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   Dear Editor,

This letter proposes a process-monitoring method based on tempo-
ral feature agglomeration and enhancement, in which a novel feature
extractor called contrastive feature extractor (CFE) extracts the tem-
poral and relational features among process parameters. Then the fea-
ture  representations  are  enhanced  by  maximizing  the  separation
among  different  classes  while  minimizing  the  scatter  within  each
class.

Process monitoring is a popular research area in process industries.
With manufacturing processes becoming complex and intelligent, the
demand  for  the  safety  and  product  quality  is  growing  significantly.
Process monitoring has played a crucial role in maintaining efficient
and safe operating conditions in large-scale industrialized production.
Data-driven  process  monitoring  is  one  of  the  most  fruitful  areas  in
research and widely used in industrial applications over the last two
decades [1] and [2].

Data-driven  process  monitoring  is  usually  implemented  using
machine  learning  methods  and  multivariate  statistical  analyses.  The
key issue of data-based process-monitoring methods is to extract fea-
ture representations from industrial process data based on which the
statistics of the monitoring model can be constructed in feature-repre-
sentation  space.  Various  supervised-learning  methods  have  been
introduced to learn feature representation for building process-moni-
toring models. PCA is the most widely used linear process-monitor-
ing method.  Nonlinear  and robust  methods,  such as  nonlinear  PCA,
the principal curve method, multimodal, manifold learning, and ker-
nel-based methods (KPCA, KPLS, KICA, KFDA, etc.) are proposed
to  address  nonlinearity  and  uncertainty  in  complex  industrial  pro-
cesses  [1].  Some  methods  such  as  manifold  learning  and  graphical
model  are  proposed  to  extract  relational  complicated  features  of
industrial  process  data.  Those  process-monitoring  methods  extract
static  relationships  among  process  variables  without  regard  to  the
temporal information of process variables. Considering that the tem-
poral  variation can indicate  dynamic performance changes,  process-
monitoring  methods  considering  process  temporal  behaviors  are
becoming  focus  issues  in  process-monitoring  researches.  Dynamic
latent  variable  (DLV)  methods  have  been  studied  for  time-series
monitoring  models  by  exploiting  dynamic  relations  among  process
variables.  To  make  full  use  of  label  information,  supervised
approaches  such  as  Bayesian  network  (BN)  and  support  vector
machine  (SVM) are  used  to  coach  the  training  of  feature  extraction

[2]. Recently, deep learning is introduced into process monitoring for
outstanding  performance  in  extracting  robust  features  and  learning
nonlinear feature representations. Deep learning-based process-moni-
toring models show excellent and promising performance.

Process-monitoring  researches  of  industrial  processes  have
obtained  considerable  achievements  in  the  past  few  decades.  How-
ever, it is extremely challenged to create process-monitoring models
with  high  performance  for  large-scale,  time-variant  and  complex
industrial  processes.  Currently,  temporal  and  relational  features  of
the  process  data  contain  important  information  in  time-variant  and
complex industrial production systems.

The  motivation  of  this  letter  is  to  exploit  temporal  and  relational
information from time-variant and complex industrial process data to
create process-monitoring models. Transformer-based feature extrac-
tor is introduced to abstract feature representations from time-variant
process data through temporal and relational information agglomera-
tion. Feature evaluation and feature enhancement are utilized to pro-
duce  robust  and  interpretable  feature  representations  through  maxi-
mizing the  separation among different  classes  while  minimizing the
scatter within each class.

The contributions of the letter are summarized as follows.
1)  This  letter  proposes  a  process-monitoring  framework  based  on

temporal  feature  agglomeration  and  enhancement  for  time-variant
and complex industrial processes.

2) Transformer-based feature extractor abstracts feature representa-
tions  with  long-term  dependencies  and  relational  information  from
time-variant process data.

3)  The  feature  representations  are  enhanced  by  feature  evaluation
and  contrastive  learning  to  improve  the  robustness  and  generaliza-
tion of the process-monitoring model.

