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   Dear Editor,

This  letter  addresses  the  stabilization  control  of  an  asymmetric
underactuated surface ship with full-state constraints. To simplify the
design  of  controller,  the  original  ship  model  is  transformed  into  a
nonlinear cascade system with a minimum phase. Then, the stabiliza-
tion of the cascade system is further processed into an equivalent sta-
bilization of a reduced-order nonholonomic-like system. A discontin-
uous stabilization control method is proposed through a combination
of state-scaling and state-dependent function transformations, nonlin-
ear  filters,  and  switching  technologies.  Stability  analysis  demon-
strates  that  under  the  newly  designed  stabilization  controller,  the
closed-loop  system  states  are  bounded  and  the  desired  state  con-
straints are not violated.

Underactuated  surface  vessel  (USV)  plays  an  important  role  in
marine operations, such as transportation, patrolling, and underwater
detection  [1].  Due  to  the  lack  of  a  controller  in  sway  direction,  the
control  design  for  USV  poses  a  challenge  to  control  engineering.
Research  on  USV can  be  roughly  divided  into  the  stabilization  and
tracking  control  for  symmetric  USV  [2]  and  asymmetric  USV
(including  USV  with  stochastic  disturbances)  [3],  [4].  The  smooth
time-varying control method [5] and discontinuous control method [6]
are  the  two  most  commonly  used  methods  to  achieve  the  stabiliza-
tion  of  USV.  And  Lyapunov’s  direct  method  [2],  [7]  and  line-of-
sight-based  method  [8]  are  the  most  effective  weapons  to  handle
tracking  issues.  Additionally,  some  simpler  control  strategies  have
also  been  put  forward,  such  as  cascade  control  methods  [3],  [5].
Other control issues include fixed-time-based [9] fault diagnosis con-
trol [10], etc.

Since  it  is  difficult  to  directly  develop  a  controller  for  USV  by
using traditional nonlinear control methods, the main control method
is to change the USV model into a backstepping design form. How-
ever,  this  form  is  not  strictly  upper-triangular,  which  makes  the
design  process  tedious  and  difficult.  On  the  other  hand,  it  is  well-
known  that  underactuated  systems  and  nonholonomic  systems  are
generally  studied  separately,  and  the  control  relationship  between
them has never really examined.

This  paper  studies  the  stabilization  of  an  asymmetric  underactu-
ated ship with full-state constraints.  The main model transformation
contribution  is  that  we  transform  the  stabilization  problem  of  the
asymmetric  USV  into  that  of  an  equivalent  reduced-order  system,
and  transform  the  equivalent  reduced-order  system  into  a  nonholo-
nomic-like  system,  and  finally  realize  the  transformation  from  sys-
tem  underactuated  structure  to  nonholonomic  structure.  It  is  a  new
and  simper  way  to  study  USV  control  than  the  existing  methods,
such as Lyapunov’s direct approach. The main control design contribu-

.

tion  is  that  we  have  developed  a  discontinuous  stabilization  control
algorithm by  using σ -scaling,  state-dependent  function  (SDF)  trans-
formations, Barrier Lyapunov functions (BLFs), and filters, such that
the  resulting  closed-loop  system  is  ultimately  bounded  and  the
desired state constraints are not violated in the entire control process

Problem  formulation: The  dynamic  model  of  the  considered
underactuated surface ship is expressed as [1]
 {

η̇ = J(ψ)v
Mv̇ = −C(v)v−Dv+τ∗

(1)

η = (x,y,ψ)T v = (u,v,r)T τ∗ = (τ∗u,0, τ
∗
r )T J(ψ) = [cos(ψ)

−sin(ψ) 0; sin(ψ) cos(ψ) 0;0 0 1] M = [m11 0 0; 0 m22 m23; 0 m32
m33] C = [0 0 c13;0 0 c23;−c13 − c23 0] D = [d11 0 0; 0 d22 d23;
0 d32 d33] c13 = −m22v−0.5(m23 +m32)r c23 = m11u

with , , , 
, 

, , 
, ,  and .  Please

see [5] for more details about this ship model.
τ∗u

τ∗r limt→∞ x(t) = 0 limt→∞ y(t) = 0 limt→∞ψ(t) = 0
limt→∞ u(t) = 0 limt→∞ v(t) = 0 limt→∞ r(t) =0
|x(t)| < kx |y(t)| < ky |ψ(t)| < kψ |u(t)| < ku |v(t)| < kv |r(t)| < kr

kx ky kψ ku kv kr

The control objective is described as: design control inputs  and
 such  that , , ,

, ,  as  far  as  possible
and , , , , , 
where , , , , ,  are positive constants.

