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   Dear Editor,

This letter  proposes a contrastive consensus graph learning model
for multi-view clustering. Graphs are usually built to outline the cor-
relation  between  multi-model  objects  in  clustering  task,  and  multi-
view graph clustering aims to learn a consensus graph that integrates
the  spatial  property  of  each  view.  Nevertheless,  most  graph-based
models  merely  consider  the  overall  structure  from  all  views  but
neglect the local spatial consistency between diverse views, resulting
in  the  lack  of  global  spatial  consistency  in  the  learned  graph.  To
overcome this issue, a deep convolutional network is built to explore
latent local spatial information from raw affinity graphs. Specifically,
we employ a consensus graph constraint to preserve the global con-
sistency  between  the  learned  graph  and  raw  graphs.  Furthermore,  a
contrastive  reconstruction  loss  is  introduced  to  achieve  the  sample-
level  approximation  between  reconstructed  graphs  and  raw  graphs,
which facilitates  the network to  enhance the consensus graph learn-
ing. Experiments  on  six  classical  datasets  demonstrate  that  the  pro-
posed model outperforms other nine state-of-the-art algorithms.

Related  work: In  real-world  applications,  multimedia  data  are
usually generated from multiple ways and presented in diverse forms,
referred as multi-view data. Compared with single-view data, multi-
view  data  contains  more  comprehensive  information,  which  makes
multi-view  learning  be  a  hot  spot.  Previous  work  [1],  [2]  has  been
devoted to  this  field  and achieves  satisfactory  results.  As  an  impor-
tant  branch  of  multi-view  learning,  multi-view  clustering  aims  to
effectively  fuse  information  and  discover  the  underlying  clustering
structure  shared  by  diverse  views.  Since  each  view  has  a  distinct
focus on  the  same  object,  multi-view  data  tends  to  be  complemen-
tary  and  consistent.  Therefore,  it  is  critical  to  integrate  multi-view
features  and  fully  exploit  the  consistency  and  complementarity  to
obtain shared discriminative representations.

Plenty of research has attempted to extract shared information from
multi-view  data  to  improve  clustering  performance  [3]–[5],  among
which  the  graph-based  approach  is  a  mainstream  issue.  Graphs  are
typically  built  to  represent  relationships  between  different  objects,
with nodes corresponding to data objects and weighted edges depict-
ing  the  similarity  between  data  points.  Generally,  multi-view  graph
clustering  methods  can  be  roughly  boiled  down  to  two  stages:  first
learning  a  consensus  graph  from  all  views,  then  applying  post-pro-
cessing techniques on the learned graph to obtain clustering results [6].
Since the quality of the learned graph can directly determine the clus-
tering  effect,  how  to  learn  a  high-quality  graph  becomes  a  critical
issue [7]. For that, [3] proposes a self-weighted method to explore a
Laplacian constrained graph and directly obtain the clustering result
without  any  follow-up  processing.  Reference  [8] designs  a  regular-
ization  term  to  adaptively  learn  weights  of  the  views  for  diversity

enrichment  and  redundancy  reduction.  Furthermore,  to  avoid  the
effect of the predefined graph quality, [9] introduces a disagreement
cost  function and constrains the rank of  the Laplacian matrix of  the
learned  graph.  However,  these  methods  merely  focus  on  optimal
weight learning  for  each  view  and  neglect  the  local  spatial  consis-
tency  between  different  views,  resulting  in  the  lack  of  spatial
integrity.

Besides, various deep clustering methods are constructed to exploit
latent semantic information among data. For instance, [10] proposes
a deep canonical correlation analysis framework, which employs two
deep  neural  networks  to  extract  implicit  features  of  each  view.  To
better explore complementary information, [11] presents a semi-non-
negative matrix factorization method for learning hierarchical seman-
tics  of  multi-view  data.  Reference  [12]  integrates  the  within-view
invariance, the between-view consistency, and the nonlinear embed-
ding  network  to  learn  a  common  space  for  spectral  clustering.
Recently,  [13] proposes  an  instance-level  and  cluster-level  con-
trastive  learning  method  for  clustering  and  [14]  lifts  the  instance-
level consistency to the cluster-level consistency for graph learning.
Furthermore,  [15] learns  an  informative  and  consistent  representa-
tion by maximizing the mutual information between diverse views by
introducing  contrastive  learning.  Despite  these  autoencoder-based
models can effectively extract latent information, they solely achieve
the  element-level  reconstructed  approximation  but  lack  of  sample-
level approximation, which are not conducive to the consensus graph
learning.

