learning  framework,  which  adopts  a
segmentation  network  as  the  discriminator  to  achieve  more
meaningful  fusion  results  from  the  perspective  of  the  segmentation
task. Experimental results demonstrate the advantage of the proposed
method over some state-of-the-art medical image fusion methods.

Multi-modal  medical  image  fusion  aims  to  combine  the
complementary  information  contained  in  the  source  images  of
different modalities by generating a composite fused image, which is
expected  to  be  more  informative  for  human  or  machine  perception.
During  the  past  few  decades,  a  variety  of  medical  image  fusion
methods  have  been  proposed.  Most  existing  methods  are  developed
under  a  popular  three-phase  image  fusion  framework,  namely,
decomposition,  fusion  and  reconstruction  [1].  According  to  the
decomposition  approach  adopted,  conventional  multi-modal  image
fusion  methods  can  be  divided  into  several  categories  including
multi-scale  decomposition  (MSD)-based  methods  [2]–[4],  sparse
representation  (SR)-based  methods  [5]–[7],  hybrid  transform-based
methods  [8],  [9],  spatial  domain  methods  [10],  [11],  etc.  Recently,
deep  learning  (DL)  has  emerged  as  a  hotspot  in  the  field  of  image
fusion [12], [13] and some DL-based medical image fusion methods
have  been  introduced  in  the  literature,  such  as  the  general  image
fusion  framework  via  the  convolutional  neural  network  (IFCNN)
[14],  the  enhanced  medical  image  fusion  (EMFusion)  method  [15],
the  dual-discriminator  conditional  generative  adversarial  network
(DDcGAN)-based  method  [16],  and  the  unified  and  unsupervised
image fusion (U2Fusion) method [17].

Although  the  study  on  medical  image  fusion  has  achieved
considerable progress in recent  years,  it  is  worth noting that  current
works  suffer  from  a  common  drawback,  namely,  there  is  a  severe
lack  of  clinical  problem-oriented  study.  The  primary  target  of  most
existing  medical  image  fusion  methods  is  to  achieve  fused  images
with  pleasing  visual  quality  and  high  performance  on  objective
fusion metrics that are used in a broader range of image fusion tasks

(i.e., not limited to medical image fusion). However, they ignore the
specific purpose of the corresponding images in clinical applications,
which  limits  the  practical  value  of  image  fusion  methods  to  a  great
extent.

As the most common primary brain malignancy, glioma has always
been  a  serious  health  hazard  to  human.  In  clinical  practice,  the
automatic segmentation of gliomas from multi-modal MR images is
of great significance to the diagnosis and treatment of this disease. In
this  letter,  we  present  a  glioma  segmentation-oriented  multi-modal
MR image fusion method with adversarial learning. By introducing a
segmentation network as the discriminator to guide the fusion model,
the  fused  images  obtained  are  more  meaningful  in  terms  of  the
segmentation task. The fused modality can strengthen the association
of different pathological information of tumors captured by multiple
source modalities by integrating them into a composite image, which
is helpful to the segmentation task as well as physician observation.

Methodology:
Overall  framework: In  the  glioma segmentation task,  the  contrast-
enhanced  T1-weighted  (T1c)  and  the  fluid  attenuated  inversion
recovery (Flair) are two frequently used magnetic resonance imaging
(MRI)  modalities.  The  former  one  can  well  characterize  the  tumor
core  areas,  while  the  latter  one  can  effectively  capture  the  edema
areas that surround the tumor core. Therefore, we mainly concentrate
on the fusion of T1c and Flair modalities in this work. Motivated by
the  recent  progress  in  generative  adversarial  network  (GAN)-based
image  fusion  such  as  the  FusionGAN  [18]  and  DDcGAN  [16],  we
propose  an  adversarial  learning  framework  for  multi-modal  MR
image fusion. Unlike all the existing GAN-based fusion methods that
adopt a classification network as the discriminator model, a semantic
segmentation  network  is  used  as  the  discriminator  in  our  fusion
framework  to  distinguish  the  fused  image  from  the  source  images,
aiming  to  assist  the  fusion  network  (i.e.,  the  generator)  to  extract
sufficient  pathological  information  that  is  related  to  tumor
segmentation from the source images.
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Fig. 1 shows  the  overall  framework  of  the  proposed  multi-modal
MR  image  fusion  method.  The  source  images  and   are
concatenated and fed to a fusion network to generate the fused image

