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Briefing: The rapid advancement of fundamental theories

and computing capacity has brought artificial intelligence,

internet of things, extended reality, and many other new

intelligent technologies into our daily lives. Due to the lack

of interpretability and reliability guarantees, it is extremely

challenging to apply these technologies directly to real-world

industrial systems. Here we present a new paradigm for

establishing parallel factories in metaverses to accelerate the

deployment of intelligent technologies in real-world industrial

systems: QAII-1.0. Based on cyber-physical-social systems,

QAII-1.0 incorporates complex social and human factors into

the design and analysis of industrial operations and is capable

of handling industrial operations involving complex social and

human behaviors. In QAII-1.0, a field foundational model

called EuArtisan combined with scenarios engineering is de-

veloped to improve the intelligence of industrial systems while

ensuring industrial interpretability and reliability. Finally, par-

allel oil fields in metaverses are established to demonstrate the

operating procedure of QAII-1.0.

Keywords: Cyber-physical-social system (CPSS), Industry

5.0, Metaverses, Parallel factories, Parallel intelligence.

I. INTRODUCTION

OVER the last two centuries, industry has been a major

driver of social, livelihood, and economic progress.

Industry is both the driving force behind national economic

development and the guarantee of our material and cultural

needs. Industry 4.0, also known as the Industrial Internet,
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has integrated information technologies to facilitate industrial

development in the past decade. Industry 4.0 is based on cyber-

physical systems (CPSs) and is distinguished by networking,

which combines products, machines, and resources to create

a flexible, personalized, digital, and networked manufactur-

ing mode using information technologies [1]–[3]. The CPS

framework, however, ignores an important aspect of real-world

industrial systems: Social factor. However, the rapid develop-

ment of intelligent technologies such as artificial intelligence

(AI), internet of things (IoT), and extended reality (XR1)

today not only increases industrial production efficiency, but

also brings social factors and actual industrial production

closer together [4], [5]. As a result, CPS, which cannot

effectively deal with the complex social and human behaviors

in increasingly complex industrial systems, impedes industrial

development even further [1], [6]–[8].

So far, we can not help but wonder: “Should AI, XR,
and many other new intelligent technologies be fully in-
tegrated to establish a new industrial paradigm that fully
flourishes productivity while adequately addressing upcoming
challenges?” To answer this question, Wang launched cyber-

physical-social systems (CPSSs) in 2010 [6], and further intro-

duced the concept and framework of Industry 5.0 [1]. CPSS-

based Industry 5.0 builds a grand closed-loop control and

management paradigm for industry by incorporating complex

social and human factors into the design and analysis of

industrial systems. Fig. 1 depicts the progression from Industry

1.0 to Industry 5.0.

II. RELATED WORK

This section provides a brief overview of parallel intel-

ligence and big AI models that are key technologies for

constructing parallel factories.

A. Parallel Intelligence in Metaverses

It is not difficult to discover that intelligent technologies

such as AI, XR, and IoT all highlight a current buzzword:

Metaverses. It is now widely recognized that the term “Meta-

verse” was coined by Neal Stephenson in his science fiction

novel Snow Crash. Stephenson envisions the metaverse as

1XR denotes technologies that can alter reality by adding digital elements
to the user’s environment, including virtual reality, augmented reality, and
mixed reality.
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Fig. 1. From Industry 1.0 to Industry 5.0.

a virtual three-dimensional (3D) space in which everything

in the real world is digitally replicated. Based on digital

doubles, people interact with other people or software-defined

agents for production and consumption. Before metaverses,

digital twins (DTs) were regarded as a critical technique for

achieving Industry 4.0 [9], [10]. Although both metaverses

and DTs attempt to duplicate the genuine physical world

and then complete specific tasks, they both have significant

flaws when dealing with complex systems, according to the

current paradigm. Particularly, the CPS framework serves as

the foundation for metaverses and DT in the current paradigm.

Therefore, related research disregards the social and human as-

pects of complex systems. [6]. Furthermore, there is currently

no broadly recognized definition of metaverses, despite the fact

that it is frequently portrayed by features like interoperability,

real-time network access, and immersive 3D user experiences

[11]. As a result, the metaverses lack a self-contained scientific

theory for control and management of complex systems.

Fortunately, several trailblazers have carried out some sig-

nificant research that explains and validates the metaverses.

Among these studies, parallel intelligence is the scientific

theory behind metaverses and DTs [12]–[16]. Parallel intel-

ligence is built on the parallel system theory [17]–[21]. The

parallel system theory, proposed by Wang [17], is a scientific

research paradigm for modeling, analysis, management, and

control of complex systems. The parallel system theory, also

known as the ACP theory, involves three main parts: Artificial

systems, Computational experiments, and Parallel execution.