Based on the above observations, we propose a multi-view cluste-
ring network by utilizing a convolutional autoencoder for learning a
consensus graph. The proposed network is illustrated in Fig. 1, which
is composed of a graph construction layer and a symmetric convolu-
tional  autoencoder.  Specifically,  we  integrate  convolutional  autoen-
coder,  consensus  graph  learning,  and  contrastive  reconstruction
learning  into  a  unified  framework  to  obtain  a  common  graph  with
spatial  consistency.  The  main  contributions  are  summarized  as:
1)  Build  a  convolutional  autoencoder  to  capture  the  local  spatial
information from different views and obtain a latent consensus graph;
2) A consensus graph loss is proposed to approximate the consensus
graph with all raw graphs so as to preserve the global spatial consis-
tency of the learned graph; 3) Introduce a contrastive reconstruction
loss  to  constrain  the  sample-level  consistency,  and  to  enhance  the
similarity between reconstructed graphs and raw graphs.
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Fig. 1. A scheme of the proposed model, which consists of a graph constru-
ction layer and a convolutional autoencoder network. Given raw data, the pro-
posed model  first  constructs  affinity graphs by a specific  graph constru-
ction method. Accordingly, the affinity graphs are fed to the convolutional
autoencoder to learn a consensus graph by jointly minimizing the autoen-
coder loss, the consensus graph loss and the contrastive reconstruction loss.
 

X = {Xv}Vv=1
Xv ∈ RN×Dv Dv

G = {Gv}Vv=1 Gv ∈ RN×N

G∗

Ĝ = {Ĝv}Vv=1 ⊗ ⊛

Contrastive  consensus  graph  learning  for  multi-view  cluster-
ing: Given  a  multi-view  dataset  of V  views  ,  where

 is N instances with  dimension from v-th view, and the
affinity graphs are denoted by ,  where  is the
affinity matrix from v-th view. Suppose that  is the learned cons-
ensus graph, and the reconstructed affinity graphs are represented by

. Besides,  and  are utilized to denote convolution and
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deconvolution operation,  respectively.  The  architecture  of  the  pro-
posed model is described as follows.

1) Graph construction layer: The nearest neighbors method is first
utilized  to  generate  the  adjacency  matrices  of  raw  data,  then  the
affinity matrices are constructed by Gaussian kernel function as
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i jwhere  is  the  similarity  between  the i -th  and  the j -th  instance  in

the v -th  view,  and ε  is  the  kernel  bandwidth  that  controls  the  radial
range of the Gaussian function.
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2) Convolutional autoencoder: As each graph can be taken as a 2d
grid  in  which each point  implies  correlation  between nodes,  and 2d
convolution  kernel  is  capable  of  mining  neighborhood  information
through local receptive fields in a 2d space, the local spatial associa-
tion between instances can be explored in the encoder. Therefore, the
convolutional autoencoder is built by multiple 2d convolutional lay-
ers  as  the  encoder  and  multiple  2d  deconvolutional  layers  as  the
decoder.  Assume  that  is  a  2d  convolution  kernel  of  size

. With the window sliding mechanism,  enables to dig out the
spatial  information  in  a  local  receptive  field  of  on  all  graphs,
and  an  enhanced  feature  graph  with  specific  local  property  can  be
obtained. Through multiple convolution kernels formed by , differ-
ent  local  features  are  continuously extracted  and  explored.  Simulta-
neously, the iterative operation of multiple convolutional layers dis-
cover  deep  latent  information  and  further  learn  a  consistent  graph
with  a  relatively  complete  spatial  structure.  The  implicit  feature
graphs in the encoder are formalized as
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where  denotes an activation function,  are the number of con-
volution kernels in the i-th layer,  and  are the weight parame-
ters and the bias term of the k-th convolution kernel of the i-th layer,
and  is  the  number  of  convolutional  layers.  The  output  of  the
encoder  is  the  learned  consensus  graph,  i.e., .  Due  to  the
inverse of  convolution,  deconvolution  seeks  to  reconstruct  approxi-
mate  outputs  of  inputs  from  encodings.  Therein,  the  reconstructed
feature graphs in the decoder can be obtained by
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Ĝ Ĝ = {Ĝk
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where , ,  and  are synonymous with those mentioned in the
encoder. Through multiple deconvolutional layers, the outputs of the
decoder are the reconstructed graphs , i.e., .