.  Two  segmentation  network-based  discriminators  are  adopted  to
further  improve  the  capability  of  the  generator  in  preserving  tumor
pathological information. The discriminator  aims to distinguish

 from   via  the  segmentation  results  on  the  tumor  core  area,
while  the  discriminator  aims  to  distinguish  from   via
the  segmentation  results  on  the  whole  tumor  area.  The  generator  is
encouraged  to  output  a  fused  image  with  rich  pathological
information about  the tumor area to  fool  the discriminators.  By this
means, the proposed framework builds an adversarial mechanism that
is  mainly  concerned  with  the  tumor  regions,  instead  of  the  entire
images  considered  in  previous  GAN-based  fusion  methods.  During
the training phase, the fused image gradually absorbs the information
of  the  tumor  area  contained  in  the  source  images  via  alternating
training  of  the  generator  and  two  discriminators.  The  training
procedure  is  summarized  in  Algorithm 1.  In  each  iteration,  the  two
discriminators  are  both  trained k  times  sequentially  and  then  the
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Fig. 1. The overall framework of the proposed fusion method.
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generator  is  trained.  Once  the  generated  fused  image  cannot  be
distinguished  by  the  discriminators,  we  obtain  the  generator  as  the
trained  fusion  network,  which  can  generate  expected  fused  image
that contains sufficient pathological information about the tumor area.

Algorithm 1 Training Procedure of the Proposed Method

DT1c DFlair1:  Initialize  the  parameters  of  discriminator  and   and
generator G,  k is set to 2.

2: for number of training iterations do
DT1c3: 　# Train the discriminator :

4: 　for k steps do
{I1

f , ...,I
m
f }5: 　　Select m fused images  from generator G.

I1
T1c, ...,I

m
T1c}6: 　　Select m T1c images .

DT1c
LDT1c

7: 　　Update discriminator  parameters by AdamOptimizer
to minimize  in (7).

8: 　end for
DFlair9: 　# Train the discriminator :

10: 　for k steps do
{I1

f , ...,I
m
f }11: 　　Select m fused images  from generator G.

I1
Flair, ...,I

m
Flair}12: 　　Select m Flair images .

DFlair
LDFlair

13: 　　Update discriminator  parameters by AdamOptimizer
to minimize  in (7).

14: 　end for
15: 　# Train the generator G:

{I1
T1c, ...,I

m
T1c}

{I1
Flair, ...,I

m
Flair}

16: 　Select  m  T1c  images   and  m  Flair  images
 from the dataset.

LG

17: 　Update generator parameters by AdamOptimizer to minimize
 in (1).

18: end for

F ∈ RH×W×C

F1 ∈ RH×W×C

z ∈ R1×1×C F1 H×W

Network  architecture: In  this  work,  we  adopt  relatively  plain
architectures  to  design  the  generator  and  discriminator,  and  the
results  demonstrate  that  they  have  been  able  to  achieve  good
performance.  The network architecture  of  the  generator  is  shown in
Fig. 2.  First,  the  source  images  are  concatenated  and  fed  to  three
consecutive  convolutional  layers  for  feature  extraction.  Then,  a
parallel attention structure that consists of a channel attention module
(CAM) and a spatial attention module (SAM) is adopted for feature
refinement.  The features  obtained by the  two attention branches  are
further  fused  by  an  addition  operation.  Finally,  the  refined  feature
maps pass through three convolutional layers to reconstruct the fused
image.  For the CAM, the input  feature  is  first  fed to a
convolutional layer to obtain . Then, the global average
pooling  (GAP)  operation  is  performed  to  generate  a  feature  vector

 by  shrinking  through  its  spatial  dimensions .

