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Abstract—Safety critical control is often trained in a simu-
lated environment to mitigate risk. Subsequent migration of the
biased controller requires further adjustments. In this paper,
an experience inference human-behavior learning is proposed
to solve the migration problem of optimal controllers applied
to real-world nonlinear systems. The approach is inspired in
the complementary properties that exhibits the hippocampus,
the neocortex, and the striatum learning systems located in the
brain. The hippocampus defines a physics informed reference
model of the real-world nonlinear system for experience inference
and the neocortex is the adaptive dynamic programming (ADP)
or reinforcement learning (RL) algorithm that ensures optimal
performance of the reference model. This optimal performance
is inferred to the real-world nonlinear system by means of
an adaptive neocortex/striatum control policy that forces the
nonlinear system to behave as the reference model. Stability
and convergence of the proposed approach is analyzed using
Lyapunov stability theory. Simulation studies are carried out to
verify the approach.

Index Terms—Experience Inference, Nonlinear Systems, Lin-
ear Time-Variant (LTV) systems, Optimal control, Hippocampus
learning system, Neocortex/Striatum Learning systems

I. INTRODUCTION

OPTIMAL control [1], [2] is a well-known control phi-

losophy that seeks the control law that minimizes a pre-

defined cost function that defines a desired performance [3],

[4]. There exist an extensive number of applications of optimal

control applied to aerospace design problems, mathematical

biology modelling, computer science, economics, social sci-

ences, autonomous driving, robotics [5].

Optimal control has most of its advancements in linear

systems [5], [6] by proposing different ways to solve an

Algebraic Riccati equation (ARE) [7] either offline [8] or

online [9]–[11]. Whilst the off-line solution is obtained from

the well known linear quadratic regulator (LQR) [12]–[14], the

on-line solution is obtained either by using adaptive dynamic

programming (ADP) [5], [15], [16] or reinforcement learning

(RL) algorithms [17]–[20].

For nonlinear systems, the solution of the optimal control

problem is based on the solution of the underlying Hamilton-

Jacobi-Bellman (HJB) equation [21], [22]. However, only local

solutions can be obtained due to the intractability of the

HJB equation [23]. There are some approaches that use a

successive approximation approach (SAA) [24] to obtain a
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global solution of the optimal control problem. However, SAA

methodology requires to compute in parallel i interconnected

liner-time-variant (LTV) systems [25] such that system i has

an equivalent performance to the nonlinear system. In a

mathematical point of view, the SAA gives impressive results,

however knowledge of the parameters and the nonlinear dy-

namic structure are required.

ADP and RL algorithms have been also used for nonlinear

systems as an alternative to avoid knowledge of the nonlinear

dynamics [26]–[28]. They key idea is to incorporate function

approximators based on neural networks, radial basis func-

tions, fuzzy systems, etc., to approximate the value function or

control policy. Synchronous policy iteration and value iteration

algorithms [9] and actor-critic structures [29] require partial

knowledge of the system dynamics to compute optimal control

policies for both linear and nonlinear systems. Q-learning also

known as Action Dependent Heuristic Dynamic Programming

(ADHDP) [30]–[32] is a data-driven method that does not

require dynamic knowledge to obtain the optimal control

policy. However, in a control perspective is only formulated

for linear systems [33].

For physical systems such as mechanical, electrical or power

systems, the ADP and RL methods are not trained in real-

time because they require to fulfil a persistent of excitation

(PE) condition [34], [35] to guarantee parameter convergence

[36]. This excitation signal can cause severe damages to the

environment or the system itself; instead, simulations are

used to avoid this issue and guarantee safety in the training

algorithm. In the simulation, the nonlinear system is modelled

by either a mathematical model or a simulator under certain

constraints and parameters which differ from the real non-

linear system [37], [38]. The optimal controller obtained from

the simulation is then tested in the real non-linear system

which, in most cases, will not behave as the expected per-

formance and hence, the controller requires to be adjusted

by an expert [39]. So, a biased control policy is obtained in

terms of the simulations constraints. In this sense, the term

biased control policy refers to the policies learned by the

RL/ADP algorithms which guarantee an optimal/near optimal

performance of the system trajectories under the simulations

constraints but lacks of robustness and generalization in the

real system. Throughout the paper, the term biased control

policies refers to the previous definition.

The above issue is getting relevance in recent RL applica-

tions, where high accurate simulators are designed to obtain

realistic control policies that can be applied to the real system

and get almost the same simulator’s performance. However,

some of these simulators require high computational cost and
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they are difficult to modify. In view of the above, one of the

main challenges is to design an algorithm that gives solution

to the optimal control problem of nonlinear systems without

knowledge of the system’s parameters and that guarantees

unbiased control policies for robustness and generalization.

In this context, the model that the RL/ADP algorithm

uses for training can be regarded as a prior knowledge of

the real system that can be used by an inference algorithm

for experience transference. This process is quite similar in

how humans infers their prior knowledge to develop a task

to new similar tasks by adapting their actions. This kind

of process inspires the novel perspective known as human-

behavior learning.

Human-behavior learning (HBL) [40], [41] is a recent

technique that its main aim is to model how human learns

through the effective combinations of different sources of

knowledge and experiences [42]–[44]. This can be achieved

by exploiting the complementary properties [45] of the main

learning systems in the brain: the hippocampus, the neocor-

tex, and the striatum. Despite each learning system executes

different learning procedures, they are strongly correlated and

co-dependent. The hippocampus is responsible of fast learning

architectures related to memory [46] and experience [47], [48].

This system offers an explainable knowledge of how a task

should be performed [49], [50]. On the other hand, the neocor-

tex is characterized by slow-learning architectures that serve

for the acquisition of new information that is subsequently

organized and distributed in different structures [51] to realize

a certain task. The striatum relates the hippocampus and the

neocortex information for decision making [52]. In most cases,

it is difficult to separate each learning system since they are

strongly correlated but it is important to distinguish their main

functionalities.