In order to convert the studied ship model into a cascade form, we
first introduce the following input transformations [3]:
 

τ̄∗u =
1

m11
τ∗u +∆1, τ̄

∗
r =

m22

m22m33 −m23m32
τ∗r +∆2 (2)

∆1 = 1/(m11) [r(m22v+0.5(m23 +m32)r)−d11u] ∆2 = (1/

(m22m33 −m23m32))[(m11m22 −m2
22)uv (m32d22 −m22d32)v+ (m32×

d23 −m22d33)r+ (m11m32 −0.5m22(m23 +m32))ur]

where  and  

 + 
. Under which, one

can get that
 

u̇ = τ̄∗u, ṙ = τ̄∗r

v̇ =
1

m22
(−m23τ̄

∗
r −m11ur−d22v−d23r).

(3)

Next, motivated by [11], we introduce the state transformations as
 

x1 =[x+ε∗(cos(ψ)−1)]cos(ψ)+ (y+ε∗ sin(ψ)) sin(ψ)

x2 =− [x+ε∗(cos(ψ)−1)]sin(ψ)+
1
β

(v+ε∗r)− γ
β
ψ

+ (y+ε∗ sin(ψ))cos(ψ)

x3 =ψ, x4 = −
α

β
u− x1, x5 = v+ε∗r, x6 = r

(4)

and input transformations as
 

w1 =−
α

β
τ̄∗u +

β

α
(x1 + x4)− x2x6 +

1
β

x5x6 −
γ

β
x3x6

=− α

βm11
τ∗u +Ξ

w2 = τ̄
∗
r = M∗τ∗r +∆2

(5)

ε∗= m23
m22

α= m11
m22

β= d22
m22

γ= d22m23
m2

22
− d23

m22
M∗= m22

m22m33−m23m32

Ξ = −αβ∆1 +
β
α (x1 + x4)+ x6

(
1
β x5 − x2− γβ x3

)with , , , , 

and .  Then,  the  ship
model (1) can be rewritten into the following cascade form:
 

Σ1 :

 ẋ1 = −
β

α
x1 −
β

α
x4 + x2x6 −

1
β

x5x6 +
γ

β
x3x6

ẋ5 = −βx5 +βx6(x1 + x4)+γx6

(6)

 

Σ2 : ẋ2 = x4x6, ẋ3 = x6, ẋ4 = w1, ẋ6 = w2. (7)
Lemma  1  [5]:  State  transformations  in  (4)  are  invertible  which

implies  that  the  stabilization  problem  of  system  (1)  is  successfully
converted  into  the  stabilization  problem  of  the  cascade  system  (6)
and (7).

Σ1
Σ2

Lemma 2 [5]: -subsystem is stable (or asymptotic stable) as long
as -subsystem is stable (or asymptotic stable).

Subsequently, to explore the control relationship between the con-
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sidered  underactuated  ship  and  nonholonomic  system  in  chained-
form, the necessary state transformations are constructed as
 

z0 = x4
z1 = x2 − x3x4
z2 = −x3
z3 = −x6

⇒


ż0 = w1
ż1 = z2w1
ż2 = z3
ż3 = −w2

(8)

Σ2

t0 = 0
z0(0) , 0 z0(0) = 0

from  which,  it  concludes  that  the -subsystem  has  been  further
transformed into a nonholonomic-like form (8). It is well-known that
due  to  the  triangular  structure  of  (8),  the  control  design  is  usually
developed in two separate stages. Let the initial time . The case

 is first considered and then the case  is addressed.
z0(0) , 0Controller design under .

z0(0) , 0
V0 = (1/2) ln[b2

0/(b
2
0 − z

2
0)] z0 b0 > 0

w1(z0)

Assume  that ,  we  consider  the  candidate  BLF  as
 for  -subsystem, where .  Here,  the

control signal  is designed as
 

w1 = −z0k ≜ z0d0, k > 0. (9)
Under which, it yields that

 

V̇0 = −kz20/(b
2
0 − z

2
0) ≤ −2kV0 (10)

−z20/(b
2
0 − z

2
0) ≤ − ln[b2

0/(b
2
0 − z

2
0)]where inequality  has been used.

z0−
−b0 < z0(0) < b0 z0(t)

limt→∞ z0(t) = 0
−b0 < z0(t) < b0 t ∈ [0,∞)

Proposition 1:  For the closed-loop subsystem with control  law
(9),  if  the initial  condition  holds,  then state  is
bounded and . At the same time, auxiliary state con-
straint  holds for all .

