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   Dear Editor,
In this paper, a recursive filtering problem (RRP) is addressed for

nonlinear systems over full-duplex relay (FDR) networks. A FDR is
adopted to forward measurements of the sensor to the filter. Because
of concurrently transmitting and receiving, the FDR is interfered by
the signals  from itself,  thereby exhibiting self-interference (SI).  The
motivation  of  this  letter  is  to  design  a  recursive  filter  (RR)  for  the
nonlinear system subject to the SI. To alleviate the SI, a SI cancella-
tion  (SIC)  method  is  first  proposed  for  the  FDR.  By  analyzing  the
dynamics  of  the  SI  and  the  filtering  error,  an  upper  bound  (UB)  is
provided for the filtering error covariance (FEC). Then, the filter gain
is parameterized to minimize the UB. Finally, the performance of the
proposed filtering scheme is evaluated by a numerical example.

Filtering/State estimation has long been one of the most appealing
research  topics  in  control  communities.  So  far,  scores  of  filtering
schemes with omnifarious performances have been available in exist-
ing literatures [1]–[5]. Notably, in the filtering problem of stochastic
systems,  the  FEC  is  usually  the  most  concerned  performance  that
should be minimized as much as possible. However, in many scenar-
ios,  especially  when  the  concerned  stochastic  system  is  subject  to
nonlinearities  and  uncertain  parameters,  it  is  usually  theoretically
impracticable to attain the precise FEC. In such a less-than-ideal situ-
ation, an alternative method is to search an UB for the real FEC and
further minimize it by adequately designing the filter gain. Based on
this  method,  plentiful  and  elegant  research  results  have  been
achieved on the filtering issue of  stochastic  nonlinear/uncertain sys-
tems, see, e.g., [6]–[9].

It  should be pointed out  that,  in  existing literatures  discussing the
filtering  problem,  it  has  been  always  assumed  that  measurements
received  by  sensors  can  be  transmitted  infinitely  far.  Unfortunately,
such an assumption is in conflict with real scenes where the transmis-
sion distance of sensors is essentially limited because of the nonneg-
ligible  path  loss  in  signal  transmission.  Owing  to  the  distance-lim-
ited  communication,  filters  may  fail  to  receive  the  signal  spread  by
sensors. To prevent this situation, relays have been widely employed
to forward signals as far as possible. Recently, the filtering problem
with relays has begun to attract the ever-growing research attention,
see, e.g., [10].

To  further  improve  the  spectral  efficiency  of  relay  networks,  the
full-duplex  technique  that  supports  synchronous  transmission  and
reception has been deeply integrated with relays. Although the FDR
has performed tremendous advantages on communication capacity, it
brings a lot of intrinsical challenges as well. For example, due mainly
to  the  simultaneously  transmitting  and  receiving,  the  FDR  will
receive  the  signal  broadcasted  by  itself,  which  gives  rise  to  the  so-
called SI, see, e.g., [11]. The SI will lead to the distortion of the mea-
surement and even cause instability of the relay system. Despite the
fact  that  many  SIC  techniques  have  been  available  in  communic-
ation communities, it is still impossible to completely suppress the SI
in reality.  Therefore,  it  is  of  both  practical  and  theoretical  signifi-
cance to study the RRP subject to the SI of FDR networks. However,
such an important issue has been largely overlooked, and this situa-
tion stimulates the current study on the RRP with FDRs.

In this letter, the RRP is studied for nonlinear systems with SI over
FDR networks. The essential challenges can be sorted out as follows:
1)  How  can  we  describe  the  SI  of  the  FDR?  and  2)  How  can  we
develop  a  recursive  filtering  scheme  to  accommodate  SI  of  FDR?
The main contributions of this work are highlighted as follows: 1) A
novel RRP is studied where the SI frequently appearing in FDR net-
works is taken into consideration; 2) A RR is proposed where an UB
is guaranteed on the FEC; and 3) The filter gain matrix is parameter-
ized through minimizing the obtained UB.