In a control sense, the hippocampus serves as a reference

model that will teach the neocortex how the nonlinear system

should behave. In other words, the HBL infers the experience

(desired performance) of a completely independent system

and forces the real nonlinear system to exhibit the same

performance. In contrast to previous optimal control method-

ologies, this approach finds the optimal control policy for the

reference model using any ADP/RL algorithm such that the PE

condition can be easily fulfilled. On the other hand, the real-

world nonlinear system is controlled by a neocortex/striatum

control policy to give state feedback and to establish, in an

adaptive way, a relationship with the previous experience for

the decision making of the final control policy [53].

Based on the above facts, this paper proposes an experi-

ence inference HBL algorithm that solves the optimal control

problem of nonlinear systems and guarantee robustness and

generalization for model uncertainty. The main contributions

of this paper are: i) a novel optimal control solution of non-

linear systems based on a human-behavior learning approach,

ii) the algorithm does not require to solve a HJB equation

and does not require knowledge of the parameters of the real

system, iii) the final control policy applied to the real system

is unbiased to the simulation constraints.

This paper is organized as follows. Section II introduces

the optimal control problem of nonlinear systems, followed

by an alternative notation of nonlinear systems based on

state-dependent coefficient matrices. Section III discusses the

proposed HBL for experience inference and defines the main

elements of each learning system. Section IV exhibits the sim-

ulation studies using a 2-degree of freedom robot with/without

gravitational torques vector to verify the effectiveness of the

approach. Section V concludes the paper.

Throughout this paper, N, R, R+, Z+, Rn, Rn×m denote

the spaces of natural numbers, real numbers, positive real

numbers, positive integers, real n-vectors, and real n × m-

matrices, respectively; ‖·‖ denotes the Euclidean norm, where

x ∈ R
n, A ∈ R

n×n and n,m ∈ N.

II. OPTIMAL CONTROL OF NONLINEAR SYSTEMS

The following nonlinear system is considered [21]

ẋ = f(x, v), x(0) = x0, (1)

where x ∈ R
n denotes the state vector, v ∈ R

m is the control

input, and the mapping f(x, v) : Rn ×R
m → R

n denotes the

unknown nonlinear dynamics. Suppose that f is differentiable

at x = 0 and f(0, 0) = 0 for all t. Furthermore, without loss

of generality it is assumed that f is Lipschitz.

It is always possible to make (1) linear in the control

by increasing the dimensionality of the state-space by the

dimension of the control v [24]. Thus, if we set v̇ = u where

u ∈ R
n, then the dynamics (1) can be written as

Ẋ = f1(X) + g1(X)u, X(0) = X0, (2)

where X = [x⊤, v⊤]⊤ ∈ R
n+m is the new coordinates,

f1(X) : Rn+m → R
n+m, and g1(X) : Rn+m → R

(n+m)×m

are the nonlinear dynamics associated to the new coordinates

X . In the sequel of the paper it is assumed nonlinear systems

of the form (2) which satisfies the following nonlinear model

and dimensions [54]

ẋ = f(x) + g(x)u, x(0) = x0, (3)

where x ∈ R
n, u ∈ R

m, and f(x) : Rn → R
n, g(x) : Rn →

R
n×m.

A. Optimal Control Design

The following value function/cost index is used for the

design of the optimal control of the nonlinear system [33]

V (x) =

∫ ∞

t

(x⊤S1x+ u⊤R1u)dτ, (4)

where S1 ∈ R
n×n and R1 ∈ R

m×m are positive semi-

definite and positive definite weight matrices, respectively. The

infinitesimal version of (4) is the so-called nonlinear Lyapunov

equation [54] which can be also defined by the Hamiltonian

of the system

H(x, u,∇V ) = ∇⊤V (f(x) + g(x)u)
+x⊤S1x+ u⊤R1u = 0.

(5)

where ∇V = ∂V
∂x

. The optimal value function V ∗(x) defined

by

V ∗(x) = min
u

(∫ ∞

t

(x⊤S1x+ u⊤Ru)dτ

)
,



satisfies the HJB equation

0 = min
u

[H(x, u,∇V ∗].

Assuming that the optimal control exists, then the optimal

control policy is computed by taking the stationary condition
∂H
∂u

= 0 which yields

u∗ = −
1

2
R−1

1 g⊤(x)∇V ∗. (6)

Substituting the control policy (6) in the Hamiltonian (5) gives

the following Hamilton-Jacobi-Bellman (HJB) equation [54]

∇⊤V f(x) +x⊤S1x−
1

4
∇⊤V g(x)R−1

1 g⊤(x)∇V = 0.

(7)

The HJB equation (7) is hard to solve even intractable despite

the nonlinear dynamics f(x) and g(x) are known in advance

[54]. To overcome the above issue, this paper proposes a HBL

algorithm for experience inference [41] as a local solution

of the optimal control problem of nonlinear systems. Before

developing the proposed HBL approach we need to introduce

an alternative notation for the nonlinear dynamics (3).

B. From Nonlinear to Linear time-Variant Systems

The nonlinear dynamics (3) can be written as a linear time-

variant (LTV) system [25] with state disturbances of the form

ẋ = A1(x)x+B1(x)u+A2(x), x(0) = x0, (8)

for non-unique state dependent coefficient (SDC) matrices

A1(x) : R
n → R

n×n, A2(x) : R
n → R

n, and B1(x) : R
n →

R
n×m [55]. Assume that the pair (A1(x), B1(x)) is control-

lable for any state vector x, that is, C[A1(x), B1(x)] = n ∀x,

where C[·] denotes the controllability matrix.