Proof: The proof of Proposition 1 can be referred to [12]. ■
z0(0) , 0 w1

z0
limt→∞ z0(t) = 0 limt→∞w1(t) = 0 z = (z1,z2,z3)−

w1(t) = 0

Since  has  been  assumed  previously,  consequently, 
specified by (9) can ensure that  does not cross zero for any t. Since

 as  well  as , subsys-
tem  is  uncontrollable  in  the  limit .  This  obstacle  can  be
remedied with the following discontinuous state  scaling transforma-
tions:
 

y1 = z1/z0, y2 = z2,y3 = z3. (11)
Applying  control  law  (9)  and  state  scaling  (11)  to  system  (8), z-

subsystem can be converted into
 

ẏ1 = d0y2 −d0y1, ẏ2 = y3, ẏ3 = −w2. (12)
Furthermore, in order to handle state constraints, inspired by [13],

the following SDF transformations are introduced as:
 

si = yi/(δ2i − y2
i ), δi > 0, i = 1,2,3 (13)

which  can  dexterously  convert  the  original  state-constrained  system
(12) into an unconstrained new system, namely,
 

ṡ1 = µ1(d0h2s2 −d0y1), ṡ2 = µ2h3s3, ṡ3 = −µ3w2 (14)
hi = δ

2
i − y2

i (2 ≤ i ≤ 3) µi = (δ2i + y2
i )/(δ2i − y2

i )2 (1 ≤ i ≤ 3)where  ,  .
Please refer to [13] for the properties of transformations in (13).

α1 α2

Ni > 0 (i = 2,3) ci > 0

(i = 1,2,3) li =
αi−1ḣi

h2
i
− α̇i−1

hi
(i = 2,3) α̇1 =

∂α1
∂µ1
µ̇1 +

∂α1
∂e1

ė1+
∂α1
∂y1

ẏ1

α̇2 =
∂α2
∂µ1
µ̇1 +

∂α2
∂µ2
µ̇2 +

∂α2
∂e1

ė1 +
∂α2
∂e2

ė2 +
∂α2
∂α̇2 f
α̈2 f +

∂α2
∂h2

ḣ2.

Let  and  be the virtual  controllers in (14).  In the sequel,  the
standard  backstepping  design  is  used  to  develop  controller.  The
designed virtual control signals and the necessary inequalities in con-
trol design are summarized in Table 1, where  , 

,  ,  and

The entire candidate Lyapunov function can be chosen as
 

V1 =
1
2

e2
1 +

1
2

e2
2 +

1
2

e2
3 +

1
2
χ2

2 +
1
2
χ2

3. (15)

Then, it can be deduced the following result:
 

V̇1 ≤ −
3∑

j=1

c je2
j −

3∑
j=2

N∗jχ
2
j +

3∑
j=2

l2j . (16)

−δi < yi(0) < δi (1 ≤ i ≤ 3)

−δi < yi(t) < δi (1 ≤ i ≤ 3) t ≥ 0
t ≥ 0

Proposition  2:  If  the  initial  conditions  
hold,  the  following  control  goals  can  can  be  achieved:  1)

  for any , 2) all closed-loop signals are
bounded for .

Proof: The proof of Proposition 2 can refer to the proof of Proposi-
tion 2 in our previous work [12], and hence is omitted here. ■

z0(0) = 0.Switching control when 
w1 w2

z0(0) = 0
z0(0) = 0 z0(0) = 0 w1

Next, the control design of  and  will be discussed in the case
of  since  transformation  (11)  can  not  be  carried  out  if

. When , the actual control  is chosen as
 

w1 = −k0z0 +w1c

√
b2

0 − z
2
0

(17)

k0 > 0 w1c > 0 V0where  constants  and  .  Considering  the  same  BLF 
presented above, one has
 

V̇0 ≤ −(k0 −1/2)z20/(b
2
0 − z

2
0)+w2

1c/2 (18)

k0 w1c k0 >
1
2

w1c/
√

2k0 −1 < 1 V0 ∈ L∞
V̇0 |z0(t)| ≥ (w1cb0)/

√
2k0 −1

|z0(0)| < b0 z0(t) |z0(t)| < b0 t ≥ 0
z0

where positive constants  and  are chosen to satisfy  and
. According to (18), . Meanwhile, it can be

seen  that  is  negative  once .  Hence,  as
long as ,  is  bounded,  thus,  for  any .
Under (17), the -subsystem is described as
 

ż0 = −z0k0 +w1c

√
b2

0 − z
2
0.