Problem  formulation: The considered  filtering  problem  is  pre-
sented in Fig. 1. A FDR is located between the sensor and the filter to
forward  the  measurement  broadcasted  by  the  sensor.  The  FDR  can
receive and transmit the signal at the same time and therefore it will
receive  the  signal  spread  by  itself,  which  gives  rise  to  the  SI  in  the
signal  received  by  the  relay.  In  order  to  suppress  the  SI,  a  SIC
method is first adopted in the FDR. Then, the FDR forwards signals
through SIC to the filter with certain transmission power. Finally, the
filter generates the desired state estimates.
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Fig. 1. Diagram for the filtering problem.
 

Consider the following nonlinear systems:
 

ϑi+1 = fi(ϑi)+wi (1)
(i = 0,1,2, . . .) ϑi ∈ Rn

wi ∈ Rn fi(ϑi)
where i   is  the  sampling  time  instant,  and

 represent the system state and the stochastic noise,  sat-
isfies the following condition [12]:
 

fi(0) = 0

|| fi(ζi)− fi(ηi)−Ai(ζi −ηi)||22 ≤ ai||ζi −ηi||22 (2)
ζi ηi ∈ Rn Ai

ai ϑ0

for all , ,  is a known matrix with appropriate dimensions,
and  is a positive scalar. In addition, the initial state  is assumed
to follow the Gaussian distribution.

zi ∈ Rm

zi

Denoting  by  the  measurement  of  the  sensor,  then  we
describe  as follows:
 

zi =Ciϑi + vi (3)
Ci viwhere  is a known matrix and  denotes the measurement noise.

The  sensor  transmits  the  measurement  to  the  relay  with  certain
transmission  power.  The  signal  received  by  the  FDR  is  denoted  as
follows:
 

di =
√

ts,iosr,izi +
√

tr,i−1orr,isi + sc
i +υs,i (4)

si sc
i tr,i ts,i

υs,i
osr,i orr,i

Eosr,i = ōsr,i Eorr,i = ōrr,i
E(osr,i − ōsr,i)2 = σsr,i E(orr,i − ōrr,i)2 =σrr,i ōrr,i ōsr,i σsr,k
σrr,k

where  and  are the SI and the SIC,  and  are the transmis-
sion  powers  of  the  FDR  and  the  sensor,  is  a  white  Gaussian
noise, and  and  are the stochastic channel coefficients of sen-
sor-to-relay and relay-to-relay channel with , 

 and   ( , ,  and
 are known positive scalars).
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siAccording to [13], the SI  is described as follows:
 

si =

{ 0, i = 0
αi−1di−1, i > 0

(5)

αi > 0where  is the given amplification factor of the relay.
sc

iIn order to suppress the SI given in (5), the SIC  is designed as
 

sc
k =

{ 0, i = 0
−
√

tr,i−1ōrr,isi, i > 0.
(6)

di
gi

Furthermore,  the signal  is  amplified and forwarded to the filter
by the FDR. Then, signal  obtained by the filter is denoted as fol-
lows:
 

gi = αi
√

tr,ior f ,idi +υ f ,i (7)
υ f ,i or f ,i

Eor f ,i = ōr f ,i E(or f ,i − ōr f ,i)2 =
σr f ,i ōr f ,i > 0 σr f ,i > 0

where  is Gaussian distributed noise and  is the coefficient of
relay-to-filter  channel  satisfying  and  

 (  and  are known parameters).

di di−1
di

Remark 1: It is worth mentioning that, because of the effects of SI,
the measurement  received by the FDR is related to . Therefore,
the  measurement  performs  dynamic  features,  which  renders  the
existing filtering algorithm invalid.  In  this  paper,  we try  our  best  to
develop a RR for nonlinear systems with the SI of FDR.

Remark 2:  In  order  to  suppress  the  SI,  the  SIC  (6)  which  elimi-
nates the SI in the mean sense is proposed by utilizing the informa-
tion of the stochastic channel coefficient. Such a SIC has advantages
over low computational burden and easy-to-implement.