The LTV system with state disturbance (8) can be written as

a standard LTV system by incorporating a new stable dynamics

of the form

ẏ = −αy, y(0) = y0 6= 0, (9)

for some 0 < α ≪ 1 and y ∈ R. Define the new state vector

as z = [x⊤ y]⊤ ∈ R
n+1, then the new LTV dynamics is

[
ẋ
ẏ

]
=

[
A1(x)

1
y
A2(x)

01×n −α

] [
x
y

]
+

[
B1(x)
01×m

]
u

ż = A(z)z +B(z)u, z(0) = z0 = [x⊤
0 , y0]

⊤,

(10)

where A(z) : Rn+1 → R
(n+1)×(n+1) and B(z) : Rn+1 →

R
(n+1)×m.

Remark 1: The term 1
y

serves to linearly parameterize A1(x)
and A2(x) in terms of the new coordinates z. The new state

y converges exponentially to zero with decay factor α, that is,

y(t) = e−αty0. Hence, a small decay factor α must be used

to avoid an unbounded matrix A(z).
Remark 2: The pair (A(z), B(z)) is not controllable, that

is, C[A(z), B(z)] = n because the new dynamics (9) is not

controllable. However, it is still possible to stabilize the states

of (8) using any feedback control policy based on the new

state vector z.

Remark 3: A small final value yf 6= 0 can be added to (9)

such that the trajectories of y never converges to zero, that is,

the following constraint can be added y(t) = max(e−αty0, yf )

and hence, the matrix A(z) never diverges. Optionally, the

state y can be fixed to a small value such that the effect of

matrix A2(x) is not attenuated. In a worst-case uncertainty

scenario [39], a small value of y allows the control algorithm

to stabilize a set of nonlinear systems with disturbances of

radius µ = ‖A2(x)/y‖.

The cost index (4) for the optimal control is rewritten for

the LTV system (10) as

V (z) =

∫ ∞

t

(z⊤Sz + u⊤Ru)dτ, (11)

where S ∈ R
(n+1)×(n+1) and R ∈ R

m×m are positive semi-

definite and positive definite matrices. Notice that

S =

[
S1 0n×1

01×n Sy

]
∈ R

(n+1)×(n+1),

where Sy ≥ 0 ∈ R. The value functions (11) and (4) are

equivalent when Sy = 0. If Sy 6= 0, is easy to verify that

lim
t→∞

V (zr) = lim
t→∞

V (xr)

since limt→∞ y(t) = 0. If the final condition yf is used then

lim
t→∞

V (zr) = lim
t→∞

V (xr) + ε

where limt→∞ y⊤Syy = y⊤f Syyf = ε > 0 is a small term

added by the new dynamics which is practically neglected for

small yf and Sy . It is shown in [8] that the optimal value

function is quadratic in terms of the state vector [56], [57] so

that

V (z) = z⊤P (z)z,

for some positive definite kernel matrix P (z) = P⊤(z) >
0 ∈ R

(n+1)×(n+1) which its solution of the following matrix

differential Ricatti equation (MDRE) [57],

−Ṗ (z) = A⊤(z)P (z) + P (z)A(z) + S
−P (z)B(z)R−1B⊤(z)P (z).

(12)

Remark 4: Previous studies [58], [59] use the extended

linearization control technique [60] such that matrices A(z)
and B(z) are treated as constant matrices in any time instance

t and hence, P (z) will be also constant and can be computed

using the ARE. In this work, we will use the MDRE instead

of the ARE and the extended linearization technique.

Notice that the MDRE (12) is numerically easier than the

HJB equation (6) and hence, it is possible to find a local

solution of the optimal control problem. The optimal control

policy that minimizes (11) is given by

u∗ = −R−1B⊤(z)P (z)z. (13)

The main drawback of this approach is that it requires

knowledge of the parameters and a dynamic model of the

nonlinear system [61]. This strong assumption in most real

cases is not satisfied because we only have access to parameter

estimates and an approximate model structure of the real-

world nonlinear system dynamics [62]. Therefore, the optimal

control policy of each sequence is biased and cannot guarantee

an optimal performance of the closed-loop trajectories of the

real-world nonlinear system.

In the next section, the proposed HBL is developed to

guarantee unbiased control policies and optimal performance

of the trajectories of the real-world nonlinear system.



III. HBL FOR EXPERIENCE INFERENCE

In contrast to classical optimal control architectures, this

approach is inspired in the inference property that exhibits

humans to develop similar tasks [42]. That is, humans are

capable to infer previous knowledge to new activities and adapt

its knowledge to achieve a similar or equivalent performance

in the new task. For example, if a human knows how to drive a

car then the human is also capable to drive a truck. Hence, the

main contribution of this paper is to develop an experience in-

ference HBL algorithm that is able to achieve online unbiased

control policies and guarantee optimal performances of the

closed-loop trajectories of the unknown real-world nonlinear

system.

Fig. 1 shows the proposed HBL approach for experience

inference. The scheme is based on two main learning systems:

the hippocampus and the neocortex/striatum learning systems.

The hippocampus is modelled as a desired reference model

that represents previous experience in how the nonlinear sys-

tem should behave. The neocortex/striatum learning systems

compute a new control policy based on the states of the real

nonlinear system and the hippocampus policy, such that the

closed-loop system trajectories behave as the hippocampus

reference model.

Human-Behavior Learning

Neocortex

ADP 

algorithm

Striatum 

Control Policy

Unknown 

Nonlinear 

System

Hippocampus

Nonlinear 

Model 

Reference

PE

Signal

Fig. 1. HBL Experience Inference Algorithm. The hippocampus reference
model can be trained either offline or online and defines a desired performance
that we want to infer to the real-world nonlinear system. The control policy
of the hippocampus is inferred by means of a striatum/neocortex algorithm
which relates online data and experience in an adaptive fashion such that the
closed-loop trajectories of the real-world non linear system behaves as the
hippocampus reference model.