Fc ∈ RH×W×C

Y ∈ RH×W×1

Fs ∈ RH×W×C

Next, z passes through a fully connected layer and a sigmoid function
to  generate  the  activations  of  the  channel  attention  module.  Finally,
the output  of the CAM branch is obtained by rescaling
F with the activations. The goal of the SAM branch is to generate a
spatial  attention  map  to  recalibrate  the  input  feature F .  It  mainly
consists  of  three  convolutional  layers  and  a  sigmoid  function  to
obtain  the  spatial  attention  map . F  is  weighted  by  the
attention  map  to  obtain  the  output  of  the  SAM.  For
each  discriminator,  the  U-Net  architecture  [19]  is  used  due  to  its
popularity in medical image segmentation.

DT1c DFlair

Loss function: The loss function of the proposed method consists of
three parts, i.e., the loss function of the generator, the loss function of
the  discriminator  and  the  discriminator .  The  least
squares-based GAN loss model [20] is adopted in this work because
of  its  stability  for  training.  The  loss  function  of  the  generator  is
defined as
 

LG = Ladv +αLcontent (1)
Ladv

Lcontent

where  denotes  the  adversarial  loss  between  the  generator  and
the  discriminators,  while  denotes  content  loss  of  image
fusion.  The  parameter α  is  used  to  balance  these  two  terms.  The
adversarial loss is formulated as
 

Ladv = (Dice(DT1c(I f ))− c)2 + (Dice(DFlair(I f ))− c)2 (2)
Dice(·)where  denotes the calculation of Dice coefficient between the

given segmentation map and the ground truth. It is defined as
 

Dice =
2
∑N

i=1 pigi +ε∑N
i=1 p2

i +
∑N

i=1 g2
i +ε

(3)

pi ∈ P gi ∈G

Lcontent

where  is the predicted segmentation map,  is the ground
truth segmentation map, N  is  the number of  pixels,  and ε  is  a  small
constant to avoid dividing by 0. The Dice coefficient is a commonly
used approach to measure the segmentation accuracy, and its value is
between  0  and  1.  The  parameter c  in  (2)  denotes  the  score  that  the
generator  expects  the  discriminators  to  obtain  from  the  generated
fused image. The content loss  is defined as
 

Lcontent = Lssim +βLpixel (4)

Lssim
Lpixel Lssim

where β  is  used  to  control  the  balance  between  the  structural
similarity  (SSIM)  [21]  based  term  and  the  pixel-based  term

. The  is formulated as
 

Lssim = 2(1−SSIM(IT1c,I f ))+ (1−SSIM(IFlair,I f )) (5)
SSIM(·)

IT1c
Lpixel

where  denotes  the  SSIM  measure  between  two  images.
Considering that the T1c images contains more structural information
about  anatomic  tissues,  the  weight  for  is  set  to  a  larger  value
(i.e., 2). The pixel loss  is defined as
 

Lpixel =
1

H×W
(||I f − IT1c||F +2||I f − IFlair||F ) (6)
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Fig. 2. The architecture of our generator network. Conv(nk): Convolutional layer with k filters, BN: Batch normalization, ReLU and Tanh: Activation layers;
GAP: Global average pooling, : Fully connected layer.
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H×W
|| · ||F IFlair

where  denote  the  spatial  resolution  of  the  input  image  and
 denotes  the  Frobenius  norm.  The  weight  for  is  set  to  a

larger value (i.e., 2) to preserve more intensity information from the
Flair  image  since  the  lesions  are  likely  to  have  distinct  intensity  in
the image of this modality.

The loss function of each discriminator is defined as
 

LDm = (Dice(Dm(I f ))−a)2 + (Dice(Dm(Im))−b)2 (7)
Dm Imwhere  denotes  a  certain  discriminator  network  and  is  the

corresponding source image. The parameters a and b are the expected
scores  of  the  discriminator  to  obtain  from  the  fused  image  and  the
source image, respectively.

