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   Dear Editor,

This  letter  is  concerned  with  dealing  with  the  great  discrepancy
between near-infrared (NIR) and visible (VS) image fusion via color
distribution  preserved  generative  adversarial  network  (CDP-GAN).
Different  from  the  global  discriminator  in  prior  GAN,  conflict  of
preserving  NIR  details  and  VS  color  is  resolved  by  introducing  an
attention  guidance  mechanism  into  the  discriminator.  Moreover,
perceptual  loss  with  adaptive  weights  increases  quality  of  high-
frequency  features  and  helps  to  eliminate  noise  appeared  in  VS
image.  Finally,  experiments  are  given  to  validate  the  proposed  me-
thod.

VS  images  appear  poor  details  or  visual  effects  in  non-ideal
lighting conditions such as low light, haze or noisy conditions due to
the  dependence  on  object  reflection  and  scene  illumination  [1].  To
solve  this  problem,  the  straightforward  method  is  to  increase  the
sensitive  area  of  sensors.  However,  this  requires  higher  hardware
requirements and the improvement of image shadow effect is limited
to  a  very  low  degree.  Another  solution  is  to  obtain  high  signal
instantaneous  ratio  NIR  gray  image  by  adding  NIR  complementary
light, and then fuse it with color VS image. The NIR and VS image
fusion  aims  to  generate  a  clean  image  with  considerable  detail  in-
formation,  which  has  important  application  values  in  low  illumi-
nation fields such as night monitoring.

Different  fusion  schemes  have  been  developed  to  exploit  combi-
ning  complementary  information  in  VS  and  NIR  images,  such  as
multi-scale  decomposition-based,  regularization-based  and  mathe-
matical  statistics-based  fusion  methods.  However,  most  existing
methods  use  manual  methods  to  design  transmission  model.  To
improve the fusion effect,  the design process is becoming more and
more  complex.  Consequently,  it  is  harder  to  avoid  the  implemen-
tation  and  computational  efficiency.  On  the  contrary,  image  fusion
methods  based  on  deep  learning  mostly  adopt  end-to-end  model,
which  can  directly  generate  fused  images  using  inputs  without
complicated  activity  level  measurements  and  fusion  rules  [2].
Moreover, the deep network is trained with a large number of source
images  and  thus  more  informative  features  with  specific  charac-
teristics could be extracted.

In  general,  deep  learning-based  methods  have  been  proved  to  be
effective for image fusion whereas deep learning-based NIR and VS
image fusion is seldom studied as far as we have acknowledged. To a
certain extent, infrared (IR) and VS image fusion is similar to task of

NIR  and  VS  image  fusion,  for  they  both  motivate  to  transfer  the
useful  information  in  IR/NIR  image  to  VS  image.  And  yet,  the
former aims to transfer the local salient region in IR image, so little
attention is paid to preserving color appearance of VS image. On the
contrary, NIR and VS image fusion methods are designed to transfer
the  global  details  [3].  Therefore,  color  appearance  of  the  VS  color
image  will  inevitably  be  disturbed  while  IR  and  VS  image  fusion
methods are  directly  applied to  fuse NIR and VS images.  To verify
the above analysis, we present a representative experiment in Fig. 1.
The third image is  obtained by a recent deep learning-based unified
image fusion method (termed as IFCNN). It  fails  to retain the color
appearance  compared  to  the  VS  image  and  serious  color  distortion
occurs  in  its  fusion  result.  Most  existing  NIR and  VS image  fusion
methods fail to balance these two tasks thus similar failure as IFCNN
occurs in their result. Fortunately, due to the capability to fit multiple
distribution  characteristics  [4],  the  generative  adversarial  network
(GAN) could achieve these two goals and preserve the distribution of
detail and color information simultaneously.

 

 
Fig. 1. Schematic illustration of image fusion. From left to right: VS image,
NIR image, fusion result of a recent deep learning-based unified image fusion
method [5], and fusion result of our proposed CDP-GAN.
 

