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   Dear Editor,
In pansharpening task, the most existing deep-learning-based pan-

sharpening  methods  fail  to  fully  utilize  the  different  level  features,
inevitably  leading  to  spectral  or  spatial  distortions.  To  address  this
challenge, in this letter, we propose a dual-branch multi-level feature
aggregation network for pansharpening (DMFANet). The experimen-
tal results on the WorldView-II (WV-II) and QuickBird (QB) dataset
confirmed  the  notable  superiority  of  our  method  over  the  current
state-of-the-art  methods  from  quantitative  and  qualitative  point  of
view.  The  source  code  is  available  at  https://github.com/Gui-
Cheng/DMFANet.

Introduction: Multispectral (MS) image with a wealth of spectral
information has the potential to distinguish the surface materials and
thus  owns  a  broad  remote  sensing  application.  Due  to  the  technical
limitations, there exists a trade-off in remote sensing sensors between
the spatial and spectral resolutions [1]. As a consequence, it is chal-
lenging to directly acquire images with high spatial and spectral reso-
lution via a single sensor.  However,  the panchromatic (PAN) image
with  high  spatial  resolution  and  the  corresponding  multispectral
(LRMS)  image  with  low  spatial  resolution  widely  exist,  which  can
not meet the needs of high-precision remote sensing applications to a
certain degree.  To  address  this  challenge,  the  pansharpening  tech-
nique is applied to integrate the spatial structure information from the
PAN  image  and  the  spectral  information  from  the  LRMS  image  to
generate the high-resolution multispectral (HRMS) image.

In  the  past  few  decades,  numerous  pansharpening  methods  have
been proposed,  which  can  be  broadly  divided  into  four  major  cate-
gories: 1) component substitution (CS)-based methods [2]; 2) multi-
resolution analysis (MRA)-based methods [3]; 3) hybrid methods [4];
4) deep-learning-based methods [5].

In recent years, the CNN-based pansharpening methods have been
developed  and  achieved  promising  results,  such  as  PNN [6], MSD-
CNN  [7],  Pan-GAN  [8],  GTP-PNet  [9],  GPPNN  [10].  However,
some  problems  still  remain  to  be  solved.  The  most  existing  deep-
learning-based  pansharpening  methods  fail  to  fully  utilize  the  diff-
erent level features, inevitably leading to spectral or spatial distortions.

To  address  these  challenges,  a  dual-branch  multi-level  feature
aggregation  network  for  pansharpening  is  proposed,  called  DMFA-
Net. The main branch of DMFANet is the MS image multi-level fea-
ture  extraction  and  aggregation  branch  to  obtain  the  final  HRMS
image.  Another  branch  is  the  PAN  image  feature  extraction  branch
that provides high spatial structure information for the main branch.
Specially,  we  conduct  multi-level  feature  fusion  throughout  the
whole network for better usage of the multi-level spectral and spatial
information  from  MS  image  and  PAN  image.  Inspired  by  the  high

efficient residual feature aggregation (RFA) framework [11], we also
designed  two  RFA framework-based  feature  extraction  modules  for
MS  image  and  PAN  image  respectively,  named  MS  image  feature
extraction  module  (MSFEM)  and  PAN  image  feature  extraction
module (PFEM). MSFEM aims to extract  the spectral  features from
MS images, while the PFEM aims to extract spatial details from PAN
images.

The main contributions of this study are summarized as follow: 1)
We design  a  dual-branch  network  to  fully  extract  the  spectral  fea-
tures from MS image  and  spatial  features  from PAN image  respec-
tively.  2)  We apply  multi-level  feature  fusion  throughout  the  whole
network  to  take  advantage  of  the  multi-level  effective  information
from PAN and MS images.  3)  We design two high efficient  feature
extraction module, i.e., the MSFEM and PFEM.