Experiments:

240×240×155

240×240

1×10−4

QMI
QG QW

Experimental  setup: The  proposed  fusion  model  is  trained  and
validated  on  the  multi-modal  MRI  glioma  dataset  released  by  the
MICCAI  brain  tumor  segmentation  (BraTS)  2019  challenge.  The
training  set  that  contains  335  multi-modal  MRI  scans  of  size

 in  this  dataset  is  mainly  adopted to  train  our  fusion
model.  We totally  generate 4397  pairs  of  T1c and  Flair  slices  from
these  scans  for  network  training,  based  on  the  principle  that  the
selected slices must contain the tumor regions. The size of each slice
is . 30 pairs of T1c and Flair slices are employed to validate
the  effectiveness  of  the  trained  fusion  network.  They  are  selected
from  30  sets  of  multi-modal  MRI  scans  from  the  BraTS  2019
validation  set.  The  parameters α  and  β  in  (1)  and  (4)  are
experimentally set to 2 and 450, respectively. For easier training, soft
labels  are  used  to  define  the  parameters a,  b  and  c  [20 ].  In  our
experiments, a is a random value ranging from 0 to 0.3, while b and c
randomly  range  from  0.7  to  1.2.  The  batch  size  is  set  to  1  and  the
learning  rate  is  fixed  at  for  both  the  generator  and  the
discriminators.  It  takes  about  11  hours  to  complete  the  training
process  lasting  10  epoches  on  an  NVIDIA TITAN RTX GPU.  The
proposed  method  is  compared  with  four  representative  MSD-based
or DL-based medical image fusion methods: DTCWT [22], LPCNN
[23], U2Fusion [17] and IFCNN [14]. For objective evaluation, since
existing  image  fusion  metrics  can  be  divided  into  four  categories:
information  theory-based,  image  feature-based,  SSIM-based  and
human  visual  perception-based  [24],  we  select  one  popular  metric
from  each  category  to  make  a  comprehensive  assessment.
Specifically,  they  are  the  normalized  mutual  information  [25],
the gradient-based metric  [26],  the SSIM-based metric  [27]
and the visual information fidelity fusion metric VIFF [28].

QW
QMI

QG

QG

240×240

Fusion results: The objective assessment  results  of  different  fusion
methods  is  listed  in Table 1 ,  in  which  the  average  score  over  30
testing samples in each case is reported. For each metric, the optimal
value is indicated in bold and the suboptimal one is underlined. It can
be seen that the proposed method outperforms other four methods on

 and VIFF with obvious advantages. It ranks the second place on
, but the gap to the best performing one (i.e., U2Fusion) is very

small.  For the metric ,  the DTCWT and LPCNN methods obtain
higher  performance,  which  is  mainly  owing  to  that  the  MSD
framework  adopted  is  good  at  detail  extraction.  Our  method
outperforms two DL-based methods on . A more detailed sample-
wise  comparison  on  the  objective  performance  of  different  fusion
methods  is  shown  in Fig. 3 .  Overall,  the  proposed  method  obtains
more competitive performance on objective evaluation. Fig. 4 shows
three  sets  of  fusion  results  obtained  by  different  methods.  In
comparison  to  the  objective  evaluation,  the  superiority  of  the
proposed method on visual quality in terms of the tumor area is more
significant. In fact, we believe that the latter factor is more important
to  a  specific  purpose-oriented  image fusion problem.  It  can  be  seen
from Fig. 4  that  the  fusion  results  of  the  four  comparison  methods
can well preserve the pathological information from the T1c modality
in T1c, but lose a large amount of lesion information about the edema
regions  captured  by  the  Flair  image,  leading  to  high  difficulty  to
distinguish the whole tumors. By contrast, the fused images obtained
by  the  proposed  method  can  simultaneously  capture  different
categories of tumor pathological information from both T1c and Flair
modalities. Therefore, the fusion results of the proposed method have
higher potential to benefit the segmentation task as well as physician
observation.  The  average  running  time  of  the  proposed  method  for
fusing  a  pair  of  images  of  size  is  pixels  is  about  0.12
seconds with GPU acceleration using the PyTorch framework, which
is generally acceptable in practical usage.
Ablation study: We conduct a set of ablation experiments to verify
the  effect  of  adding  segmentation  networks  as  discriminators  in  the