On the basis of above analysis, we propose a GAN-based NIR and
VS  image  fusion  architecture  with  color  distribution  preservation,
termed as CDP-GAN. We formulate NIR and VS image fusion as an
adversarial game between generator and discriminator. The generator
aims  to  generate  a  fused  image  that  contains  considerate  details,
whereas  the  discriminator  attempts  to  constrain  the  fused  image  to
have similar pixel intensity as noise-free VS image so that final fused
image would not suffer from color distortion. To prevent details from
being blurred by the global discriminator, an easily realized attention
mechanism  is  combined  with  discriminator,  which  enforces  discri-
minator  to  pay  more  attention  to  VS  region  while  ignoring  NIR
texture  region.  Therefore,  CDP-GAN  could  produce  a  noise-free
result  that  not  only  contain  rich  textures,  but  also  retain  the  high-
fidelity color information compared with VS image.
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Problem  formulation: Given  a  pair  of  pre-registration  source
images,  purposes  of  NIR  and  VS  image  fusion  are  to  preserve  the
useful detail information of both source images and recover the color
information of the VS image. In this work, we formulate NIR and VS
image fusion problem as  an  adversarial  process  between the  former
two purposes. The schematic framework is shown in Fig. 2. At first,
we  concat  the  luminance  channel  of  VS  image  and  NIR  image
and then input  them into  the  generator.  After  feature  extraction  and
reconstruction in the generator, the initial fused 1-channel image 
is  obtained  as  output.  Having  been  restrained  by  the  adaptive
perceptual  loss,  the  initial  preserves  considerable  edges  and
textures  which  are  visible  in  source  images.  However,  owing  to
embedding  of  the  NIR  image,  tends  to  appear  divergent  pixel
distribution with luminance channel of VS image , which will lead
to  color  distortion  in  the  final  color  result.  An  initial  solution  is
inputting  and  into  the  discriminator  and  establishing  an
adversarial  relationship  between  the  generator  and  discriminator  by
an  adversarial  constraint  loss  function.  However,  low-quality  VS
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images  would  introduce  much  noise  into .  Therefore,  the  mean
filtering is performed as initial denoising to obtain the noise-free VS
image .  While training, the discriminator works to distinguish 
from  as  much as  possible  and  the  generator  acts  to  generate  the
most  realistic  to fool  discriminator.  Pixel  intensity of  will  be
gradually  more  and  more  similar  to  in  the  adversarial  process.
Consequently,  the  final  color  image  reconstructed  by  and
chrominance  channel  of  will  appear  natural  and  similar  color
information  as  the  color  VS  image.  Noting  that  the  adopted  color
space is YCbCr in which color components Cb and Cr represent blue
and  red  chromaticity  components,  respectively  [6].  Moreover,  in
order  to  prevent  details  of  generated  results  from being  blurred,  we
introduce an attention-guided architecture into the discriminator.

3×3

Network architecture: As shown in Fig. 3, the generator of CDP-
GAN contains two encoder networks, a feature fusion module and a
decoder  network.  To  reduce  computational  complexity  while
training, these two encoder networks have the same architecture that
consists  of  4  convolution  layers  that  adopt  filter  consistently,
with weights shared between them. In order to reduce gradient loss,
compensate for feature loss and reuse previously calculated features,
the  encoder  adopts  dense  connection  and  establishes  short  direct
connection  between  each  layer  and  all  layers  in  feedforward  mode
[7]. The batch normalization is adopted on the heels of each layer to
quicken the  training and avoid  gradient  explosion [8].  The stride  of
each convolution layer is empirically set to 1. To avoid dropping out
detail  information  in  the  source  images,  we  remove  downsampling
operation in convolution. Moreover, all convolution layers except the
last  one  use  leaky  ReLU  activation  function  which  could  deal  with
dying neurons in traditional ReLU and speed up the convergence.
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Fig. 3. The overall architecture of generator.
 

The main framework of the proposed discriminator is the same as
that  in  the  original  GAN  which  acts  as  a  classifier  to  distinguish
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whether  input  image  comes  from  or  data  distribution.  The
discriminator is mainly composed of 4 convolution layers and a full
connection layer.  The stride  of  all  layers  is  set  to  2  thus  the  size  of
extracted  feature  maps  gradually  halves.  Being  influenced  by  the
discriminator,  generated  result  will  be  gradually  closer  to .
However,  we  might  as  well  summarize  the  role  of  the  generator  as
embedding useful detail information in  and  into the generated
result . The global discriminator treats every pixel in  fairly and
thus textures and edges that come from NIR image will be blurred.