Artificial systems are utilized to model the real world, which

also can be referred to as artificial societies. In computational

experiments, numerous intelligent methods can be employed to

cope with complex systems. Based on the parallel execution,

the feedback from actual and artificial systems is obtained

and analyzed to further improve the efficiency of modeling,

management, and control of complex systems. Based on the

ACP theory, parallel learning, which integrates descriptive

learning, predictive learning, and prescriptive learning, was

introduced to address complex system issues [22].

B. Big AI Models

The success of big AI models (or foundation models [23])

in natural language processing has received a lot of atten-

tion in recent years [23]–[25]. In [26], BERT (Bidirectional

Encoder Representations from Transformers) was proposed

Actual Factories Artificial Factories

Management 
and control

Experiments 
and Evaluation

Learning 
and Training

Management 
and Control

Observation 
and Evaluation

Control and 
Observation 

Management 
and Control

Observation 
and Evaluation

Parallel Execution

ACP = Artificial Systems + Computational Experiments + Parallel Execution

Computational Experiments

Fig. 2. The basic framework of QAII-1.0.

and achieved then state-of-the-art (SOTA) performance on

11 different natural language processing tests, which initiated

the era of big AI models. In [27], the best one in the GPT

(Generative Pre-trained Transformer) series so far: GPT-3,

which has 175 billion parameters, was put forward to achieve

better generality. A large-scale visual language (VL) pre-

training model called CLIP (Contrastive Language-Image Pre-

training) was proposed in [28], and it is trained by contrastive

learning. By predicting whether an image and a text are a

match in pre-trained tasks, CLIP may be adapted to a variety

of image and language downstream tasks. In [29], PaLM

(Pathways Language Model), a Transformer model with 540

billion parameters, was proposed and achieved then SOTA

performance in multilingual tasks. Flamingo, a member of the

VL models family, was introduced in [30], outperforming other

well-tuned large AI models at the time. Inspired by BERT,

BEiT (Bidirectional Encoder representation from Image Trans-

formers) was introduced to pre-train vision Transformers using

masked image modeling pre-train tasks [31], and it could be

quickly and easily applied to downstream vision tasks. More-

over, in the field of VL models, a minimal VL model: ViLT

(Vision-and-Language Transformer) was proposed to reduce

the dependency on image feature extraction, by simplifying the

processing of visual inputs, and ViLT is faster than previous

VL models [32]. In [33], to enhance the performance of trans-

ferring models in a zero-shot fashion, LiT, namely Locked-

image Tuning, was proposed using contrastive-tuning methods.

BriVL (Bridging-Vision-and-Language) was proposed in [34]

as a method for obtaining multi-cognitive abilities and de-

veloping general AI by leveraging weak semantic correlation

data. More details about big AI models can be found in [23].

It should be noted that the aforementioned big AI models

were created and implemented in ideal and secure settings,

making it challenging to directly deploy them to real-world

industrial systems [35]–[37].

III. QAII-1.0: PARALLEL FACTORIES IN METAVERSES

To address the aforementioned issues, we present a new

smart factory paradigm in industrial metaverses: QAII-1.02.

Figs. 2 and 3 depict the basic framework and the operating

2Qingdao Academy of Intelligent Industries (QAII) is rooted in independent
innovations and promotes the commercialization of scientific and technolog-
ical achievements. QAII-1.0 is the first generation of parallel factories in
metaverses proposed by QAII for Industry 5.0.
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framework of QAII-1.0, which is designed based on the ACP

theory and the decentralized autonomous organization (DAO)

principle. The main goal of QAII-1.0 is, under the condition

of human-machine collaboration, to direct intelligent indus-

trial equipment to accomplish various scenarios-oriented tasks

through the cooperation of actual and virtual factories. Specif-

ically, QAII-1.0 includes the following three steps: 1) Artificial
systems: To get around problems like non-reproducibility,

expensive physical tests, and difficulty assuring safety for

actual factories, construct artificial factories; 2) Computational
experiments: Conduct computational experiments based on

artificial and actual factories for analyses, evaluation, and

prediction; 3) Parallel execution: Through parallel execution,

artificial and real factories are intimately interwoven to achieve

guidance, management, and control of actual factories.

To enhance the intelligence of industrial systems, we pro-

pose a scenarios engineering (SE) + field foundational models

(FFMs) approach. Traditional feature engineering-based AI

methods have attained SOTA performance on some spe-

cific tasks, but without the in-depth consideration of issues

such as interpretability, security, and sustainability [36], [37].