4) The experimental results show the prominent performance of the
proposed  method  in  fault  diagnosis  and  fault  detection  on  the  addi-
tional TE process dataset.

Related  work: Some  researches  of  process  monitoring  focus  on
extracting  temporal  and  relational  information  from  industrial  pro-
cess data.

To address the temporal  feature representation and dynamic mod-
elling issues, researchers have developed several extensions of tradi-
tional  principal  component  methods.  Ku et  al.  [3]  proposed  a
dynamic PCA (DPCA) model, which performs classical PCA on aug-
mented  measurements  with  certain  time  lags.  Li et  al.  [4]  improve
PCA by introducing spatiotemporal methods to integrate spatial  and
temporal prior into feature representations. Recurrent neural network
(RNN) is used by Kiakojoori ang Khorasani [5] to represent tempo-
ral information through state inheritance. The aforementioned meth-
ods  attempt  to  derive  serial  correlations  between  current  and  previ-
ous observations employing settling time. However, it is difficult for
those  methods  to  build  temporal  process-monitoring  models  with
long-term dependences.

Robustness  and  interpretability  are  significant  requirements  for
process-monitoring models. Several robust process-monitoring mod-
els  employ some form of  prior  knowledge and expert  knowledge to
generate  relational  feature  representations.  Signed  directed  graph
(SDG) is a knowledge-based fault diagnosis method, which can effi-
ciently  represent  relationships  among  process  variables  and  deter-
mine the fault root cause [6]. Considering that a graphical model has
an  easily  interpreted  physical  meaning,  it  has  been  introduced  into
process  monitoring of  complex industrial  processes.  Several  graphi-
cal  models,  such  as  decision  trees  and  causal  graphical  models  [7]
and  [8],  have  been  applied  in  the  process  monitoring  field.  Deep
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learning-based process monitoring models show well robustness and
generalization [9]. However, those deep learning-based process-mon-
itoring methods lack interpretability.

Method: Aiming for the robustness and interpretability of feature
representation,  the  letter  proposes  a  process-monitoring  framework
based  on  temporal  feature  agglomeration  and  enhancement.  As
shown  in Fig. 1，  the  proposed  framework  mainly  consists  of  four
parts,  which  are  data  preprocessing,  feature  extractor,  feature
enhancement and fault  diagnosis,  respectively.  The data preprocess-
ing  augmentations  such  as  random  masking  and  adding  Gaussian
noise generate  diversified input  data.  The feature extractor  abstracts
and  condenses  feature  representations  with  temporal  and  relational
information.  Then  the  feature  representation  is  enhanced  by  imple-
menting  feature  evaluation  and  contrastive  learning.  Finally,
enhanced features are utilized to build the process monitoring model.

.

The temporal  and  relational  information  among industrial  process
data provides valuable information for industrial process monitoring.
Transformer [10] is employed to extract temporal and relational fea-
tures  of  process  variables  in  process  monitoring.  In  Transformer
encoder,  attention  mechanisms  establish  the  connections  between
timestamps and variables of diversified input data. MLP-based feed-
forward  layers  are  used  to  agglomerate  relational  information  from
the  variable  connections.  Classification  vector  (CLS)  is  used  to
agglomerates  the  timestamp  connections  through  backpropagation.
The  temporal  and  relational  information  agglomeration  provides
interpretable and comprehensive feature representations for process-
monitoring modelling

In  RNN-based  process  monitoring,  the  temporal  and  relational
information is represented by sequential hidden states. However, it is
difficult  for  sequence  hidden  states  to  build  long-term  dependence
because the deviations easily accumulate over time. Instead of build-
ing sequential  dependencies,  attention mechanisms obtain long-term
dependency  by  calculating  connections  between  long-term  nodes.
Multi-head self-attention (MSA) generates robust feature representa-
tions of process data by integrating multiple sets of attention. Atten-
tion and MSA are calculated as follows:
 

Attentioni(Qi,Ki,Vi) = so f t max(QiKT
i /
√

dK)Vi (1)
 

MS A = concat(Attention1,Attention2, . . . ,AttentionT ). (2)
i, 1 ≤ i ≤ T Qi, Ki, ViQi, Ki, Vi

Xi dK

For  head ,  are  different  mappings
of the input  data  and  is  the size of  embedding for normaliza-
tion.