ϑ0 wi vi υs,i υ f ,iAssumption  1:  The  random  variables , , ,  and   are
mutually uncorrelated and auto-uncorrelated and obey the following
probability distributions:
 

ϑ0 ∼N(ϑ̄0,P0), wi ∼N(0,Wi), vi ∼N(0,Vi)
υs,i ∼N(0,Rs,i), υ f ,i ∼N(0,R f ,i) (8)

ϑ̄0 P0 Wi Vi Rs,i R f ,iwhere  is a given vector and , , ,  and  are given pos-
itive definite matrix parameters with suitable dimensions.

i > 0For all , it can be obtained from (3) and (7) that
 

gi = αi
√

tr,its,ior f ,iosr,iCiϑi +αi
√

tr,ior f ,ivs,i

+αi
√

tr,its,ior f ,iosr,ivi +εisi + v f ,i (9)
εi = αi

√
tr,itr,i−1or f ,i(orr,i − ōrr,i)where .

giBased on the measurement , the following filter is constructed for
the concerned nonlinear system (1):
 {

ϑ̂i+1 = fi(ϑ̂i)+Kiχi

ϑ̂0 = ϑ̄0
(10)

ϑ̂i ϑi Ki
χi = gi −αi

√
tr,its,iōr f ,iōsr,iCiϑ̂i

where  depicts  the  estimate  for ,  is  the  gain  matrix  to  be
designed, and .

ϑ̃i = ϑi − ϑ̂i
Ξi = E{ϑ̃iϑ̃

T
i }
Ξi

{Σi}∞i=0 Ξi ≤ Σi
Σi

Letting  the  filtering  error  be ,  we  define  the  FEC  as
.  Considering  the  effects  of  nonlinear  parameters,  the

precise  FEC  is  technically  unavailable.  In  this  paper,  we  aim  to
find  a  matrix  sequence  satisfying   and  further  design
the filter gain such that  is minimized at each time instant.

Main  results: In  this  section,  a  RR is  designed  for  the  nonlinear
system over FDR networks.

µi (i = 0,1,2, . . .)
{M̃i}∞i=0

Lemma  1:  For  the  nonlinear  system  (1),  if  there  are  a  positive
scalar   and a semi-positive definite matrix sequence

 satisfying
 

M̃i+1 = (1+µi)aitr{M̃i}I+ (1+µ−1
i )AiM̃iAT

i +Wi

M̃0 = P0 + ϑ̄0ϑ̄
T
0 (11)

Mi ≤ M̃i Mi = E{ϑiϑ
T
i }then, we have  with .

Proof:  The  proof  can  be  directly  obtained  from  (1)  and  (2).  The
details are omitted here. ■

S i = E{sisT
i } S̃ i

(i = 0,1, . . .)
Lemma  2:  Define .  If  the  semi-definite  matrix 

 is the solution to the following recursion:
 

S̃ i+1 = α
2
i tr,i−1σrr,iS̃ i +α

2
i ts,iσ̃sr,iVi

+α2
i ts,iσ̃sr,iCiM̃iCT

i +α
2
i Rs,i

S̃ 0 = 0 (12)
σ̃sr,i = σsr,i + ō2

sr,i S̃ i S iwhere , then  is an UB for , i.e.,

 

S i ≤ S̃ i. (13)

S̃ 0 = S 0 = 0
S i ≤ S̃ i S i+1 ≤ S̃ i+1

Proof: The mathematical induction method is adopted to prove this
lemma.  From  the  initial  value,  we  easily  know  that .
Then, assuming that , we intend to show . It can be
obtained from (3)−(5) that
 

si+1 = αidi = αi
√

ts,iosr,iCiϑi +αi
√

ts,iosr,ivi

+αi
√

tr,i−1(orr,i − ōrr,i)si +αiυs,i. (14)
Based on (14), one can easily obtain that

 

S i+1 =α
2
i tr,i−1σrr,iS i +α

2
i ts,iσ̃sr,iVi

+α2
i ts,iσ̃sr,iCiMiCT

i +α
2
i Rs,i ≤ S̃ i+1. (15)

    From the inductive method, (13) is directly obtained. ■
i = 0

ϑ̃0 = ϑ0 − ϑ̂0 = ϑ0 − ϑ̄0 Ξ0 = P0 i = 1 ϑ̃i

When ,  it  can  be  easily  obtained  from  the  initial  state  that
 and . As for , the filtering error 

can be deduced from (1), (3)−(7) and (10) as follows:
 