To  handle  problems  of  detail  loss  caused  by  the  global
discriminator,  we  introduce  an  easy-to-use  attention  mechanism  for
the  discriminator.  As  shown  in Fig. 4,  along  with  input  images,  a
corresponding  attention  map  is  also  fed  into  the  discriminator  and
then multiplied with all feature maps before every convolution layer
in  channel  dimension.  Noting  that  the  downsampling  operation  is
adopted before the latter  three convolution layers  to  fit  each feature
map. The attention map is calculated ahead as follows:
 

Iatti = 1−∇In. (1)
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Fig. 4. The overall architecture of discriminator.
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The attention  map  is  reflection  of  gradient  map  of .  Noting
that  values  in  are  scaled  to  range .  Larger  gradient  values
mean  more  detailed  information  in  this  local  area  in  and  little
attention of  discriminator  should be paid here for  preventing details
coming from . Guided by the attention map, convolution layers pay
more attention to the feature extraction of non-NIR feature areas and
thus NIR detail loss is eliminated.

Lcon Ladv(G)
Loss function: The loss function of generator in this letter consists

of two parts: content loss  and adversarial loss .
 

Lg = Lcon +λLadv(G). (2)
where  hyperparameter λ is  introduced  to  trade-off  influence  of
generator  and  discriminator.  For  context  loss,  pixel-wise  loss  is
widely  used and calculates  the  loss  between pixels  of  the  generated
and target  images.  It  makes the generated result  have a high signal-
to-noise ratio (PSNR) but lack of high-frequency information, which
results in over-smooth texture. The generated image should be close
to input images in terms of both low-level pixel values and high-level
abstract  features.  Moreover,  the  NIR  and  VS  image  have  great
discrepancy that cannot be handled by pixel-wise loss.
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Lcon I(l)
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To preserve both high-frequency and low-frequency information of
source images, we introduce the perceptual loss as our loss function.
Thanks  to  the  large  and  diverse  datasets,  other  visual  tasks  such  as
target  recognition  and  segmentation  CNN  models  have  more
powerful  feature  extraction  ability.  Thus,  we  adopt  the  VGG-16
network  which  has  been  well  trained  with  ImageNet  dataset  to
extract  features.  At  first,  we duplicate the input  into 3 channels  and
then  feed  them into  the  VGG16.  Feature  maps  are  separated  before
the  pooling  layer  and  their  number  of  channels  gradually  doubles
whereas size halves.  denotes feature maps of input I before the j
pooling layer. To prevent introduction of noise and loss of details, we
choose  which  has  the  closest  size  to  the  input  in  the  content
loss . In generator, fused result  is reconstructed from  and

 by  constraining  distance  of  feature  map  between  inputs  and
output. Thus, the content loss  is formulated as follows: 

 

Real

Iatti

Iv
(l)

If
(l) Fake

In

Generator

DiscriminatorEncoder DecoderFusion

One of
them

 
Fig. 2. Framework of the proposed CDP-GAN for NIR and VS image fusion.
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where  denotes the number of channels.  and  present
the  weight  parameters  of  the i-th  feature  map  for  and .
Obviously, it is difficult to set desired values of  and  that are
suitable for all the feature maps. Thus, we design an adaptive strategy
for  and  which  aims  to  assign  larger  values  for  the  feature
map  with  considerable  useful  information.  For  two  feature  maps  of

 and  in the i-th channel, we attempt to measure the information
contained in  them and their  gradients  are  adopted for  measurement.
Compared with entities in general information theory, image gradient
is  a  small  receptive  field  measure  based  on  local  spatial  structure.
While used in deep learning framework, gradients are more efficient
in  both  computation  and  storage.  Therefore,  they  are  more  suitable
for  CNN  information  measurement.  Comparing  amounts  of
information, the trade-off weights are defined by weighted averaging
as follows:
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In  CDP-GAN,  we  introduce  the  attention-guided  discriminator
which  acts  to  keep  similar  pixel  distribution  with  thus  color
distortion in the generated result could be eliminated. The adversarial
loss  between the generator  and discriminator  is  designed to
distinguish  from  and is formulated as follows:
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 denotes  the  generated  image  dataset  and  represents

possibility that input  comes from the generated dataset.
By optimizing loss of generator,  the generator could produce a 1-