DT1c
DFlair

DT1c

DFlair

proposed fusion framework. The corresponding results are shown in
Fig. 5.  The  first  and  second  columns  are  the  source  images  of T1c
and  Flair  modalities.  The  last  four  columns  give  the  fusion  results
obtained by the completed model, the model with two discriminators
both  removed,  the  model  with  the  discriminator  removed  and
the  model  with  the  discriminator  removed,  respectively.  In
comparison  to  the  fusion  results  obtained  by  the  completed  model,
the results of the model with two discriminators both removed suffer
from  blurry  effect  within  edema  regions  and  around  tumor
boundaries.  The  fusion  results  of  the  model  with  the  discriminator

 removed are too close to the input Flair images, leading to the
loss  of  pathological  information  contained  in  the  T1c images.  The
fusion  results  of  the  model  with  the  discriminator  removed
almost lose all the edema information captured in the Flair images.
Evaluation  from  the  perspective  of  segmentation: We  finally
conduct  a  segmentation  experiment  to  further  evaluate  the
effectiveness of the proposed fusion method. To exclude the impact
of  other  factors,  we  only  use  the  fused  image  as  the  input  of  the
segmentation  model  and  compare  the  accuracy  using  the  fused
images obtained by different methods. In practice, the fused modality
and  source  modalities  can  be  employed  as  the  segmentation  input
together to pursue higher accuracy. Considering that the ground truth
segmentation label is only provided by the training set in the BraTS
dataset,  we  use  the  training  set  as  the  experimental  data  here  and
generate  a  set  of  source  images  from  it  using  the  similar  approach
mentioned  above  (for  simplicity,  we  mainly  focus  on  2D  image
segmentation in this experiment).  The generated samples are further
divided into training, validation and testing sets with a ratio of 6:2:2.
The fused images are then obtained by different fusion methods. For
each  method,  the  segmentation  model  is  trained  and  then  the
accuracy is tested. The popular U-Net is adopted as the segmentation
network.  Two  popular  metrics  (the  Dice  coefficient  (DC)  and  the
Hausdorff  distance  (HD))  are  used  to  evaluate  the  segmentation
accuracy  on  the  whole  tumor  area. Table 2  lists  the  segmentation

 

Table 1.  Objective Assessment Results of Different Fusion Methods
QMI QG QW VIFF

DTCWT 0.9961 0.5151 0.7414 0.5639
LPCNN 1.0700 0.5382 0.7544 0.5424

U2Fusion 1.0880 0.4508 0.7017 0.5966
IFCNN 1.0660 0.4811 0.7815 0.6637

Proposed 1.0868 0.4815 0.7967 0.7727
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Fig. 3. A more detailed sample-wise comparison on the objective performance
of different fusion methods.
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accuracy  using  the  fused  images  obtained  by  different  fusion
methods. It can be seen that the fused images of the proposed method
achieve  much  higher  segmentation  accuracy  than  those  of  the  other
four comparison methods. This observation is in accord with results
shown  in Fig. 4 ,  which  further  verifies  the  significance  of  the
proposed fusion method.

Conclusions: This  letter  presents  a  glioma-oriented  multi-modal
MR  image  fusion  method.  The  proposed  method  is  based  on  an
adversarial  learning  framework,  in  which  the  segmentation  network
is  introduced  as  the  discriminators  to  guide  the  fusion  network  to
achieve  more  meaningful  results  from  the  viewpoint  of  tumor
segmentation. Experimental results demonstrate the advantage of the
proposed method in terms of objective evaluation, visual quality and
significance to segmentation. This work is expected to provide some
new thoughts to the future study of medical image fusion.
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Fig. 4. Three sets of T1c  and Flair image fusion results obtained by different
methods.
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Fig. 5. Three sets of T1c and Flair image fusion results in the ablation study.
 

 

Table 2.  The Segmentation Accuracy Using the Fused Images Obtained by
Different Fusion Methods

DTCWT LPCNN U2Fusion IFCNN Proposed
DC 0.5578 0.5903 0.5006 0.5861 0.7694
HD 27.64 30.43 29.32 24.35 17.51
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