ϑ̃i = fi−1(ϑi−1)+wi−1 − fi−1(ϑ̂i−1)−Ki−1χi−1 = Υi−1 (16)
where
 

Υi−1 = fi−1(ϑi−1)− fi−1(ϑ̂i−1)−Ki−1υ f ,i−1 −αi−1

×
√

tr,i−1ts,i−1ōr f ,i−1ōsr,i−1Ki−1Ci−1ϑ̃i−1

−αi−1
√

tr,i−1ts,i−1or f ,i−1osr,i−1Ki−1vi−1

−αi−1
√

tr,i−1or f ,i−1Ki−1υs,i−1 +wi−1

−αi−1
√

tr,i−1ts,i−1(or f ,i−1osr,i−1 − ōr f ,i−1

× ōsr,i−1)Ki−1Ci−1ϑi−1. (17)
i = 1 Ξi =E{Υi−1Υ

T
i−1}By utilizing (16), the FEC at  is computed as .

i > 1For all , we know from (1), (4), (9) and (10) that
 

ϑ̃i = Υi−1 −εi−1Ki−1si−1. (18)
In this case, the FEC is derived as

 

Ξi = E{(Υi−1 −εi−1Ki−1si−1)× (Υi−1 −εi−1Ki−1si−1)T }. (19)
Σi

Ξi

In the following lemma, an UB matrix  is provided for the FEC
 at each time instant.

Σi > 0 (i = 0,1,2, . . .)Lemma 3: If there is a matrix   satisfying
 

Σi =


P0, i = 0
Ψi−1, i = 1
Φi−1, i > 1

(20)

where 

Ψi−1 = (1+ ϵi−1)ai−1tr{Σi−1}I+ (1+ ϵ−1
i−1)

× (Ai−1 −αi−1
√

tr,i−1ts,i−1ōr f ,i−1ōsr,i−1

×Ki−1Ci−1)Σi−1(Ai−1 −αi−1ōr f ,i−1

×
√

tr,i−1ts,i−1ōsr,i−1Ki−1Ci−1)T

+Ki−1Λ(M̃i−1)KT
i−1 +Wi−1

Φi−1 = Ψi−1 + ζi−1Ki−1S̃ i−1KT
i−1

σ̃r f ,i = σr f ,i + ō2
r f ,i, ζi = α

2
i tr,itr,i−1σ̃r f ,iσrr,i

Λ(M̃i−1) = α2
i−1tr,i−1ts,i−1σ̃r f ,i−1σ̃sr,i−1Vi−1

+α2
i−1tr,i−1σ̃r f ,i−1Rs,i−1 +R f ,i−1

+α2
i−1tr,i−1ts,i−1(σ̃r f ,i−1σ̃sr,i−1

− ō2
r f ,i−1ō2

sr,i−1)Ci−1M̃i−1CT
i−1

ϵi > 0 Ξi ≤ Σi
i = 0,1,2, . . .
and  is a given auxiliary parameter, then we have  for all

Ξ0 = Σ0 = P0Proof: Since , it is obvious that
 

Ξ0 ≤ Σ0. (21)
i = 1
osr,i−1 or f ,i−1

When ,  it  is  obtained  from  (16)  and  the  statistical  characte-
ristics of  and  that
 

Ξi ≤ E{ f⃗i−1(ϑi−1) f⃗ T
i−1(ϑi−1)}+Ki−1Λ(M̃i−1)KT

i−1 +Wi−1 (22)
where 
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f⃗i−1(ϑi−1) = fi−1(ϑi−1)− fi−1(ϑ̂i−1)−Ai−1ϑ̃i−1
+ (Ai−1 −αi−1ōr f ,i−1ōsr,i−1

×
√

tr,i−1ts,i−1Ki−1Ci−1)ϑ̃i−1.