channel  noise-free  result  in  which  considerable  edges  and  textures
are  preserved.  Whereas,  there  is  great  discrepancy  in  pixel
distribution between the result and luminance channel of VS image.
Compared with the original color VS image, the color brightness of
the  fused  color  image  will  be  extremely  different  once  inversely
transformed  back  to  RGB  space.  Thus,  adopting  a  discriminator  to
constrain the generated result to appear similar pixel distribution with
luminance  channel  of  VS  image  could  help  solve  problem  of  color
distortion  caused  by  global  pixel  diversity.  To  establish  the
adversarial game between generator and discriminator, we formulate
a loss function of discriminator based on WGAN as follows:
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+φEx̃
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The first two terms in (6) adopt Wasserstein distance estimation to
solve  the  problem  of  gradient  vanishing  and  stabilize  the  training
process.  The  last  term  denotes  the  gradient  penalty  factor  which  is
designed  to  satisfy  the  Lipschitz  continuity  condition, φ is  a
hyperparameter to control the trade-off between these terms.

64×64

Experiment and analysis: In this letter, we construct a large-scale
training  set  by  uniformly  sampling  training  sequence  of  RGB-NIR
dataset  [9].  The  training  set  is  composed  of  27  264  pairs  of  image
patches  with  size .  Two  test  image  pairs  are  chosen  from
RGB-NIR dataset for comparing with different methods qualitatively
and  another  20  test  image  pairs  for  quantitative  evaluation.  We
conduct  the  comparison  experiments  with  seven  state-of-the-art
fusion methods including VSM [10], CVN [11], WLP [9], CNI [12],
GF  [13],  U2fusion  [6]  and  SDNet  [14].  The  parameters  are  set  as

follows:  training  epoch  is  set  to  20,  and  number  of  batch  images  is
set  to  12.  For  best  fusion  performance, λ and φ are  set  to  5  and  1,
respectively.

1)  Qualitative  analysis:  To  prove  superiority  of  CDP-GAN
subjectively, we provide two sets of representative qualitative results
in Figs. 5 and 6. Their results could be classified into two categories.
The first category is more like VS image thus natural color appears,
such  as  VSM  and  CNI.  However,  textures  are  not  rich  enough  in
their  results.  More  specifically,  mountains  in Figs. 5(c)  and 5(f)  are
unclear  compared  with  other  results.  In  conclusion,  VSM  and  CNI
have little ability to retain details in NIR image. On the contrary, the
second category contains much detail information about mountains in
Figs. 5(d), 5(e) and 5(g)−5(i), but their color appearance is unnatural
and color distortion occurs,  such as GF, CVN, WLP, U2Fusion and
SDNet.  CDP-GAN  can  not  only  preserve  details  under  non-ideal
scene, but also has hardly any color distortion.
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Fig. 5. Qualitative comparison of different fusion algorithms on image Img1.
(a) VS image; (b) NIR image; The fused images are obtained by (c) VSM; (d)
CVN; (e) WLP; (f) CNI; (g) GF; (h) U2fusion; (i) SDNet; (j) our algorithm.
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Fig. 6. Qualitative comparison of different fusion algorithms on image Img2.
(a) VS image; (b) NIR image; The fused images are obtained by (c) VSM; (d)
CVN; (e) WLP; (f) CNI; (g) GF; (h) U2fusion; (i) SDNet; (j) our algorithm.
 

Limited  by  device,  VS  image  in Fig. 6 contains  much  noise.  In
CDP-GAN,  adaptive  perceptual  loss  measures  feature  rather  than
pixel-wise  similarity.  Features  obtained  by  VGG-16  are  robust  to
noise in protecting structure [15] thus generator could produce noise-
free  result.  Moreover,  to  prevent  introducing  noise,  initial  denoised
VS  image  is  adopted  in  discriminator.  Initial  denoising  would
remove  details  in  VS  color  image  along  with  the  noise.  However,
adaptive  perceptual  loss  can  transfer  details  of  captured  NIR  gray
image  to  fused  result.  Therefore,  the  final  fused  image  can  be  both
noise-free  and  detail-preserved.  As  shown in Fig. 6,  only  VSM and
CDP-GAN could produce noise-free image. However, as highlighted
by  red  rectangles  in Fig. 6,  the  vein  is  more  clear  in  our  result  and
thus CDP-GAN could not only eliminate noise in VS images but also
retain  considerable  details  which  are  of  benefit  to  human  visual
system.