A. Hippocampus learning System

The hippocampus models experience, memory, and previous

knowledge which permits to infer a desired performance [63].

This desired performance is given by a known reference model

constructed from the estimates and the model structure of the

unknown nonlinear system dynamics. The reference model is

given by the next LTV system with state disturbance

ẋr = A1
r(xr)xr +B1

r (xr)ur +A2
r(xr), (14)

where A1
r(xr) ∈ R

n×n, A2
r(xr) ∈ R

n, and B1
r (xr) ∈ R

n×m

are known SDC matrices, xr ∈ R
n and ur ∈ R

m denote the

state and control input of the reference model. System (14)

can be written as in (10) as
[
ẋr

ẏ

]
=

[
A1

r(xr)
1
y
A2

r(xr)

01×n −α

] [
xr

y

]
+

[
B1

r (xr)
01×m

]
ur,

żr = Ar(zr)zr +Br(zr)ur, zr(0) = z0,
(15)

where zr = [x⊤
r , y]

⊤ ∈ R
n+1, Ar(zr) : R

n × R →
R

(n+1)×(n+1) and Br(zr) : Rn × R → R
(n+1)×m. The key

idea of the approach is to obtain an unbiased and independent

optimal control policy for the hippocampus reference model

(14) using any ADP or RL technique such that it gives a notion

in how the real system must behave. The neocortex/striatum

learning systems are responsible to infer the hippocampus

experience and adapt the final control policy.

In addition, the hippocampus acquires information by ex-

ploring all the possible combinations between states and

actions. This can be modeled as the fulfillment of a persistency

of excitation (PE) condition (refer to [35]).

In this paper, the MDRE (12) is used to compute the kernel

matrix P (zr) associated to the hippocampus reference model

(15) and hence, the hippocampus control policy is computed

by (13).

B. Neocortex/Striatum Learning System

Recall that the neocortex and the striatum learning systems

are co-dependent systems (also the hippocampus) which are

responsible for learning and decision making. In this approach,

the neocortex and the striatum are executed simultaneously to

achieve the same hippocampus performance in an adaptive

fashion.

1) Hippocampus-Neocortex Co-dependence: First, we need

to establish a co-dependence of the hippocampus and the

neocortex. Whilst the hippocampus gives a model structure

and parameter estimates as previous knowledge, the neocortex

facilitates the tools to learn and compute the hippocampus

control policy. In other words, the neocortex solves the nonlin-

ear optimal control problem using the hippocampus reference

model. Similarly to (11), the value function written in terms

of the reference model is

V (zr) =

∫ ∞

t

(z⊤r Szr + u⊤

r Rur)dτ, (16)

for some positive semi-definite and definite matrices S and R
of appropriate dimension. The hippocampus optimal control

policy that minimizes (16) is

u∗
r = −K(zr)zr

= −R−1(t)B⊤(zr)P (zr)zr,
(17)

for some stabilizing gain K(zr) ∈ R
m×n and P (zr) ∈

R
(n+1)×(n+1) is a positive definite kernel matrix which its

solution of the next MDRE

−Ṗ (zr) = A⊤
r (zr)P (zr) + P (zr)Ar(zr) + S

−P (zr)B
⊤
r (zr)R

−1B⊤
r (zr)P (zr).

(18)

In contrast to linear time-invariant (LTI) systems [5], the

control gain K(zr) is adaptive due to the nature of the MDRE

(18) and the non-linearity of the reference model.



The following theorem establishes the exponential conver-

gence of the hippocampus reference model trajectories under

the extended coordinates zr and optimal control policy (17).

Theorem 1: Consider the closed-loop system between the

hippocampus reference model (15) and the optimal control

(17). If the reference model (15) is Lipschitz then, the trajec-

tories of reference model converges exponentially to zero as

t → ∞.

Proof: Consider the following Lyapunov function

V1 = z⊤r P (zr)zr, (19)

The time-derivative of (19) along the trajectories of (15) and

the optimal control policy (17) is

V̇1 =2z⊤r P (zr)(Ar(zr)−Br(zr)R
−1B⊤

r (zr)P (zr))zr

+ z⊤r Ṗ (zr)zr

=− z⊤r (S + P (zr)Br(zr)R
−1B⊤

r (zr)P (zr))zr,

=− z⊤r Ω(zr)zr ≤ −λmin(Ω(zr)P
−1(zr))V1

=− λmin(Ψ(zr))V1, (20)

where Ω(zr) = S + P (zr)Br(zr)R
−1B⊤

r (zr)P (zr) and

Ψ(zr) = Ω(zr)P
−1(zr). The solution of (20) is

V1(t) = e−
∫

t

0
λmin(Ψ(zr(τ)))dτV1(0).

So,

λmin(P (zr))‖zr‖
2 ≤ z⊤r P (zr)zr = V (t)

≤ e−
∫

t

0
λmin(Ψ(zr(τ)))dτV1(0)

= e−
∫

t

0
λmin(Ψ(zr(τ)))dτz⊤r P (zr)zr

≤ λmax(P (zr))e
−

∫
t

0
λmin(Ψ(zr(τ)))dτ‖zr(0)‖

2

Hence, the states of (15) converges exponentially to zero by

a rate of 1
2

∫ t

0
λmin(Ψ(zr(τ)))dτ and satisfies

‖zr(t)‖ ≤

√
λmax(P (zr))

λmin(P (zr))
e−

1

2

∫
t

0
λmin(Ψ(zr(τ)))dτ‖zr(0)‖.