Therefore, it is difficult to apply these SOTA methods to

actual industrial systems directly. In parallel factories, SE

can be viewed as the integration of industrial scenarios and

operations within a certain temporal and spatial range, where

suitable AI methods are to complete the design, certification,

and verification. The design, validation, and calibration for

industrial operations will be supported by intelligence & index

(I&I), calibration & certification (C&C), and verification &

validation (V&V) under the framework of SE, and QAII-
1.0 can then achieve the 6S (safety, security, sustainability,

sensitivity, service, and smartness) goal [36].

Big AI models are crucial to achieving parallel factories.

However, as stated previously, the existing big AI models

are designed based on feature engineering and are therefore

difficult to straightforwardly apply to actual industrial oper-

ations. Fortunately, with the help of SE, we can establish

actual industrial operations as scenarios-oriented models based

on the industrial data and knowledge to accurately describe

industrial production. Then, we construct an FFM to support

smart industrial operations using I&I, C&C, and V&V. The

term “FFM” refers to this type of big model that is built on

SE and targeted towards a particular field. More details on the

combination of SE and FFM in QAII-1.0 will be illustrated in

the next section.

Meanwhile, QAII-1.0 has the following three operation

modes: 1) Control & management: In this mode, artificial

and actual factories interact in real-time, and achieve sensing,

prediction, management, and control through parallel execu-

tion; 2) Experimentation & evaluation: In this mode, analyses,

evaluations, and optimization of various scenarios, planning,

and management schemes are carried out; 3) Learning &

training: In this mode, learning and training are conducted

mainly for managers, planners, and workers in factories.

Based on the operating framework, Fig. 4 further illustrates

the architecture of QAII-1.0. This architecture includes the

following five layers: the support layer, the data interaction

layer, the FFM layer, the digital operation layer, and the

application layer, and each layer is coupled with the other

from the bottom up. Based on the high-performance computing

platform, web 3.0, and DAO principle, QAII-1.0 integrates

IoT, big data, 5G, edge computing, cloud computing, and XR
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Fig. 4. The basic architecture of QAII-1.0.

technologies to realize X2X3.

Support layer: The support layer provides big data foun-

dation support for the establishment of QAII-1.0. Under the

framework of CPSS, many intelligent technologies, including

IoT and edge computing, can be employed to acquire and

perceive data from intelligent devices.

Data interaction layer: The data interaction layer offers

real-time dynamic data interaction support for QAII-1.0. Based

on 5G and other advanced transmission technologies, on-

site industrial data are collected through programmable logic

controllers (PLCs), numerical control systems (NCSs) and

intelligent sensors, and then transmitted to the cloud platform

by industrial Ethernet, 5G networks, bus interfaces, EtherCAT,

etc. Finally, based on DAO and web 3.0, feedback, interaction,

and collaboration between actual and artificial factories are

achieved utilizing deep learning and multimodal data analysis

and fusion technologies.

FFM layer: The intellectual foundation of QAII-1.0 is

the FFM layer, which creates descriptive, predictive, and

prescriptive intelligence based on the parallel system theory.

Digital operation layer: The digital operation layer estab-

lishes digital models for components in QAII-1.0. By using

cloud computing, big data, AI, and XR technologies, digital

models are used to demonstrate the appearance, geometry,

motion mechanism, geometric association and coupling re-

lationship, and other attributes of actual factories and the

components inside, and finally establish multi-scale and multi-

dimensional digital virtual models of actual factories. In the

meantime, the digital operation layer provides experimental

platform for computational experiments.

3X2X refers to virtuality-virtuality, virtuality-reality, reality-virtuality,
reality-reality

Application layer: The application layer provides applica-

tion ecology for QAII-1.0. This layer offers application tasks

like precise description, diagnosis, prediction, control, and

decision-making for smart industrial operations based on the

interoperability of the preceding layers.

IV. EUARTISAN: TOWARD SE AND FFM FOR SMART

INDUSTRIAL OPERATIONS

As mentioned earlier, improving the intelligence of current

industrial systems is necessary to achieve QAII-1.0. To this

end, we present EuArtisan, a SE-based FFM for intelligent

industrial operations. The basic framework of EuArtisan is

depicted in Fig. 5, and it consists of the following blocks:

SE-based scenario modeling block, single modal feature ex-

traction, hybrid multimodal features and knowledge fusion

block, pre-trained tasks block, and adaptation to downstream

applications block. In the following, we will give details of

these blocks.