In  industrial  processes,  process  data  in  the  same  operation  mode
share  feature  similarities,  while  process  data  in  the  different  opera-
tion modes have significant differences. Therefore, ideal feature rep-
resentations  for  process  monitoring  should  maximize  the  separation
among  different  classes  and  minimize  the  scatter  within  each  class.

Feature  evaluation  and  contrastive  learning  are  used  to  enhance  the
discrimination and interpretability of features.

Firstly, an evaluation criterion based on similarity is introduced for
feature enhancement. The similarity between features is calculated by
cosine similarity as below:
 

sim(zi,z j) =
∣∣∣zT

i z j
∣∣∣/ ∥zi∥×

∥∥∥z j
∥∥∥ (3)

zi z j
zi z j sim(zi,z j)

where  and  represent two different features of the operation state.
If  and   belong  to  the  same  mode,  should  be  a  large
value. Based on the similarity between features, the evaluation crite-
rion of the feature extractor is calculated as follows:
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X Itrain
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where  represents the input minibatch of the state information ,
 is  the  number  of  the  inputs.  represent  vectors  in  the

inputs,  and  denotes  their  corresponding features  respec-
tively.  is a set of features representing the same operation mode
in the industrial process.

D(x)

Then,  contrastive  learning  is  used  to  maximize  the  separation
among different classes and minimize the scatter within each class to
enhance the discrimination of features. Contrastive learning is widely
used in image classification to distil  information by self-supervision
[11]  and  [12].  The  loss  function  of  contrastive  learning  is  derived
from the evaluation criterion  and specially designed for differ-
ent types of process data.

For  unlabeled  process  data,  the  self-supervised  method  is  utilized
to  generate  robustness  features  and  eliminate  human cognitive  bias.
The  loss  function  of  self-supervised  contrastive  feature  extractor
(Self-CFE) is shown as follows:
 

In f oNCELoss(zi,z′i ) = − log
exp(|zT

i z′i |/∥zi∥× ∥z′i∥τ)∑
j∈X(i) exp(|zT

i z j|/∥zi∥× ∥z j∥τ)
(5)

zi z′i i X(i)
i

τ

where  and   are  features  of  with  different  augmentations. 
includes vectors except  in the training batch as the contrastive infor-
mation.  is the temperature to control the loss function.

For  labelled  process  data,  the  label  information  is  utilized  to
improve feature discrimination. The loss function of supervised con-
trastive feature extractor (Sup-CFE) is shown as (6).
 

S up_In f oNCELoss(zi,z′i )

= − 1
NP(i)

∑
p∈P(i)

log
exp(|zT

i z′i |/∥zi∥× ∥z′i∥τ)∑
j∈X(i) exp(|zT

i z j|/∥zi∥× ∥z j∥τ)
. (6)
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Fig. 1. The process diagram of contrastive feature extracto.
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Self-CFE  and  Sup-CFE  enhance  feature  discrimination  through
exploiting unlabeled and labelled process data.

The complete training process of the contrastive feature extractor is
shown in Algorithm 1.

Algorithm 1 The process monitoring of contrastive feature extractor

Itrain N ItestInput: Training input , Batch size , Test input ;
X ∈ ItrainFor minibatch  do

x ∈ XFor  do
 

zi = Linear(Trans f ormerEncoder(RandAug(x)))
z′i = Linear(Trans f ormerEncoder(RandAug′(x)))

End For
L = 0　

z ∈ (zi,z′i )For all  do
 

zi← z, z′i ← Corresponding vector in Z
 

Loss(zi,z′i ) = In f oNCELoss(zi,z′i ) or S up_In f oNCELoss(zi,z′i )
 

L = L+
1

2N

(
Loss(zi,z′i )+Loss(z′i ,zi)

)
End For

L Trans f ormerEncoder LinearUpdate  for  and 
End For
Features = Trans f ormerEncoder(Itest)
Create→ Statistic T 2, S PE and Classi f ier

End

Experiment: Tennessee  Eastman  (TE)  process  is  a  well-known
process dataset, which has been widely used as a benchmark in pro-
cess  monitoring  and  fault  diagnosis.  We  use  the  Additional  TE
dataset from Harvard which has larger training and testing datasets.