(21)

It is important to mention that the new dynamics y con-

verges exponentially to zero but is not controllable. This causes

that matrix A(zr) to not meet the Lipschitz condition. To see

this fact more clearly let write the kernel matrix P (zr) as

P (zr) =

[
Pxx Pxy

P⊤
xy Pyy

]
∈ R

(n+1)×(n+1),

where Pxx ∈ R
n×n is the kernel matrix associated to (4),

Pxy ∈ R
n are the cross-terms between the states xr and y,

Pyy ∈ R is the kernel element associated to the stable state

y. If Ar(zr) is not Lipschitz then the term Pyy will diverge

because limy→0 1/y = ∞. On the other hand, if Ar(zr) is

Lipschitz then Pxy remain bounded. Theoretically, the term

Pyy is not used in the design of the optimal control policy

such that (15) can be stabilized. However, it is important to

ensure boundedness of Ar(zr) to avoid any numerical issue.

Remark 3 is used to maintain boundedness of both matrix

A(zr) and thus P (zr). This completes the proof.

In view of the above, the closed-loop system between the

reference model (15) and the optimal control policy (17) can

be written as

żr = (Ar(zr)−Br(zr)K(zr))zr = Ac(zr)zr. (22)

where Ac(zr) = Ar(zr) − Br(zr)K(zr). The above closed-

loop system is stable and exhibits an adaptive optimal perfor-

mance.

2) Experience Inference: First of all, we need to consider

the extended dynamics (10) of the real-world nonlinear system

to have equivalent dimensions. Assume full dynamic knowl-

edge, then it is possible to find the striatum control policy

u∗ = −Lz for some stabilizing gain L ∈ R
m×(n+1) such that

the nonlinear system behaves as the hippocampus reference

model. For this, define the estimation error e ∈ R
n+1 as

e = z − zr. (23)

The closed-loop error dynamics between (10) and (22) gives

ė = A(z)z +B(z)u−Ac(zr)zr

= (A(z)−B(z)L)z −Ac(zr)zr

= As(z)z −Ac(zr)zr, (24)

where As(z) = A(z) − B(z)L. Since (10) satisfies the Lips-

chitz condition, then the following inequalities are satisfied

‖As(z)−As(zr)‖ ≤ k1‖z − zr‖,

‖Ac(z)−Ac(zr)‖ ≤ k2‖z − zr‖,

for some k1, k2,∈ [0, 1). Then, by defining k3 = max{k1, k2}
it follows that

‖(As +Ac)(z)− (As +Ac)(zr)‖

= ‖As(z)−Ac(z) +As(zr)−Ac(zr)‖

≤ ‖As(z)−As(zr)‖+ ‖Ac(z)−Ac(zr)‖

≤ k1‖z − zr‖+ k2‖z − zr‖ ≤ 2k3‖e‖

Therefore, is easy to verify that

‖As(z)−Ac(zr)‖ ≤ k3‖e‖.

However, the nonlinear dynamics is unknown. Therefore,

the striatum policy is modified by an estimate control policy

of the form

u = −L̂z, (25)

where L̂ ∈ R
m×(n+1) is an estimate of the optimal control

gain L. Then, the closed-loop error dynamics between (10)

and (22) under the control policy (25) is

ė = A(z)z −B(z)L̂z −Ac(zr)zr

= As(z)z −Ac(zr)zr −B(z)L̃z, (26)

where L̃ = L̂− L ∈ R
m×(n+1) is the gain error.

Remark 5: The SDC matrix B(z) can be written in terms

of the known SDC matrix Br(z) as B(z) = Br(z)Λ for some

unknown positive definite matrix Λ ∈ R
m×m. Notice that

matrix Br is valued in the nonlinear states z instead of the

reference states zr.



Then, the closed-loop error dynamics (26) is rewritten as

ė = Ac(zr)e+ (As(z)−Ac(zr))z −Br(z)ΛL̃z. (27)

The following theorem establishes the stability and conver-

gence of the experience inference algorithm.

Theorem 2: Consider the closed-loop error dynamics (27).

If the control gain L̂ is updated as

˙̃
L =

˙̂
L = ΓB⊤

r (z)P(zr)ez
⊤, (28)

where Γ ∈ R
m×m is a positive definite matrix gain and

P(zr) ∈ R
(n+1)×(n+1) is the solution of the Lyapunov

differential equation

−Ṗ(zr) = A⊤

c (zr)P(t) + P(zr)Ac(zr) +Q, (29)

for some positive definite matrix Q ∈ R
(n+1)×(n+1) that

satisfies

λmin(Q) ≥ 2k3λmax(P(zr))‖z‖+ ρ, (30)

where ρ > 0. Then L̃ remains bounded and e converges to

zero which implies that z → zr.

Proof: Consider the following Lyapunov function candi-

date

V2 = e⊤P(zr)e+ tr{L̃⊤ΛΓ−1L̃}. (31)

The time-derivative of (31) along the trajectories of (27)

under the update rule (28) and condition (30) gives

V̇2 =2e⊤P(zr)(Ac(zr)e+ (As(z)−Ac(zr))z

−Br(z)ΛL̃z) + e⊤Ṗ(zr)e+ 2tr{L̃⊤ΛΓ−1 ˙̃L}

=− e⊤Qe+ 2e⊤P(zr)(As(z)−Ac(zr))z

≤− λmin(Q)‖e‖2 + 2k3λmax(P(zr))‖z‖‖e‖
2

=− (λmin(Q)− 2k3λmax(P(zr))‖z‖) ‖e‖
2

≤− ρ‖e‖2. (32)

From (32), it is clear that e is an L∞ function and

V2(0) ≥ V2. On the other hand, boundedness of e implies

boundedness of z and zr. Batbalat’s lemma [64] is applied to

prove convergence of e to zero. Integrating (32) gives

V2(t)− V2(0) ≤ −

∫ t

0

ρ‖e‖2dτ.