SE-based scenario modeling block. Big AI models require

enormous amounts of data to train, and their application

in industry can be even more challenging. In the case of

industrial scenarios, the data to be processed will be more

complex, and we frequently have to deal with multimodal data,

unstructured data, and incomplete data. Another issue is that

it is difficult to model a wide variety of industrial systems in

an analytical way. To address the aforementioned issues, we

propose a SE-based scenario modeling approach. According

to SE, we establish a scenario base, which includes industrial

rules, expert knowledge, and multimodal data, to precisely

describe industrial operations. Then, based on the I&I, C&C,

and V&V framework, we design EuArtisan to support smart

industrial operations. Then, to effectively train EuArtisan, we
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Fig. 5. The basic framework of EuArtisan.

need to pre-process data, including padding of missing data,

structuring structured data, and tokenization of data. Finally,

we can obtain the SE-based industrial knowledge graph and

tokenized data.
Single modal feature extraction block and hybrid mul-

timodal features and knowledge fusion block. Since Eu-
Artisan needs to handle big multimodal data, two blocks are

designed for feature extraction. In the single modal feature

extraction block, we use the self-attention mechanism to

initially extract features from single modal data. All industrial

operations in a factory should be highly connected given that

they all eventually go toward the same objective, and thus

features and knowledge behind operations should be strongly

correlated. Therefore, it is not enough to do feature extraction

only for single modal data. On the other hand, since different

tasks require different data, it is not necessary to fuse all

the features in one task, which can result in computational

redundancy. To further extract features in multimodal data

and attain hybrid multimodal features, we propose a hybrid

multimodal attention (HMA). In HMA, whether or not a

specific feature is involved in the feature fusion is decided by

an HM module. Moreover, the SE industrial knowledge graph

is included to improve EuArtisan’s performance for particular

industrial tasks, a process known as knowledge integration.
Pre-trained task block. Pre-trained task design is a critical

step to achieving big AI models, and EuArtisan is no excep-

tion. First, pre-training tasks should be relevant to downstream

tasks to ensure the effectiveness of the feature extraction.

Second, it is challenging to manually label data because the

training of big models requires vast amounts of data. For

example, in [26], two pre-trained tasks are proposed for BERT

using self-supervised learning: Masked-language modeling

and next sentence prediction. Based on the above analyses,

we can design the following pre-training tasks: Operation trend

prediction, control generation, fault classification, and tasks in

virtual space.

In actual factories, various intelligent sensors generate a

vast amount of operational data, and we can predict operation

trends using self-supervised learning. It is worth noting that,

in standard industrial system modeling, a neural network is

usually utilized to predict the next state based on the current

state and action, i.e., predicting a Markov decision process.

The goal is to train a neural network to satisfy a certain

mapping, and the mathematical expression is as follows:

f : (s, a) → s′ (1)

where s and a denote the current state and action of an

industrial system, respectively, and s′ denotes the next step

state. The proposed operation trend prediction is far different

from this way. Assuming we have two motors, each with a

different set of parameters, if we follow (1) to train a neural

network, the same (s, a) may correspond to different s′. The

case of the same data corresponding to different labels may

lead to unsatisfactory training results. Therefore, we construct

the following mathematical expression in the operation trend

prediction:

f̄ : (s̄, ā) → s̄′ (2)

where s̄ and ā denote the sequence of current states and

actions of an industrial system, respectively, and s̄′ denotes

the sequence of next period states. Our goal is to extract

more features contained in systems by using a period of
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runtime data. Furthermore, by substituting (s, a) with two

similar devices, we can forecast the dynamics of another

different class of related devices by mining features of the

two associated devices mentioned above.

As for the control generation and fault classification, we

can get labels from the scenario base and expert knowledge.

Regarding the tasks in virtual space, the training data and

labels are generally coupled together at the time of data

generation and no further manual labels are required.

Adaptation to downstream applications block. Once our

model has been pre-trained, we may fine-tune it to meet partic-

ular downstream applications and keep it constantly learning.

Besides, the fine-tuned model will be applied to digital virtual

models concurrently, and the cloud system will continuously

track and analyze the performance of both the actual system

and the digital virtual models. When the performance is not

as expected, the model and the digital virtual models will be

further updated simultaneously. It is not difficult to find out

that the implementation of EuArtisan adheres to the rule of

“Local simple remote complex”.

V. APPLICATION: PARALLEL OIL FIELDS IN METAVERSES

This section introduces a specific application of parallel

factories: Parallel oil fields. Parallel oil fields, as depicted

in Fig. 6, primarily consist of actual oil fields, artificial

oil fields, EuArtisan, and high performance computing envi-

ronments. Throughout the life cycle, parallel oil fields sup-

port industrial operations such as geological survey, seismic

exploration, drilling, mud logging, well logging, casing &

cementing, completion, oil extraction, enhanced oil recovery

(EOR), transportation, and oil-refinery. Parallel oil fields aim

to optimize the efficiency of operations, save energy, reduce

worker engagement in the actual oil production, achieve an

increase in oil production, and develop intelligent oil fields

while ensuring safety and reliability.