Objective function:
Lae1) Autoencoder loss : The autoencoder is to extract latent infor-

mation motivated by preserving the reconstructions as similar as pos-
sible to the inputs,  which can be taken as an element-level  approxi-
mation between reconstructions and inputs. The mean square error is
utilized to measure the autoencoder loss, calculated by
 

Lae =

V∑
v=1

∥∥∥Ĝv −Gv
∥∥∥2

F . (4)

Lz2)  Consensus  graph  loss :  Though  the  graphs  of  diverse  vie-
ws differ from each other in the local spatial  scope, they essentially
admit  the  consistent  global  spatial  structure.  With  this  assumption,
the convolutional  autoencoder  is  expected  to  learn  a  spatial  consis-

tent graph from different views. Therein, the consensus graph loss is
proposed to hold the global spatial consistency, defined as
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where  is  a  weight  parameter  to  trade-off  the  contributions  of
graphs from diverse views to the consensus graph, with exponent p to
control the impact of the weight, satisfying  to normalize
the weights of diverse perspectives. Intuitively, the solution of  is
the  pole  value  while  minimizing . Following  Lagrangian  multi-
plier method, the Lagrange function of  is first obtained by:
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where  is a Lagrange multiplier for the constraint of . Next, tak-
ing  the  partial  derivative  with  respect  to  of  (6)  and  setting  the
derivative to be zero, we know
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With ,  can  be  obtained  with  and  then  substituted  to
 for calculating , finally  can be gained as
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3)  Contrastive  reconstruction  loss :  The  autoencoder  not  only
serves  as  the  function  of  capturing  latent  information,  but  also
achieves the  reconstruction  of  the  intermediate  representation.  Con-
sequently, the quality of the reconstructed graphs produces a certain
impact  on  the  merit  of  the  learned  consensus  graph.  However,  the
autoencoder loss  merely realizes an element-level approximation
but ignores  the  sample-level  approximation,  resulting  in  the  incom-
plete  similarity  between  the  reconstructed  graphs  and  raw  graphs,
which  is  detrimental  to  consensus  graph  learning.  To  remedy  this
deficiency, the contrastive reconstruction loss  is introduced.
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Since the  decoding  outputs  are  constructed  by  a  functional  map-
ping of the inputs, the reconstructed graphs can be regarded as aug-
mentations  of  original  graphs.  In v -th  view,  the  reconstructed  graph

 is  an augmentation of ,  then we obtain  similarity samples
. For the i-th reconstructed sample , the corresponding

raw  sample  is  chosen  as  a  positive  pair ,  and  the  other
 pairs are regarded as negative ones. To make samples distin-

guishable, the contrastive loss for  is gained by
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where τ  is  a  temperature  parameter  to  control  the  smoothness,  and
 denotes  the  cosine  similarity  between  and   calcu-

lated  by .  Hence,  the  contrastive
loss for v-th view is calculated by the average contrastive loss of all
positive samples,  and  the  contrastive  loss  of  all  views  are  accumu-
lated to form the contrastive reconstruction loss  as
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L
With all  the  losses  as  introduced  above,  the  total  objective  func-

tion  is denoted as
 

L =Lae +αLz +βLc (11)
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where α  and  β  are  employed  to  balance  the  impact  of  consensus
graph  loss  and  the  contrastive  reconstruction  loss.  In  the  process  of
minimizing the total loss, the network is steered to learn a consensus
graph as summarized in Algorithm 1. Finally, the clustering result is
obtained by conducting spectral clustering on the learned graph.

Algorithm 1 Contrastive Consensus Graph Learning

X
lr

Input: Multi-view  data ,  the  number  of  nearest  neighbors k,
learning rate , training epochs t, weight parameters α and β.

G∗Output: Consensus graph .
X

G
1: Generate adjacency graphs by KNN from , and then construct

affinity graphs  using (1).
2: Initial the network weights by Xavier normalization.

epoch = 1→ t3: for  do
G Ĝ4:　　Calculate feature graphs  and  by (2) and (3).

Lae5:　　Compute the autoencoder loss  by (4).
Lc6:　　Obtain the contrastive recounstruction loss  by (9) and (10).

ωi
Lz

7:　　Calculate  for each view through (8), then compute the con-
sensus graph loss  by (5).

L8:　　Calculate the total loss  by (11).
9:　　Update network parameters by gradient descent method.
10: end for

G∗11: return Ouput of the encoder .