The next inequality follows from the last result
∫ t

0

‖e‖2dτ ≤
V2(0)

ρ
< ∞. (33)

From (33), it follows that e is an L2 function. Boundedness

of the error gain L̃, z, and zr in (32), and the Lipschitz

condition in Ac(zr) and As(z), allow concluding that ė is an

L∞ function. Applying Barbalat’s lemma permits concluding

that e converges to zero and hence z → zr. This completes

the proof.

Remark 6: Notice that the experience inference algorithm

has a model reference adaptive control (MRAC) structure [58].

However, there are some key points that differentiate them. For

instance,

• MRAC uses a stable reference model to guarantee the

desired reference tracking [59].

• In most cases, the reference model is not controlled,

that is, is an open-loop system with stable dynamics and

bounded desired reference trajectory.

• Typically the reference model does not provide informa-

tion of the physics of the real system.

• Indirect MRAC requires to compute estimates of the

dynamics of the system.

• Direct MRAC usually computes two different gain ma-

trices to guarantee that the real system behaves as the

reference model.

• Nonlinear MRAC assumes knowledge of the nonlinear

functions of the real system to perform a feedback

linearization controller.

On the other hand,

• The reference model of the HBL is stabilizable by the

control input ur and hence, the open-loop model is not

necessarily stable.

• The reference model is controlled by a RL/ADP algo-

rithm to obtain an optimal performance which will be

inferred to the real system.

• The reference model is constructed by a model of the real

system and hence, informs the physics of the real system.

• Does not require knowledge of the real system dynamics

and parameters. Instead, it uses the reference model

dynamics.

• The HBL computes only one control gain to force the

states of the real system to behave as the states of the

reference model.

• Feedback linearization cannot be applied since the dy-

namics of the real system and the reference model are

different.

IV. SIMULATION STUDIES

To verify the proposed approach, a 2-DOF planar robot [65]

was considered with and without gravity torques vector. Here

I2 denote a 2×2 identity matrix and 02 denote a 2×2 matrix

with zeros. The simulations were made in Matlab/Simulink

2021a with a sampling time of 1ms.

A. Without Gravity torques vector

The dynamic model of a horizontal 2-DOF planar robot

without gravitational torques vector is

M(q)q̈ + C(q, q̇)q̇ = τ,

where M(q) ∈ R
2×2 denotes the symmetric and positive

definite inertia matrix, C(q, q̇) ∈ R
2×2 denotes the Coriolis

and centripetal forces matrix, τ = [τ1, τ2]
⊤ ∈ R

2 is the driven

torque vector, and q, q̇, q̈ ∈ R
2 are the joint position, velocity,

and acceleration vectors where q = [q1, q2]
⊤. Define the state

vector x = [q⊤, q̇⊤]⊤ ∈ R
4, where x1 = q1, x2 = q2, x3 = q̇1,

and x4 = q̇2. Then, the robot dynamics can be written as in

(3) as

ẋ =




x3

x4

−M−1(q)C(q, q̇)q̇


+

[
02

M−1(q)

]
u,



where u = τ . The above nonlinear system can be written in

its LTV form (8) as follows

ẋ =








0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0


+

[
02 02
02 −M−1(q)C(q, q̇)

]




x

+

[
02

M−1(q)

]
u = A1(x)x+B1(x)u.

The hippocampus reference model is constructed from the

Euler-Lagrange formulation, that is, the reference model is

given by

Mr(qr)q̈r + Cr(qr, q̇r)q̇r = ur,

where Mr(qr), Cr(qr, q̇r) ∈ R
2×2 denote the inertia and Cori-

olis matrix, respectively; qr, q̇r, q̈r denote the joint position,

velocity, and acceleration vectors of the reference model, and

ur ∈ R
2 is the control input. Here qr = [qr1, q

r
2]

⊤ and the

inertia and Coriolis matrices satisfy

Mr(qr) =

[
M11 M12

M12 M22

]
,

Cr(qr, q̇r) =

[
−C1q̇

r
2 −C1(q̇

r
1 + q̇r2)

−C1q̇
r
1 0

]
,

M11 = m1l
2
c1

+m2(l
2
1 + l2c2 + 2l1lc2 cos(q

r
2)) + I1 + I2,

M12 = m2l1lc2 cos(q
r
2) +m2l

2
c2

+ I2,

M22 = m2l
2
c2

+ I2

C1 = m2l1lc2 sin(q
r
2).
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(a) States tracking xr

(b) Kernel matrix P (xr) elements

Fig. 2. Hippocampus-Neocortex results

Notice that the matrices M and C of the real robot are

different to the structure of Mr and Cr of the reference model

in terms of both the nonlinear terms and their parameters.

Then, the hippocampus reference model written as a LTV

system is

ẋr =








0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0


+

[
02 02
02 −M−1

r (qr)Cr(qr, q̇r)

]




xr

+

[
02

M−1
r (qr)

]
ur = Ar

1(xr)xr +Br
1(xr)ur,

where xr = [q⊤r , q̇
⊤
r ]

⊤ ∈ R
4. Assume that the real-world

nonlinear system has the same dynamic structure, however the

parameters of the hippocampus reference model and the real

parameters of the robot were completely different. The param-

eters of the reference model and the robot are given in Table

I. Both the hippocampus reference model are initialized in the

TABLE I
PARAMETERS OF THE 2-DOF ROBOT

Parameter Reference model Real system

m1 (kg) 1 2
m2 (kg) 1 1.4
l1 (m) 0.5 0.8
l2 (m) 0.5 0.8
lc1 (m) 0.25 0.4
lc2 (m) 0.25 0.4

I1 (kgm2) 0.08 0.5

I2 (kgm2) 0.08 0.1

same initial conditions, that is, q(0) = qr(0) = [π2 ,
π
3 , 0, 0]

⊤.