By means of the following inequality:
 

mnT +nmT ≤ ϵmmT + ϵ−1nnT (23)
ϵ > 0where m and n denote vectors with appropriate dimensions and 

is a given scalar, we further have
 

E{ f⃗i−1(ϑi−1) f⃗ T
i−1(ϑi−1)}

≤ (1+ ϵi−1)ai−1tr{Ξi−1}I+ (1+ ϵ−1
i−1)

× (Ai−1 −αi−1
√

tr,i−1ts,i−1ōr f ,i−1ōsr,i−1

×Ki−1Ci−1)Ξi−1(Ai−1 −αi−1ōr f ,i−1

×
√

tr,i−1ts,i−1ōsr,i−1Ki−1Ci−1)T . (24)
From (22), (24) and Lemma 1, it is easily obtained that

 

Ξi ≤ Ψi−1 = Σi. (25)
i = 1So, the conclusion holds at .

i > 1 Σi−1 ≥ Ξi−1When ,  we  first  assume that .  Then,  it  is  obtained
from (19) that
 

Ξi ≤ E{ f⃗i−1(ϑi−1) f⃗ T
i−1(ϑi−1)−Ni −NT

i

+ε2i−1Ki−1si−1sT
i−1KT

i−1 −Ai −AT
i }

+Ki−1Λ(M̃i−1)KT
i−1 +Wi−1

where
 

Ni = εi−1Ki−1si−1 f⃗ T
i−1(ϑi−1),

Ai = εi−1Ki−1si−1ϑ
T
i−1CT

i−1KT
i−1
√

tr,i−1ts,i−1

×αi−1(or f ,i−1osr,i−1 − ōr f ,i−1ōsr,i−1).

orr,i or f ,iNoting the statistical characteristics of  and , we have
 

E{εi−1} = 0, E{ε2i−1} = ζi−1

E{εi−1(or f ,i−1osr,i−1 − ōr f ,i−1ōsr,i−1)} = 0 (26)
from which together with Lemma 2, we know that
 

E{ε2i−1Ki−1si−1sT
i−1KT

i−1}
= ζi−1Ki−1S i−1KT

i−1 ≤ ζi−1Ki−1S̃ i−1KT
i−1 (27)

and
 

E{Ni} = 0, E{Ai} = 0. (28)
Substituting (24), (27) and (28) into (26), one has

 

Ξi ≤ Φi−1 = Σi. (29)
Ξi ≤ ΣiFrom (21), (25) and (29), we obtain that  at each time step.

■
Ki

Σi

In  what  follows,  the  filter  gain  is  designed  by  minimizing  the
UB matrix .

KiTheorem 1: If the filter gain  is chosen as
 

Ki =

 ΩiΓ
−1
i , i = 0

Ωi(Γi + ζiS̃ i)−1, i > 0
(30)

where
 

Ωi =(1+ ϵ−1
i )αi

√
tr,iis,iōr f ,iōsr,iAiΣiCT

i

Γi =(1+ ϵ−1
i )α2

i tr,its,iō2
r f ,iō

2
sr,iCiΣiCT

i +Λ(M̃i) (31)

Σithen, the UB  achieves the minimum value.
i = 1 ΣiProof: When , we can rewrite the UB matrix  as follows:

 

Σi = (Ki−1 −Ωi−1Γ
−1
i−1)Γi−1(Ki−1 −Ωi−1Γ

−1
i−1)T

+Wi−1 + (1+ ϵi−1)ai−1tr{Σi−1}I
+ (1+ ϵ−1

i−1)Ai−1Σi−1AT
i−1 +Wi−1

−Ωi−1Γ
−1
i−1Ω

T
i−1. (32)

Ki−1 Σi i = 1
i > 1 Σi

Obviously, when  is selected as (30),  is minimized at .
As for all , the upper bound  is rewritten as

 

Σi =
(
Ki−1 −Ωi−1(Γi−1 + ζi−1S̃ i−1)−1)
× (Γi−1 + ζi−1S̃ i−1)[Ki−1 −Ωi−1(Γi−1

+ ζi−1S̃ i−1)−1]T + (1+ ϵi−1)ai−1tr{Σi−1}I
+ (1+ ϵ−1

i−1)Ai−1Σi−1AT
i−1 +Wi−1

−Ωi−1(Γi−1 + ζi−1S̃ i−1)−1ΩT
i−1. (33)

Σi (i > 1)
Ki−1

From (33), one can easily obtain that   is minimized when
 is determined in the form of (30). ■

Ki i = 0
Ki

i > 0

ζiS̃ i

Remark 3: In fact, the  at  in (30) can be recognized as the
filter gain minimizing the UB in the SI-free case. Meanwhile, the 
for  is the desired filter gain when there exists SI in the measure-
ments received by FDRs. Obviously, the effect from the SI to the fil-
tering scheme is reflected by the term .