ILRMS IPAN
IHRMS

Problem  formulation: The  target  of  our  DMFANet  is  to  extract
the spectral  features from MS image and spatial  features from PAN
image as  much and as  accurately  as  possible  via  a  dual-branch net-
work, fuse them at different feature levels,  and aggregate fused fea-
tures to make full use of the multi-level spectral and spatial informa-
tion for generating promising fusion results. Fig. 1 presents the over-
all fusion framework of our DMFANet. We donate the LRMS image
as  and the corresponding PAN image as .  Our goal is  to
generate the HRMS image ( )
 

IHRMS = f ((ILRMS, IPAN);Θ) (1)
f (·)where  denotes  the  operation  of  our  DMFANet,  Θ  refers  to  the

trainable parameters of our network.
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Fig. 1. The overall fusion framework of our DMFANet.
 

To be more specific,  we extract  spectral  and spatial  features from
two  branches  and  fuse  them  at  different  levels.  We  formulate  the
multi-level fusion function as follow:
 

DFused
i = H(DMS

i , DPAN
i ) (2)

DFused
i H(·)

DMS
i DPAN

i

where  represents  the i -th  level  fusion  features,  denotes
the feature fusion function, which represents element-wise sum oper-
ation,  and   denote  the i -th  level  features  extracted  from
MS branch and PAN branch respectively, which can be formulated as
follow:
 

DMS
i = fMS (DFused

i−1 ) (3)
 

DPAN
i = fPAN(DPAN

i−1 ) (4)
fMS (·) fPAN(·)where  the  and   represent the  feature  extraction  func-

tions of MS and PAN images, respectively.
Finally, an N-level fusion is conducted, with fused features aggre-

gated. The generated HRMS image can be obtained by (5)
 

IHRMS = fconv(cat(DMS
1 ,D

MS
2 , . . . ,D

MS
N )). (5)

MS  image  feature  extraction  module: Despite  that  MS  image
contains  rich  spectral  information,  it  is  a  challenging  task  to  fully
extract  their  spectral  information.  In  this  study,  we  propose  an  MS
image feature extraction module (MSFEM) (Fig. 2) to complete this
task. The proposed MSFEM combines the residual channel attention
blocks (RCAB) and the RFA framework. The RCAB [12] integrates
the channel attention into a residual block. The residual features are
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first extracted  by  two  convolutional  layers.  Then  the  channel  atten-
tion block extracts the channel statistic among channels via a global
pooling  layer  followed  by  two  convolutional  layers  with  a  ReLU
function  and  a  Sigmoid  function,  respectively.  Therefore,  the
MSFEM can better extract spectral features with an enhanced discri-
minative ability. We apply multi-level MSFEMs in our network.

1×1

5×5

PAN  image  feature  extraction  module: The  proposed  PAN
image feature extraction module (PFEM) consists of 4 spatial  atten-
tion (SA) blocks based on the RFA framework (Fig. 3(a)). The struc-
ture of the SA block is detailed in Fig. 3(b). The effectiveness of the
spatial  attention  strategy  that  leads  to  the  focus  on  the  inter-spatial
relationship of features has been verified in many tasks [13]. The SA
block  first  extracts  features  by  a  convolutional  layer  with  a
ReLU function. Then, an AvePooling layer and a MaxPooling layer
are used to aggregate channel information. Finally, by concatenating
these  two  kinds  of  features,  a  convolutional layer  with  a  Sig-
moid  function  is  applied  to  generate  the  spatial  attention  map.  The
combination  of  SA  blocks  and  RFA  framework  results  in  better
extraction  of  effective  features  among  the  spatial  dimension  from
PAN image. In this study, we implement multi-level PFEMs.
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Fig. 3. The architecture of PFEM.
 

64×64×4
256×256×1

Experimental setup: We perform experiments on WV-II and QB
datasets with four MS bands: blue, green, red and NIR. The experi-
mental  LRMS and  PAN image  patches  have  the  size  of 
and , respectively. For WV-II and QB datasets, the num-
ber  of  image  patches  from  training,  reduced-resolution  testing,  and
full-resolution  testing  are 1254  and  308  120  and  80  400  and  200,
respectively.

β1 = 0.9 β2 = 0.999 ε = 1e−8
1e−4

N = 5

These experiments are conducted on a desktop with two NVIDIA
GTX 2080Ti GPUs. Our proposed DMFANet and the deep-learning-
based  methods  are  implemented  by  PyTorch  1.5.1  library  with
Python 3.6.9.  The  Adam  optimizer  is  applied  to  optimize  the  pro-
posed  method  with , , .  The  learning
rate is initialized to . We employ the mean squared error (MSE)
as the loss function. All the deep-learning-based methods are trained
on reduced-resolution dataset. In the following experiments, our pro-
posed DMFANet is based on 5 fusion levels.  We set  in these
experiments.