2)  Quantitative  analysis:  To  demonstrate  effectiveness  of  CDP-
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GAN,  quantitative  experiments  are  also  provided.  The  objective
evaluations of selected metrics EN, SD, MI, , SSIM and PSNR
[6]  are  shown  in Table 1.  Our  CDP-GAN  could  obtain  the  largest
average values  on EN,  SD,  SSIM and PSNR. Slightly  worse,  CDP-
GAN wins the second largest values on MI and . For MI, the
CNI  achieves  the  largest  values  because  it  only  acts  as  a  dehazing
processing so its  result  is  mostly  similar  to  VS image but  abandons
the details in NIR image. For , the GF algorithm gets the best
performance for its motivation to retain the details in source images.
However, GF ignores the discrepancy between color and gray image
which has been analyzed in the qualitative experiments.

 
Table 1.  Quantitative Comparison of Different Fusion Algorithms

Methods EN SD MI QAB/F SSIM PSNR

VSM 2.0870 2.6034 2.2859 3.0830 1.3270 3.1421

CVN 2.3222 1.8187 1.3745 3.9422 1.3262 2.9885

WLP 2.3041 1.7950 1.3133 3.7387 1.3276 3.0880

CNI 2.2156 2.4835 2.3105 4.2134 1.3268 3.3092

GF 2.3456 1.8128 1.7840 4.2442 1.3246 3.0696

U2fusion 2.4849 2.1777 1.3600 3.7701 1.3270 2.8385

SDNet 2.5540 1.9928 1.0516 3.6495 1.3196 3.0042

Ours 2.5923 2.6628 2.2934 4.2348 1.3277 4.0659

 
 

3)  Validation  experiment:  To  verify  effect  of  improvements,
ablation  experiments  are  shown  in Fig. 7.  While  pixel-wise  loss  is
adopted  in  generator,  result  contains  less  details  than  our  result.  As
framed in Fig. 7(c),  mountains  in  the  distance are  not  clear  enough,
which proves that  details  have not  been transmitted to  fused image.
On the contrary,  we can see from Fig. 7(g)  that  mountains  obtained
by  proposed  loss  are  more  complete  and  larger  detail  preservation
degree  is  achieved.  While  no  attention  mechanism,  although  result
appears  similar  color  information,  detail  blurred  and  halo  artifacts
which  are  schematically  shown in Fig. 7(d)  occur.  Moreover,  it  can
be  concluded  that  discriminator  with  multiplication-attention
mechanism  could  achieve  greater  details  and  color  retention  by
comparing Figs. 7(e)  and 7(g).  For  feature  fusion  strategy,  result
obtained  with  addition  achieves  goal  of  preserving  detail  and  color
information.  However,  concatenation  is  more  suitable  for  feature
fusion  as  generator  with  this  strategy  could  recover  clearer  textures
compared with the addition strategy as shown in highlighted region.

 

(a) (b) (c)

(d) (e) (f) (g)
 
Fig. 7. Ablation experiment. (a) VS image; (b) NIR image; The fused images
obtained  (c)  with  pixel-wise  loss;  (d)  without  attention  mechanism  in
discriminator; (e) with concatenation-attention mechanism in discriminator;
(f) with addition strategy in feature fusion; (g) with multiplication-attention
mechanism in discriminator and concatenation strategy in feature fusion.

Conclusion: In  this  letter,  we  propose  a  new framework  for  NIR
and  VS  image  fusion  termed  as  CDP-GAN.  It  can  simultaneously
keep  color  distribution  in  VS  image  and  detail  information  in  both
source images. Specifically, an adaptive perceptual loss is introduced
to increase detail preservation degree. Moreover, we unite the global
discriminator  with  proposed attention mechanism,  which effectively
eliminates  color  distortion.  Experiments  verify  that  our  CDP-GAN
can not only retain useful  information in source images but also act
as  a  denoising  method  with  the  aid  of  NIR  image.  Compared  with
other  methods  on  publicly  available  datasets,  our  CDP-GAN  is
superior in both qualitative and quantitative aspects.
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