An additional linear classifier is trained to classify faults with fea-
ture  representations.  The  Self-CFE  and  Sup-CFE  are  tested  on  TE
process data.  The main parameters of process monitoring model are
shown in Table 1.

 
Table 1.  Parameters of Contrastive Feature Extractor

Names Sample
length

Process
variables

Random
mask rate

Encoder
number

Head
number

MLP
layer

Value 21 52 0.2 6 4 1

 
 

Diagnosis accuracies (%) of fault 1−20 by different methods on the
additional TE are shown in Table 2. It is clearly seen that CFE-based
methods achieve prominent performance on most of the faults. Sup-
CFE gets the best average accuracy and improves fault classification
results  significantly  on  fault  16.  Self-CFE  also  gets  good  perfor-
mance  on  faults  4,  7,  14  and  20  with  unlabeled  data.  It  should  be
mentioned that DCNN [13] gets well accuracy for faults 3, 9, 10 and
12.

Conclusion: The letter discusses a process-monitoring framework
based  on  temporal  feature  agglomeration  and  enhancement.  Trans-
former is introduced as the feature extractor to extract temporal and
relational information of the variant-time process data. Feature evalu-
ation and contrastive learning are used to enhance the discrimination
of  features.  The  proposed  method  provides  a  promising  monitoring
framework for  large-scale,  time-variant  and complex modern indus-
trial processes.
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Table 2.  Diagnosis Accuracy (%) of Fault 1–20 Based on Different Methods
on Additional TE Dataset

Fault PCA IPCA KPCA MLP DCNN Self-CFE Sup-CFE
IDV(1) 53.65 82.99 82.83 98.74 98.6 99.38 99.83
IDV(2) 78.00 82.17 81.90 98.16 98.5 99.75 99.99
IDV(3) 0.03 0.04 0.10 13.48 91.7 52.9 66.45
IDV(4) 83.34 42.17 9.83 100.00 97.6 100 100
IDV(5) 5.65 9.74 4.13 99.85 91.5 99.52 99.44
IDV(6) 83.50 83.50 83.50 98.91 97.5 92.45 100
IDV(7) 61.33 83.50 82.18 100.00 99.9 100 100
IDV(8) 65.49 79.43 75.88 51.79 92.2 66.61 94.38
IDV(9) 0.04 0.05 0.11 13.85 58.4 37.2 34.17
IDV(10) 15.26 2.90 0.90 11.61 96.4 61.32 90.26
IDV(11) 45.39 39.19 23.86 8.84 98.4 97.87 99.36
IDV(12) 74.00 79.15 71.34 22.35 95.6 64.319 76.94
IDV(13) 76.91 77.58 75.40 56.61 95.7 79.15 96.09
IDV(14) 73.50 83.43 83.36 17.30 98.7 100 100
IDV(15) 0.05 0.06 0.11 9.40 28.0 40.03 59.78
IDV(16) 10.47 0.64 0.29 4.79 44.2 40.47 93.81
IDV(17) 75.57 66.74 61.69 84.64 94.5 39.37 97.53
IDV(18) 77.14 77.09 76.25 87.94 93.9 90.2 95.55
IDV(19) 1.25 0.69 0.46 25.68 98.6 99.76 100
IDV(20) 40.02 23.79 17.10 71.25 93.3 99.67 92.44

AVG 46.03 45.74 41.56 48.63 88.2 79.21 89.42
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