Numerical  example: In this  part,  an  illustrative  example  is  pro-
vided to display the effectiveness of the proposed recursive filtering
method.

The parameters of the nonlinear system (1) with the measurement
(3) are given as follows:
 

fi(ϑi) = Aiϑi +

[
−0.05sinϑ1,i
0.02sinϑ2,i

]
, ai = 0.005

Ai =

[
0.63 0.52

0.5sin i 0.74

]
, Ci =

[
2 1.8

]
.

Wi = 0.003I2
vi = 0.001 Rs,i = R f ,i = 0.001

ϑ̄0 = [−0.2 0.1]T P0 = 0.02I2

Moreover,  the  covariances  of  the  noises  are ,
 and . The mean value and covariance of

the initial value are given as  and .
ts,i = tr,i = 2

αi = 1
ōsr,i = ōr f ,i = 0.5 ōrr,i = 0.6

σsr,i = σrr,i = σr f ,i = 0.01 µi ϵi µi = 10
ϵi = 0.08

The  transmission  powers  of  the  FDR  and  sensor  are 
and  the  amplification  factor  of  the  relay  is .  As  for  the  sto-
chastic  coefficients,  we  set ,  and

. In addition,  and  are chosen as 
and .

ϑ1,i ϑi
ϑ̂1,i

ϑ2,i
ϑi

The actual state and their estimates are presented in Figs. 2 and 3.
In Fig. 2, the first element  of the state  and the corresponding
estimates  are  depicted  simultaneously. Fig. 3  shows  the  real
value and the estimates of the state  which is the second element
of .

MSEi MSEi

In light of the unavailability of actual filtering error covariance, we
use  the  mean  square  error  to  approximate  it.  The  is
defined as follows:
 

MSEi =

∑M
l=1(ϑl

i − ϑ̂
l
i)(ϑ

l
i − ϑ̂

l
i)

T

M
ϑl

i ϑ̂l
i

M = 100 MSEi Σi
MSE11

i Σ11
i

MSEi Σi
MSE11

i Σ11
i

MSE22
i Σ22

i MSE22
i Σ22

i
MSEi Σi

where  and  stand for the actual state and its estimate of the lth
implementation of  the  developed filtering method,  respectively,  and
M is  a  positive integer.  By running the proposed filtering algorithm

 times,  the  results  of  and   are  reflected  in Figs. 4
and 5. Detailedly, Fig. 4 depicts the values of  and  which
are the first elements in main diagonal of  and . It can be eas-
ily seen that  is  less than , which conforms to the conclu-
sion  obtained  in  the  paper.  Moreover,  same  results  can  be  obtained
for  and   where   (respectively,  )  is  the  second
element  in  main  diagonal  of  (respectively,  ).  Based  on  the
simulation results, we conclude that the proposed RR is competent to
estimate the state of the concerned nonlinear system with FDRs.

Conclusion: This letter has been concerned with the RRP for non-
linear  systems with  SI  over  FDR networks.  A FDR which endorses
concurrent  transmission  and  reception  has  been  adopted  to  forward
measurements transmitted  by  sensors.  First,  a  RR  has  been  con-
structed  in  the  presence  of  SI  of  FDR.  Moreover,  an  UB  has  been
guaranteed  on  the  real  FEC.  Then,  the  desired  filter  gain  has  been
designed such that the UB is minimized at each time step. Finally, we
have  verified  the  usefulness  of  the  RR  by  an  illustrative  example.
Future research  interests  include  the  control  issue  over  FDR  net-
works [14], [15].
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