(19)

t f
w1(t) > 0 (0 ≤ t ≤ t f ) z0(t)

[0, t f ] w1

w∗2(z0,z1,z2,z3)
z0(t f ) , 0

w1 t = t f

Therefore, it can be concluded that for any given finite time  such
that  ,  state  keeps  positive  and  does  not
escape.  On time interval ,  under  defined by (17)  instead of
(9),  we  can  apply  the  backstepping  to  design  feedback  control

 which can ensure the desired state constraints. Since
,  state  scaling  transformation  (11)  can  be  used,  therefore,

input  can be switched into (9) at time .
z̄ = (z0,z1,z2,z3)

z0(0) , 0 w1 = (9) w2 = (1/µ3)(c3e3 − α̇3 f + e2h3µ2)
z0(0) = 0 w1 = (17)→ w1 = (9)t=t f w2 = w∗2(z0,z1,z2,

z3)→ w2 = (1/µ3)(c3e3 − α̇3 f + e2h3µ2)t=t f

|z0(t)| < b0 |z1(t)| < δ1b0 |z2(t)| <
δ2 |z3(t)| < δ3

Proposition 3: Consider −system specified in (8), if
the following switching control scheme is actuated to it in such a way:
1)  when ,  and  ;
2)  when ,  and  

. Then, system (8) is bound-
ed  while  the full-state  constraints  , , 

,  and  are  not  violated  by  choosing  appropriate  initial
conditions.

The original state constrains analysis and main results.
From state transformations in (8), Propositions 1−3, the following

state constraints can be summarized as:
 

|z0(t)| < b0
|z1(t)| < δ1b0
|z2(t)| < δ2
|z3(t)| < δ3

⇒


|x2(t)| = |z1 + x3x4| < b0(δ1 +δ2)
|x3(t)| < δ2
|x4(t)| < b0
|x6(t)| < δ3.

(20)

x(t)
y(t) ψ(t) u(t) v(t) r(t)

Σ1 V2 = (1/2)β2x2
1 + (1/2)x2

5

Next,  to analyze the constraints  on the original  system states ,
, , , ,  and ,  we first  select  the candidate  Lyapunov

function  for -subsystem  in  (6)  as .  Com-
puting its time derivative results in 

 

Table 1.  Virtual Control Errors, First-Order Filters, Virtual Controllers,
Actual Controller and Inequalities in Control Design

Virtual control errors
e1 = s1, ei = si −αi f , i = 2,3.

First-order filters

Niα̇i f = αi−1/hi −αi f i = 2,3, 

χi = αi f −αi−1/hi i = 2,3., 
Virtual controllers and actual controller

α1 =
1
µ1d0

(−c1e1 − e1d2
0µ

2
1 +µ1d0y1)

α2 =
1
µ2

(−c2e2 − e2µ
2
2 + α̇2 f − e1µ1d0h2)

w2 =
1
µ3

(c3e3 − α̇3 f + e2h3µ2).

Inequalities in control design

e1µ1d0h2χ2 ≤ d2
0µ

2
1e2

1 +
1
4 h2

2χ
2
2

e2µ2h3χ3 ≤ e2
2µ

2
2 +

1
4 h2

3χ
2
3

χiχ̇i = −
χ2

i
Ni
+χili ≤ ( 1

4 −
1
Ni

)χ2
i + l2i , i = 2,3

N∗i ≤
1
Ni
− 1

4 h2
i −

1
4 , i = 2,3.
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V̇2 =−
β3

α
x2

1 −
β3

α
x1x4 +β

2x1x2x6 +βγx1x3x6

−βx2
5 +βx4x5x6 +γx5x6. (21)

σ1=2min{ β
3

α ,β}/max{β2,1} σ2(t) =
√

2
√

max
{

2
β2 ,2
}
×

max
{
β
(
β2

α |x4(t)|+β|x2(t)x6(t)|+γ|x3(t)x6(t)|
)
,β|x4(t)x6(t)|+γ|x6(t)|

}
.