Parallel oil fields also involve the following three steps:

1) Artificial oil fields: Establish multi-scale and multi-

dimensional digital virtual models of actual oil fields, such

as reservoir geological model, drilling model, digital staff

model, and sucker rod pumping system (SRPS) model, and

provide the fundamental components for simulations and com-

putational experiments; 2) Computational experiments: For

geological survey, mud logging, oil extraction, EOR, etc.,

computational experiments provide the experimental platform

employing digital virtual models and assist in optimizing

industrial operations; 3) Parallel execution: We optimize ar-

tificial oil fields and computational experiment results through

parallel execution.

In parallel oil fields, EuArtisan is utilized to offer intel-

lectual support. First, EuArtisan gathers operational data and

knowledge from artificial and actual oil fields. An oil field is

a typical case of big data and multimodal data, data including

seismic images, SEG-Y, downhole videos, drilling daily re-

ports (DDRs), and PVT (pressure, volume, and temperature).

Data formats include temporal series, videos, two-dimensional

(2D)/3D images, natural language, and expert knowledge. To

ensure secure and effective data usage, SE must be employed.

In order to adequately depict oil field operations, we establish

the oil scenario basis based on SE, which includes industrial

rules, expert knowledge, and multimodal data. We also get

tokenized data and the knowledge graph for the oil industry

at the same time. Additionally, we develop appropriate pre-

trained tasks to extract features from multimodal data in

oil fields in accordance with downstream tasks. Furthermore,

a high-performance computing environment is required for

engineering applications.

Next, we will give a brief description of two operations: well

logging and oil extraction. Well logging, also called borehole

logging, is a process of measuring geophysical parameters

using the geophysical properties of rock formations such

as electrochemical properties, electrical conductivity, acoustic

properties, and radioactivity. In short, well logging is the

measurement of physical parameters of stratigraphic rocks. In

oil extraction, the underground crude oil is extracted to the

surface according to requirements of oil field development. It

is not difficult to find out that well logging and oil extraction

are related. The properties of reservoir rocks, for example,

might determine the method of oil extraction, such as flowing

oil production and artificial lift. The mechanical and kinematic

parameters of lift devices used in artificial lift methods are also

closely related to the properties of the rock formation.

In the following, we illustrate the above operations in

parallel oil fields. In artificial oil fields, we establish virtual

reservoir well models which describe reservoir properties and

virtual artificial lift devices. In computational experiments,

these virtual models offer simulation conditions and can also

produce virtual data to make up for the absence of actual

data from oil fields. As mentioned above, the two operations

are related, and from the perspective of machine learning, the

features required for the two operations can be shared. The

training process involves feeding EuArtisan data from both

operations, such as γ-ray, spontaneous potential, and motor

driving torque in SPRS. EuArtisan is then trained using elab-

orate pre-trained tasks. Recalling that pre-trained tasks should

be relevant to downstream tasks and should be self-supervised,

prediction tasks, tasks in the expert knowledge base, and tasks

in virtual space are appropriate. For example, 2D/3D image-

based permeability prediction, porosity prediction, prediction

of SPRS motion characteristics, indicator diagram-based fault

classification in fault knowledge base, and tasks in virtual

space. Once EuArtisan has received adequate training, we can

fine-tune it to fit the downstream tasks in well logging and

oil extraction. Besides, the fine-tuned EuArtisan is applied

to artificial and actual oil fields concurrently, and the cloud

system will continuously track, analyze, and improve the

performance of both the actual and artificial oil fields.

VI. CONCLUSION

Going back to the question at the beginning of this paper,

our answer is self-evident: “Yes!”. To this end, based on SE

and FFM, we present a new paradigm for parallel factories

in metaverses: QAII-1.0, which offers a secure and reliable

guarantee for the application of AI, XR, DAO, web 3.0,

blockchain, and many other new intelligent technologies in
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real-world industrial scenarios. Then, an FFM called EuArti-
san is introduced in QAII-1.0 to achieve high-level machine

intelligence for industrial systems. The design, certification,

and verification for EuArtisan are implemented based on SE,

and adhere to the DAO principle. Finally, parallel oil fields

are given to demonstrate the operating procedure of QAII-1.0.

We believe the combination of QAII-1.0 and EuArtisan is the

key to achieving smart industrial operations in Industry 5.0.
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