To verify the performance of our DMFANet, we conduct reduced-
resolution  testing  based  on  Wald’s  protocol  [14]  and  full-resolution
testing. We take both qualitative and quantitative evaluation on these
two types of testing. We compare our method with eight mainstream
fusion algorithms,  including three  widely  used  traditional  pansharp-
ening algorithms, i.e., Brovey [2], Gram-Schmidt (GS), MTF-GLP [3],

and five deep-learning-based methods, i.e., MSDCNN [7], PNN [6],
DIRCNN [15], GPPNN [10], MUCNN [16].

Dλ Ds

We  apply  six  widely  used  metrics,  i.e.,  PSNR,  SSIM,  ERGAS,
SAM, UIQI, SCC, for the reduced-resolution testing. For the full-res-
olution testing, the quality of no reference (QNR) index is utilized to
characterize the fusion performance. The QNR consists of two parts:
the spectral distortion index ( ) and spatial distortion index ( ).

Results  from  the  WV-II  dataset: We  firstly  present  qualitative
and quantitative testing results on the WV-II dataset from the aspects
of reduced-resolution  and  full-resolution  to  demonstrate  the  perfor-
mance of each method.

The  qualitative  testing  results  under  the  reduced-resolution  are
shown  in Fig. 4 .  Intuitively  speaking,  our  proposed  DMFANet
presents  the  highest  consistency  with  the  referenced  HRMS  image.
Obviously, the Brovey and GS suffer from spectral distortion, while
the  MTF_GLP  suffer  great  spatial  distortion,  resulting  blurring
details.  Compared  to  traditional  methods  that  suffer  from  notable
spectral  and  spatial  distortion,  the  comparison  deep-learning-based
methods are able to better preserve spatial information, but also suf-
fer  from  a  little  spectral  distortion.  Instead,  our  DMFANet  can
largely preserve the spectral distribution and spatial structure, thanks
to the introduced MS features extraction branch that learns the spec-
tral information  and  the  PAN  features  extraction  branch  that  pre-
serves the spatial structure detail. The above results demonstrate that
our DMFANet not only reconstructs more accurate spectral distribu-
tion but also generate reasonable spatial structure details, outperform-
ing other selected methods.
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Fig. 4. The qualitative testing results from comparison methods under the
reduced-resolution on the WV-II dataset.
 

The qualitative testing results under the full-resolution (Fig. 5) also
demonstrate  that  our  method  leads  to  better  spectral  information
preservation,  evidenced  by  the  clearer  texture  details.  For  example,
we  can  observe  that  the  spectral  distribution  of  the  land  is  largely
consistent  with  the  LRMS image and the  spatial  structure  details  of
the land are similar to the ones in PAN image.

Ds

We  further  provide  the  quantitative  testing  results  on  WV-II
dataset  (Table 1). Table 1 displays that  DMFANet achieves the best
average  values  on  PSNR,  SSIM,  SAM,  ERGAS,  SCC,  and  UIQI,
indicating  that  the  fused  results  generated  by  our  method  are  most
consistent with the reference HRMS image from the aspects of spec-
tral distribution and spatial structure details. Compared with no-refer-
ence metrics, our DMFANet ranks the second on  and the third on
QNR. Nevertheless, it is notable that our qualitative results are better
than MTF_GLP, PNN, and GS as shown in Fig. 5. The no-reference
metrics  apply  PAN and  interpolated  LRMS images  as  references  to
quantify spatial  and spectral  distortion. However,  the spectral  distri-
bution in interpolated LRMS image and the spatial structure in PAN
image can be different from that of the real HRMS image, leading to
the  fact  that  our  method  does  not  obtain  the  best  performance  on
these three no-reference metrics.