σ2

Define  and  

Due to (20), the upper bound of  can be defined as
 

σ2(t) ≤ σ̄ =
√

2

√
max
{ 2
β2 ,2
}
max
{
β
(β2

α
b0 +γδ2δ3

+β(δ1 +δ2)b0δ3
)
,βb0δ3 +γδ3

}
. (22)

|a|+ |b| ≤
√

2(a2 +b2) (a,b ∈ R)With  inequality   in  mind,  (21)  can
be rewritten as
 

V̇2 ≤ −σ1V2 +σ2(t)
√

V2 ≤ −σ1V2 + σ̄
√

V2. (23)
W =

√
V2

Ẇ ≤ −σ1
2 W + 1

2 σ̄ W ≤W(0)+ σ̄σ1
V2

By  defining ,  from  (23)  it  can  be  deduced  that
.  Hence,  it  can  be  computed  that .

Reviewing the definition of , we can claim that
 

|x1(t)| ≤ B0, |x5(t)| ≤ B1 (24)

B0 =
√

2
β

(
W(0)+ σ̄σ1

)
B1 =

√
2
(
W(0)+ σ̄σ1

)
x(t) y(t) ψ(t) u(t) v(t) r(t)

where  and  .  Therefore,
under  (20)  and  state  transformation  (4),  the  state  constraints  on  the
original  system  states , , , , ,  and ,  can  be
described as
 

|x(t)| ≤
√

x2 + y2 = xcos(ψ)+ ysin(ψ)

= x1 −ε∗(1− cos(ψ)) ≤ |x1| ≤ B0

|y(t)| ≤
√

x2 + y2 = xcos(ψ)+ ysin(ψ)

= x1 −ε∗(1− cos(ψ)) ≤ |x1| ≤ B0

|ψ(t)| = |x3| ≤ δ2, |r(t)| = |x6| ≤ δ3

|u(t)| = | β
α

(x1 + x4)| ≤ β
α

(B0 +b0)

|v(t)| = |x5 −ε∗r| ≤ |x5|+ |ε∗r| ≤ B1 +ε
∗δ3. (25)

|x(t)| < kx |y(t)| < ky |ψ(t)| < kψ |u(t)| < ku |v(t)| < kv |r(t)| < kr
b0 δi (1 ≤ i ≤ 3)

Therefore,  in  view of  (25),  to  realize  the  desired  state  constraints
, , , , , ,  the

introduced  control  parameters  and    should  comply
with the following relationships:
 

B0 < kx, B0 < ky, δ2 < kψ,
β

α
(B0 +b0) < ku

B1 +ε
∗δ3 < kv, δ3 < kr. (26)

z0(0) , 0 w1 = (9) w2 = (1/µ3)(c3e3 − α̇3 f + e2h3µ2)
z0(0) = 0 w1 = (17)→ w1 = (9)t=t f w2 = w∗2(z0,z1,z2,z3)→
w2 = (1/µ3)(c3e3 − α̇3 f + e2h3µ2)t=t f

b0 δi (1 ≤ i ≤ 3)

Theorem 1: Consider the underactuated surface ship (1), if the sta-
bilization  controllers  are  applied  in  the  following  way:  1)  when

,  and  ;  2)  when
,  and  

,  and  the  auxiliary  control  par-
ameters  and    are  chosen  to  satisfy  the  relationship
(26),  then  the  resulting  closed-loop  system is  bounded  and  the  pre-
specified state constraints are not violated.

0.001 −0.001

k = 10 c1 = 10 c2 = 10 c3 = 30 δ1 = 0.32 δ2 = 1
δ3 = 0.3 N2 = 11 N3 = 10

kx = 3.45 ky = 3.45 kψ = 1 ku = 0.39 kv = 0.3
kr = 0.3
x(0) = 2.32 m y(0) = 1.49 m ψ(0) = 0.57 rad u(0) = 0 m/s v(0) = 0
m/s r(0) = 0 rad/s α2 f (0) = 0
α3 f (0) = 0

Simulation results: The simulation ship is the Cybership II in [5].
A difference is  that  the non-diagonal  and nonzero-constant  terms in
M and D are replaced with  and , respectively. To com-
ply with the relationship (26), the designed the control parameters are
chosen  as , , , , , ,

, , and . The desired constraint boundaries are
picked  as , , , , ,  and

.  In  simulation,  system  initial  conditions  are  configured  as
, ,  ,  , 

,   and  filter  initial  states  are  chosen  as 
and . According to the Fig. 1, all system states are bounded
and quickly converge to zero, and satisfy the given state constraints.
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Fig. 1. The responses of the system states.
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