O(VNlogN) O(
∑V

v=1 DvN2)
O(VNlogN+

∑V
v=1 DvN2)

N ×N s× s
O(
∑2L

l=1 N2×s2
l cl−1cl)

O(VNlogN + (
∑V

v=1 Dv+
∑2L

l=1 s2
l cl−1cl)N2)

O(N2)

O(
∑2L

l=1(s2
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The  total  time  complexity  mainly  comes  from  the  construction
time of K nearest neighbor (KNN) matrices and the forward compu-
tation  of  the  convolutional  autoencoder.  The  time  spent  on  graph
construction  sorting  and  computing  similarity,  and  they  cost

 and  , respectively.  Thus,  the  time  com-
plexity of graph construction is . As the size
of feature graphs and convolution kernel are  and , the for-
ward  computing  time  consumes ,  where c
denotes  the  convolutional  channels. Therein, the  overall  time  com-
plexity  requires , approxi-
mated to . Besides, the space complexity is determined by the
weight  parameters  of  the  convolution  kernels  and  feature  graphs,
which  costs  and  can  be  approximated  as

.
Experiments:
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1)  Datasets:  The  experiments  are  conducted  on  six  classical
datasets, and a brief description is illustrated as follows. Specifically,
ALOI  contains  object images  with  four  color  features.  Hand-
Written  (HW)  are  handwritten  digits  images  with  six  views.
Caltech101-20  is  a  object  recognition  dataset  with  categories,
and we select  samples  of  classes for  testing.  Youtube con-
sists of  samples including three visual features and three audio
features. NUS-WIDE is comprised of  web images of six avail-
able  features.  MNIST10k  is  a  image  dataset  of  handwritten
digits  with  IsoProjection,  linear  discriminant  analysis  (LDA)  and
neighborhood preserving embedding (NPE) features as three views.

3
3×3

1

2)  Comparisons  and  parameter  settings:  The  proposed  method  is
compared with the following nine methods. Best single view (BSV)
is adopted  to  record  the  best  spectral  single-view  clustering  perfor-
mance of all raw affinity graphs. The rest compared clustering meth-
ods  are  tensorized  multi-view  subspace  representation  learning
(TMSRL)  [16],  multi-view  clustering  via  deep  matrix  factorization
(DMF-MVC)  [11],  deep  generalized  canonical  correlation  analysis
(DGCCA)  [10],  multi-veiw  spectral  clustering  network  (MvSCN)
[12],  multiview  consensus  graph  clustering  (MCGC)  [9],  graph-
based multi-view clustering (GMC) [7], binary multi-view clustering
(BMVC)  [17]  and  consensus  graph  learning  (CGL)  [6].  All  the
parameters involved  in  compared  algorithms  are  set  to  the  recom-
mended  values  in  their  papers.  For  the  proposed  model,  there  are
both  convolutional  and  deconvolutional  layers  and  the  size  of  all
convolution kernels is , where each layer is followed by a ReLU
activation.  Strides  of  horizontal  and  vertical  directions  are  both 
with one zero-padding layer to obtain feature graphs with the size of

n×n

10 ε = 1
−1

1 α = 1 β = 1

lr = 0.01 300
10

. In the encoder, the number of convolution kernels are [4, 2, 1]
in  order,  while  there  are  [2,  4, V ]  deconvolution  kernels  in  the
decoder.  For  all  datasets,  the  number  of  nearest  neighbors k  is cho-
sen  as  with  the  bandwidth ,  the  exponent p  of  consensus
weight  is  set  to ,  and  the  temperature τ  in  the  contrastive  loss  is
fixed  to ,  and  we  set  and   as  default.  Moreover,  Adam
optimizer  is  utilized  to  accelerate  the  minimization  of  the  total  loss
with .  Uniformly,  we  train  epochs  on  all  datasets  to
obtain consensus graphs. All experiments are conducted for  times,
then the  mean  and  the  standard  deviation  of  the  clustering  perfor-
mance are computed as the final results.

3)  Clustering  results:  The  classical  metric  accuracy  (ACC)  is
adopted to evaluate the clustering performance. The clustering results
of  all  compared  algorithms  are  presented  in Table 1 ,  where  we  can
obtain  the  following  observations.  Compared  with  BSV,  the  propo-
sed  model  exhibits  better  performance.  Compared  with  the  tensor-
based method TMSRL, the proposed model exhibits significant clus-
tering  superiority  on  all  datasets.  As  for  deep  methods  such  as
DGCCA,  our  method  also  gains  superior  performance  on  most
datasets,  which  demonstrates  the  effectiveness  of  the  convolutional
autoencoder.  Furthermore,  compared with graph-based methods,  the
proposed model  still  obtains  higher  accuracy especially  on HW and
MNIST where the mean accuracy is close to 100%. In summary, the
proposed  model  is  capable  of  learning  a  well  clustered  graph  and
achieving satisfactory clustering results.
 