Several weight matrices are tested for the design of the

optimal control policy (13). The best weight matrices are set

to S = diag{100, 100, 10, 10} and R = I2. The hippocampus

results are exhibited in Fig. 2.

The results show a relative fast convergence to zero of

the states xr (see Fig. 2(a)) and convergence to the optimal

kernel matrix P (xr) (see Fig. 2(b)). This desired performance

is inferred to the nonlinear system via the necortex/striatum

learning systems.

For the neocortex/striatum learning systems the weight

matrix of the Lyapunov differential equation (32) is set to

Q = diag{100, 100, 10, 10} and the best gain of the update

rule (28) is set to Γ = 4000I2. Fig. 3 shows the experience

inference results.

The above results show that the real-world nonlinear system

exhibit a similar performance to that shown by the reference

model, that is, the hippocampus teaches the neocortex how to

behave and achieve the control objective (see Fig. 3(a) and

Fig. 3(b)). The matrices Γ, Q, and P(t) have an important

role to infer the hippocampus experience because they give

an adequate direction to update the gradient of (28). Fig. 3(c)

and Fig. 3(d) show the convergence of the kernel matrix P(t)
and the estimates of the control gain L̂ under the proposed Q
matrix.

Notice that the real-world nonlinear system exhibits a near

optimal performance similarly to the hippocampus reference

model. However, the closed-loop system matrices Ar
c(xr) =

Ar
1(xr) − Br

1(xr)R
−1Br⊤

1 (xr)P (xr) and As
c(x) = A1(x) −

B1(x)L̂ are different. The numerical results for matrices
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Ar
c(x

d
r) and As

c(x
d) in the desired stabilization point xd

r =
xd = [0, 0, 0, 0]⊤ are

Ar
c(x

d
r) =




0 0 1 0
0 0 0 1

−35.35 66.37 −13.64 21.22
66.37 −194.8 21.22 −64.6


 ,

As
c(x

d) =




0 0 1 0
0 0 0 1

−3.182 1.223 −4.904 1.322
2.001 −8.587 1.877 −9.734


 .

Their respective eigenvalues are λ(Ar
c)={17.055, -2.9595,-

6.163±3.343j} and λ(As
c)={2.3179,-0.681,-1.9141,-8.2339}.

Here we have an unstable eigenvalue because the robot is

at a singularity point. Furthermore, notice that the second

term in Ar
r is quadratic in the input dynamics Br(xr). On

the other hand, the second term in As
c is linear in the input

dynamics B(x). Matrices Ar
r and As

c are different because

the neocortex/striatum control policy is not constrained as in

the hippocampus case, then the control gain increases in a

near optimal way such that it is obtained an almost equivalent

hippocampus performance. This fact can be viewed in Fig. 4.
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Fig. 5. Hippocampus-Neocortex results
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Fig. 6. Experience inference results

B. With Gravity torques vector

To further illustrate the approach in a more general way

consider the following vertical 2-DOF planar robot dynamics

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ,

where G(q) ∈ R
2 stands to the gravitational torques vector.

This robot dynamics can be rewritten as in (3) as

ẋ =




x3

x4

−M−1(q) [C(q, q̇)q̇ +G(q)]


+

[
02

M−1(q)

]
u.

The above non-linear dynamics written in its LTV with state

disturbance (8) as

ẋ =








0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0


−

[
02 02
02 M−1(q)C(q, q̇)

]




x

+

[
02×1

−M−1(q)G(q)

]
+

[
02

M−1(q)

]
u.

By incorporating the new stable dynamics ẏ = −αy and

defining the extended coordinates z = [x⊤y]⊤ ∈ R
5, then

it is possible to write the LTV system with state disturbance

as the following system

ż =




−




02 02 0

02 M−1(q)C(q, q̇) M−1(q)G(q)
y

01×2 01×2 0




+




0 0 1 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 −α








z +




02
M−1(q)
01×2


u

=A(z)z +B(z)u.

The hippocampus reference model is given by

Mr(qr)q̈r + Cr(qr, q̇r)q̇r +Gr(qr) = ur,

where Gr(qr) ∈ R
2 denotes the gravitational torques vector

of the reference model and is written as

Gr(qr) =
[
Gr

1 Gr
2

]⊤
,

Gr
1 =m1glc1 cos(q

r
1)

+m2g (l1 cos(q
r
1) + lc2 cos(q

r
1 + qr2)) ,

Gr
2 =m2glc2 cos(q

r
1 + qr2).

The hippocampus reference model written as a LTV system

has the following structure



żr =




−




02 02 0

02 M−1
r (qr)Cr(qr, q̇r)

M−1

r
(qr)Gr(qr)

y

01×2 01×2 0




+




0 0 1 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 −α








zr +




02
M−1

r (qr)
01×2


ur

=Ar(zr)zr +Br(zr)ur,

where zr = [x⊤
r , y]

⊤ ∈ R
5. The same parameters of Table I

are used for this simulation case. The decay rate of the new

stable dynamics is set to α = 1 × 10−4 such that it decays

slowly to a fixed value yf = 0.05 as it is stated in Remark 3.

The same initial conditions are used with an additional value

of y(0) = 0.1 for the new coordinate. The weights for the

ADP algorithm are set to S = diag{1000, 1000, 500, 500, 1}
and R = I2. The hippocampus results are shown in Fig. 5.

Notice that the last term of the kernel matrix P (zr), that is,

P55 is not shown (see Fig. 5(b)) since the extended coordinates

y is not controllable and hence P55 tends to increase infinitely.

The term yf is used to avoid this issue, however large learning

time is required due to the small decay rate α. With the

proposed weight matrices it is achieved a smooth and optimal

performance of the hippocampus closed-loop trajectories.

For the experience inference algorithm, the best ma-

trix for the Lyapunov differential equation is Q =
diag{1000, 1000, 700, 200, 1} and the gain matrix for the

update rule (28) is set to Γ = 3500I2. Fig. 6 shows the results

of the proposed experience inference algorithm.