Results  from  the  QB  dataset: To  further  validate  the  effectiv-
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Fig. 2. The architecture of MSFEM.
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eness of DMFANet, we conduct comparison experiments on the QB
dataset. Fig. 6 shows the qualitative testing results under the reduced-
resolution.  Compared  to  traditional  methods,  ours  DMFANet
presents a  well  spectral  preservation.  The results  of  MTF_GLP suf-
fer a great spatial distortion. Similarly, the results of the deep-learn-
ing based methods such as MSDCNN PNN and MUCNN cannot pre-
serve  the  spectral  information  well.  For  the  spatial  information
preservation,  our  proposed DMFANet can rebuilt  the spatial  texture
of building,  outperforming  the  comparison  methods.  The  quantita-
tive results  (Table 2) under  the reduced-resolution testing also illus-
trate the best  performance of methods among the comparison meth-
ods. Furthermore the qualitative comparison results under full-resolu-
tion in Fig. 7 demonstrate that our proposed DMFANet are most sim-
ilar to the LRMS image in term of spectral feature and PAN image in
terms of spatial feature. Therefore, both the qualitative results and the
quantitative  results  have  shown  that  our  proposed  DMFANet
achieves the  best  performance  compared  with  the  selected  compet-
ing methods.

Ablation study: To verify the effectiveness of each strategy in our
proposed  method,  we  perform  the  ablation  experiments  on  WV-II
dataset. Table 3 records the results of four variants of DMFANet. In
the following, we make a detail analysis of each strategy.

1)  Multi-level  feature  fusion:  To  evaluate  the  best  feature  fusion
level,  we  perform  comparison  experiments  with  the  feature  fusion
level  from  1  to  12  based  on  our  proposed  DMFANet  (Table 4).
Through  experiments,  it  can  be  seen  that  by  increasing  the  fusion
level  from  1  to  5,  the  performance  of  pansharpening  is  notably
improved.  However,  the  performance  of  pansharpenging  will
decrease  when  the  fusion  level  continues  to  increase.  The  reason  is
that the input MS image and PAN image can already be finely inte-
grated by 5 fusion levels, keeping increasing the fusion level makes
the training inefficient.

2) Aggregation structure: To confirm the effectiveness of aggrega-
tion  structure,  we  compare  the  performance  of  DMFANet  and
DMFANet without aggregation structure. From the results in the first
line  at Table 3 ,  we  observe  that  the  performance  of  DMFANet
reduces when the aggregation structure is discarded. For example, the
reductions  in  SSIM  and  ERGAS  are  0.011  and  0.026.  The  results
prove that the aggregation structure contributes to the performance of
DMFANet.

3)  Dual-branch  structure:  To  verify  the  superiority  of  the  dual-
branch  structure,  we  compare  the  performance  of  the  model  with
dual-branch  structure  and  the  model  with  single-branch  structure
under  the  same setting  of  other  parameters.  The  model  with  single-
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Fig. 5. The qualitative testing results from the comparison methods under the
full-resolution on the WV-II dataset.
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Fig. 6. The qualitative testing results from the comparison methods under the
reduced-resolution on the QB dataset.
 

 

Table 1.  Quantitative Testing Results on WV-II Dataset
Method PSNR SSIM SAM ERGAS SCC UIQI Dλ Ds QNR
Brovey 18.818 0.623 0.236 19.284 0.760 0.573 0.075 0.090 0.841

GS 19.690 0.619 0.240 18.806 0.796 0.582 0.029 0.076 0.897
MTF-GLP 19.508 0.655 0.264 20.117 0.824 0.622 0.029 0.044 0.929

PNN 22.905 0.797 0.114 12.597 0.901 0.760 0.044 0.077 0.883
MSDCNN 23.213 0.809 0.115 12.394 0.907 0.773 0.058 0.084 0.864
DIRCNN 22.421 0.764 0.167 13.411 0.887 0.721 0.045 0.103 0.858
GPPNN 23.108 0.815 0.106 12.487 0.904 0.777 0.053 0.112 0.843
MUCNN 23.477 0.825 0.107 11.913 0.914 0.790 0.046 0.103 0.857

Ours 23.912 0.840 0.104 11.264 0.921 0.804 0.046 0.069 0.888
 

 