Table 1.  The ACC (MEAN±STD%) of Multi-View Clustering Algorithms,
Where the Best and Second Best Results are Marked in Red and Blue

Respectively, And “−” Denotes the Failed Results.
Methods\Datasets ALOI Caltech101-20 HW MNIST10k NUS-WIDE Youtube

BSV 86.55±0.00 65.58±0.00 63.50±0.29 90.30±0.00 30.73±0.34 34.50±0.87

TMSRL 61.94±0.19 50.60±5.01 85.74±0.08 − 33.01±0.05 29.82±0.70

DMF-MVC 79.52±0.00 54.81±0.51 34.81±0.18 19.82±0.02 33.01±0.05 28.13±1.17

DGCCA 57.31±0.00 63.45±0.91 64.10±2.80 29.50±0.09 27.50±1.10 29.40±0.20

MvSCN 56.00±2.50 38.30±0.75 50.30±1.00 73.27±6.23 30.20±1.40 24.40±0.20

MCGC 55.51±0.00 62.91±0.00 95.50±0.00 61.03±0.00 21.56±0.00 30.00±0.00

BMVC 59.59±0.00 47.41±0.64 85.63±0.57 53.55±0.00 36.64±1.32 46.53±0.71

GMC 64.87±0.00 45.64±0.00 85.90±0.29 90.37±0.00 20.06±0.00 11.65±0.00

CGL 92.12±0.00 54.82±0.00 97.40±0.00 − 31.37±0.00 34.50±0.87

Ours 93.51±0.00 81.32±0.83 99.50±0.04 98.33±0.00 59.99±0.97 47.77±2.72

 
 

4) Ablation study: As shown in Table 2, the ablation study is per-
formed to  investigate  the  influence  of  the  consensus  graph loss  and
the contrastive loss. The results indicate that the proposed model per-
forms poorly with only autoencoder loss. After adding the consensus
graph loss, the clustering performance of the proposed model is sig-
nificantly improved.  Further  introducing  the  contrastive  reconstruc-
tion  loss,  the  proposed  model  performs  best.  It  can  be  inferred  that
the  consensus  graph  constraint  can  guide  the  network  to  effectively
explore  the  discriminative  spatial  information  from  diverse  views.
Simultaneously, with the contrastive reconstruction loss, the sample-
level similarity between the reconstructed graphs and raw graphs can
be strengthened, and in turn enhancing the graph learning.
 

Table 2.  The Ablation Study on ALOI, HW and Youtube w.r.t ACC
(Mean±STD%), where the Best Results are in Bold.

Loss ALOI HW Youtube

Lae 82.47±1.26 85.74±0.00 17.40±0.22
Lae +Lz 85.69±3.18 96.99±0.00 37.59±0.84

Lae +Lz +Lc 93.51±0.00 99.50±0.00 47.77±2.72
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5)  Convergence  and  parameter  sensitivity:  The  objective  function
values  with  the  number  of  epochs  are  illustrated  in Fig. 2(a),  where
MNIST10k is scaled by  times to keep all curves in the same inter-
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{10−4 10−3 · · · 104}

val. It can be seen that the objective function value decreases rapidly
and stabilizes after  epochs on all datasets, indicating that the pro-
posed  model  can  converge  to  a  stable  value.  In  addition,  parameter
sensitivity experiments are conducted to investigate the influence of
α and β and the results are presented in Fig. 2(b), with α and β rang-
ing  in , , , . It  can  be  observed  that  the  proposed
model  performs  well  when  both α  and  β  are  in  the  same  or  similar
order  of  magnitude,  suggesting  that  the  consensus  graph  constrain
and the  contrastive  reconstruction  constrain  play  a  similar  impor-
tance to the consensus graph learning.
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Fig. 2. Convergence and parameter sensitivity of the proposed method. (a)
Curves of objective function values with the number of epochs; (b) Cluster-
ing metric ACC on HW with varied α and β.
 

Conclusions: This  letter  proposed  a  contrastive  consensus  graph
learning model  to  learn a  consensus graph,  which adopted a  convo-
lutional  autoencoder network to efficiently explore the latent  spatial
association among data. With the constraints of the consensus graph
loss,  the  learned  graph  was  able  to  maintain  global  spatial  consi-
stency  across  diverse  views.  Furthermore,  a  contrastive  reconstru-
ction  loss  was  introduced  to  achieve  sample-level  approximations
between  the  reconstructed  graphs  and  the  raw  graphs,  further  to
enhance  the  consistency  of  the  learned  graph.  Experimental  results
demonstrated the superiority of the proposed model.
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