For this study, the gravitational torques of the real system

are bigger than the reference model. This implies that the

neocortex/striatum control policy to be bigger than the hip-

pocampus control policy in order to compensate the gravita-

tional terms. Furthermore, since the neocortex/striatum control

policy is unconstrained then the control gain estimate L̂ can

be as large as possible (is not an optimal gain) such that the

estimation error decreases and converges to zero. Fig. 7 shows

the comparison of the control policies.

C. Comparisons

A synchronous reinforcement learning algorithm proposed

in [54] is used for comparison purposes to show the biased

control policies issue. Any RL/ADP algorithm can be used

for this study which may exhibit similar results. The robot

model without/with gravitational torques are considered in this

section.

Whilst the proposed inference algorithm relates the hip-

pocampus with the neocortex/striatum learning systems, this

comparison can be regarded as independent learning systems

where the hippocampus is the synchronous RL algorithm and

the neocortex/striatum is given by the hippocampus control

policy evaluated in the real nonlinear system’s states.

The RL algorithm is trained with the reference model

parameters to obtain the control policy that stabilizes the
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Fig. 7. Control policies comparisons

system. Subsequently, the control policy is tested in the real

system using the real parameters of Table I. The results are

given in Fig. 8.

The synchronous RL algorithm is able to stabilize the robot

states trajectories without overshoots and smooth responses.

However, when the final control policy is applied to the real

system, the states trajectories do not behave as the trained

model. Moreover, Fig. 8(c) exhibits steady state errors which

means that the control policy obtained from the RL algorithm

is not good enough to achieve the stabilization task effectively.

The term of biased control policies takes importance in this

scenario since the RL algorithm is trained under a certain

model of the real system, then the output control policy is

biased to that model and not necessarily exhibits a good

performance in the real system.

In contrast, the proposed inference algorithm is able to infer

the desired performance to the real system by adjusting the

learned control policy via the striatum learning algorithm (see

Fig. 3 and Fig. 6).

To further exhibit the migration problem, we change the

parameters of the reference model twice the original real value

of Table I, i.e., m1 = 4, m2 = 2.8, l1 = l2 = 1.6, I1 = 1
and I2 = 0.2 as it is proposed in [39]. Here the authors argue

that if the RL is trained under a standard H2 controller, then

the control policy will not be robust against disturbances or

its optimal performance will be affected. This fact effectively

demonstrates the migration problem under hidden disturbances

and modelling error. To deal with the migration problem,

the unrestricted optimization problem of the RL algorithm is

modified to an optimization problem with constraints, where

the constraints are given by a known upper bound of the
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Fig. 8. Reinforcement Learning Inference Results

modelling error which is unknown in real applications.

Two cases are considered in this study: Case 1 the stan-

dard synchronous RL algorithm, and Case 2 a worst-case

synchronous RL algorithm with known minimal upper-bound

ω̄, i.e., 0 < ω ≤ ω̄ < ∞. The trained control policy of

the RL algorithms are migrated to the real system to show

its robustness and safety control under different scenarios.

In addition, we build a new reference model using the new

parameters to test the proposed HBL algorithm. For the RL

methods we use the standard notation of f(x) and g(x) instead

of the SDC matrices of the LTV formulation.

The results are shown in Fig. 9. We can observe that the

states trajectories of the robot (with/without gravity term)

have smooth and different optimal performances (see Fig.

9(a) and Fig. 9(c)) due to the incorporation of the worst-

case uncertainty constraint. Without gravity component, the

migration problem is quite accurate for both cases with better

transient performances because the real system’s parameters

are less than the parameters of the trained model. However,

the migration problem appears in Case 1 in presence of the

gravity term. In this scenario, the trained policy adds a small

bias term due to a temporal difference error caused by the

modelling error (see Fig. 9(c)). Case 2 overcomes this bias

term by changing the unrestricted optimization problem to

and optimization problem with constraints. Nevertheless, this

approach is sensitive to the upper bound ω̄, that is, whilst

large ω̄ gives large control policies which can destabilize the

closed-loop trajectories, small ω̄ causes large bias terms and

poor robustness properties. Furthermore, the upper bound ω̄
is unknown in a real migration problem. On the other hand,

the proposed HBL overcomes this issue elegantly by adapting

the RL control policy to the real-world system by means of

the proposed experience inference algorithm (see Fig. 9(e) and

Fig. 9(g)). The results show that the real-world system behaves

as the reference model with high accuracy without any prior

knowledge of the disturbance’s upper bound.

V. CONCLUSIONS

In this paper an experience inference human-behavior learn-

ing algorithm is proposed to solve the migration problem of

optimal controllers applied to real-world nonlinear systems.

The algorithm is inspired in how humans infers previous

experiences to perform new similar tasks using the main com-

plementary learning systems of the brain: the hippocampus,

the neocortex, and the striatum. A reference model is used

to emulate the hippocampus previous knowledge constructed

by parameter estimates and a dynamic model structure. This

model is written as a LTV system that can be handled by

any ADP or RL algorithm. On the other hand, the experience

inference algorithm is used in the real-world nonlinear system

to infer the hippocampus desired performance by means of

a neocortex/striatum control policy and a gradient update

law. Simulations studies show that the proposed algorithm

is capable to infer a desired performance to a real-world

nonlinear system with near optimal results and fast learning

phase.

Further work considers to add constraints in the inference

part to avoid large control gains. Furthermore, experience

inference to completely different systems, in terms of structure

and nonlinear dynamics, is the main concern for our future

work. In addition, data-driven hippocampus model is focus of

future research when a model structure is not available.
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Fig. 9. Comparisons with different reference model under the worst-case RL philosophy
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