Table 2.  Quantitative Testing Results on QB Dataset
Method PSNR SSIM SAM ERGAS SCC UIQI Dλ Ds QNR
Brovey 23.903 0.780 0.102 7.119 0.877 0.698 0.044 0.098 0.862

GS 25.022 0.780 0.102 6.896 0.897 0.699 0.028 0.093 0.882
MTF-GLP 25.469 0.788 0.114 6.665 0.924 0.717 0.024 0.048 0.930

PNN 27.621 0.850 0.103 4.847 0.948 0.779 0.068 0.079 0.859
MSDCNN 27.361 0.839 0.101 5.019 0.949 0.771 0.068 0.073 0.864
DIRCNN 28.123 0.846 0.085 4.697 0.949 0.772 0.0295 0.0591 0.913
GPPNN 29.102 0.876 0.073 4.078 0.960 0.811 0.048 0.066 0.889
MUCNN 29.246 0.878 0.076 4.104 0.957 0.812 0.044 0.065 0.894

Ours 29.316 0.881 0.071 4.058 0.961 0.815 0.041 0.066 0.897
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branch  structure  only  contains  the  MS  image  multi-level  feature
extraction  and  aggregation  branch  as  mentioned  in  DMFANet.  The

results in the second line at Table 3 show that the dual-branch struc-
ture can significantly improve the performance of pansharpening.

4) MSFEM: To verify the effectiveness of MSFEM, we replace the
RCAB with convolutional blocks with the same filter size and other
parameters setting in MSFEM and conduct experiments. Through the
experimental  results  in  the  third  line  at Table 3 ,  the  performance  of
each  metric  significantly  reduces,  especially  for  the  reduction  in
ERGAS which  is  0.798,  indicating  the  spectral  distortion  increases.
The results prove that the MSFEM contributes to the spectral feature
extraction.

5)  PFEM:  Similarly,  we  replace  the  SA block  with  convolutional
blocks  with  the  same  filter  size  and  other  parameters  setting  in
PFEM. The experimental  results  were  recorded in  the  fourth  line  at
Table 3,  we  can  see  that  the  reductions  in  SSIM and  SCC are  0.01
and  0.01,  indicting  more  spatial  distortion.  The  results  confirm  that
the PFEM contributes to the spatial feature extraction.

 
Table 4.  The Evaluation of Different Fusion Levels Based on DMFANet

Levels 1 2 3 4 5 6 7 8 9 10 11 12
PSNR 22.18 22.84 23.15 23.49 23.91 23.74 23.61 23.60 23.50 23.54 23.35 23.15
SSIM 0.776 0.806 0.815 0.821 0.840 0.837 0.830 0.831 0.825 0.823 0.816 0.810

 
 

Conclusion: In  this  letter,  we  propose  a  dual-branch  multi-level
feature  aggregation  network  for  pansharpening,  called  DMFANet.
Our network consists  of  two branches  designed by the  residual  fea-
ture  aggregation  framework.  The  purpose  of  our  DMFANet  is  to
extract the spectral distribution features and spatial structure features
in an efficient and comprehensive manner via a dual-branch network,
fuse  them  at  multi-levels,  and  finally  aggregate  each  fused  feature,
thus taking full advantage of the complementary information for gen-
erating  promising  fusion  results.  Such  a  design  allows  not  only  the
approximation to the HRMS reference image in terms of spectral dis-
tribution  but  also  the  reconstruction  of  reasonable  spatial  structure
details.  The  experimental  results  from  WV-II  and  QB  datasets
demonstrate  the  notable  superiority  of  our  method  over  the  current
state-of-the-art  methods  from  quantitative  and  qualitative  point  of
view.
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Fig. 7. The qualitative testing results from the comparison methods under the
full-resolution on the QB dataset.
 

 

Table 3.  The Experimental Results of Ablation Study
Aggregation

structure
Dual-
branch MSFEM PFEM SSIM SAM ERGAS SCC UIQI

× √ √ √ 0.829 0.108 11.290 0.915 0.798

√ × √ √ 0.826 0.110 11.561 0.917 0.790

√ √ × √ 0.815 0.109 12.062 0.909 0.779

√ √ √ × 0.830 0.108 11.273 0.911 0.796

√ √ √ √ 0.840 0.104 11.264 0.921 0.804
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