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   Dear Editor,

This letter presents an inspection method for process monitoring of
underwater  oil  transportation  via  multiple  autonomous  underwater
vehicles (AUV). To improve the adaptability of our method in prac-
tice,  we  introduce  the  dynamic  complex  ocean  current  data  to  the
previously mentioned case by using regional ocean modeling system
(ROMS) for the first time, and elaborately design AUV’s local infor-
mation,  as  well  as  the  deep reinforcement  learning (DRL) tuple  (St,
At, Rt,  St+1).  Specifically,  according to  the local  information of  each
AUV,  including  captured  pipeline  image,  ocean  current  velocity,
position coordinates and pose angles, an agent can be well trained to
control the AUV for underwater oil pipeline tracking through vision-
hydrology-motion-based  soft  actor  critic  (VHM-SAC)  mechanism.
Experimental results show that the proposed method can provide sta-
ble oil pipeline tracking performance in dynamic complex underwa-
ter environment.

Underwater  oil  transportation is  an important  part  of  offshore oil-
field systems, which can continuously transport large amounts of oil
in a fast, efficient and economical way [1]. However, the lifespan of
oil  pipelines  is  limited.  With the  increase  of  service  time,  the  aging
and corrosion of the pipelines occur from time to time. The resulting
oil  leakage  will  not  only  bring  serious  economic  losses,  but  also
cause  long-term  pollution  to  the  environment.  In  this  case,  it  is  of
great  significance  to  be  able  to  give  an  alarm  in  a  timely  manner
through process monitoring [2] and take remedial measures when the
pipeline leaks.

The main  purpose  of  underwater  oil  pipeline  inspection  is  to  find
out whether there is a leakage point on the pipeline, which can usu-
ally be divided into internal inspection methods and external inspec-
tion methods. The former mainly uses ultrasonic, magnetic flux, eddy
current  and other  technical  means to  complete,  the  results  are  accu-
rate  but  only  suitable  for  large-diameter  pipes.  The  latter  mainly
focuses  on  parameters  such  as  flow  difference,  pressure  difference,
negative  pressure  wave,  etc.,  the  cost  is  lower  than  the  internal
inspection  methods  and  there  is  no  possibility  of  pipeline  blockage
due  to  detection  equipment  [3]−[5].  Thus,  the  external  inspection
methods  are  more  common  in  the  field  of  underwater  oil  pipeline
inspection.

AUV is  a  typical  representative  of  underwater  unmanned  system.
With its small, flexible and low-energy-consumption features, it  can
play  an  important  role  in  the  external  inspection  of  underwater  oil
pipelines  [6]  and  [7].  However,  the  underwater  environment  is
dynamic  and  complex,  a  single  AUV  may  not  be  able  to  meet  the
needs  of  refined  tasks.  Faced  with  this  situation,  AUV  cluster  can
realize  multi-directional  inspection  of  underwater  oil  pipelines
through mutual cooperation [8]−[10].

With  the  outstanding  performance  of  AlphaGo  and  other  highly
intelligent  products,  DRL  method  has  led  the  development  of  vari-
ous  decision-making  methods,  such  as  traffic  control,  man-machine
game, video coding, search referral, text processing etc. It can extract
the  important  features  form various  observation  states  through deep
neural networks, and hereafter realize the trial-and-error learning for
agent  through  the  reward-driven  interaction  between  environment
and agent. The combination of the features-extracting ability and the
decision-making ability [11], making DRL method as if it is tailored
for AUV underwater pipeline inspection.

Related  work: With  the  development  of  underwater  equipment
technology, many researchers have carried out studies on underwater
pipeline inspection and tracking by using underwater robots. Most of
those  studies  are  based  on  remotely  operated  vehicle  (ROV).  Mat-
sumoto et  al. [12 ]  used  Deep  Ocean  Phantom S2  ROV to  design  a
Hough  transform-based  submarine  cable  detection  system,  which
realized  the  tracking  of  25  mm  cables.  Oceaneering  company
designed  Magna  ROV that  can  use  electromagnetic  ultrasonic  tech-
nology  to  detect  pipelines  exposed  on  the  seabed  in  the  depth  of  3
000  meters  [13].  However,  due  to  the  influence  of  the  umbilical
cable,  ROV must be supported by the mother ship and cannot carry
out  large-scale  and  long-distance  missions.  What  is  worse,  ROV
requires operators to keep their eyes on the screen for remote control.
Then, researchers begin to turn their attention to applying AUV. Huang
et  al. [14 ]  proposed  an  AUV-based  underwater  pipeline  detection
method  by  fusing  multi-source  information  collected  by  AUV.  Li
et al. [15] proposed an adaptive control law for AUV pipeline track-
ing, which includes the estimation of uncertain parameters related to
the hydrodynamic damping coefficients.

Like  the  methods  mentioned above,  most  of  the  existing  methods
need  to  establish  an  accurate  kinematic  model  for  AUV,  which  is
usually  difficult  when  not  having  enough  prior  information.  DRL
method can provide control  strategy without knowing the kinematic
model, by interacting between agent and environment. Yu et al. [16]
proposed  an  underwater  motion  control  system  based  on  DRL
method to solve the problem of underwater robot trajectory tracking,
getting more accurate  results  than traditional  proportion-integration-
differentiation  (PID)  control  systems  when  the  trajectory  is  a  com-
plex curve. Wu et al. [17] proposed a discrete-time model-free rein-
forcement learning framework to solve three depth control problems
for AUV, namely constant depth control, curved depth tracking, and
seafloor  tracking.  Unfortunately,  there  is  few works  to  consider  the
impact of the real underwater environment when training the agent.

.

VHM-SAC mechanism for underwater oil  pipeline inspection:
DRL method is based on Markov decision process (MDP) theory and
has trial and error exploration mechanism, which totally differs from
supervised  learning  or  semi-supervised  learning  [18].  As  shown  in
Fig. 1, AUV chooses an action at at the state st, and then get the next
state st+1 with a reward rt for the next interaction

During continuous trial-and-error learning, the agent gradually has
the  ability  to  choose  the  best  action  with  the  highest  long-term dis-
counted cumulative rewards which can be expressed as
 

Gt = rt+1 +γ× rt+2 +γ
2 × rt+3 + · · · =

∞∑
k=0

γk × rt+k+1 (1)

γk(γ ∈ [0,1]) rt+k+1where  is  the  discount  factor  and  represents  the
future rewards. Then, the value functions can be expressed as
 

Vπ(s) = Eπ(
∞∑

k=0

γkrt+k+1|s) (2)

where Vπ(s)  is  the  expectation  of  the  long-term discounted  cumula-
tive rewards for the agent at the state s. The goal of DRL is to obtain
the optimal policy π* by maximizing the value functions
 

π∗(s) = argmax
a∈A

Vπ(s). (3)
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Combining  the  advantages  of  policy-based  DRL  algorithm  and
value-based  DRL  algorithm,  actor  critic  (AC)  algorithm  becomes
popular in recent years. Based on the environmental information, the
actor network is used to estimate the action through the policy gradi-
ent which can be expressed as
 

∇θJ(θ) = Eπθ [∇θ logπθ(s,a)Qπ(s,a)] (4)
where θ  is  actor  network’s  parameter, Qπ(s,a)  is  the  expected  long-
term discounted cumulative rewards for an agent applying the action
a at the state s. The critic network is used to estimate the value on the
basic  of  the  policy  by  temporal  difference  (TD)  error  which  can  be
expressed as
 

δt = rt+1 +γV(st+1)−V(st). (5)
In  order  to  improves  the  randomness  of  action  selection,  entropy

regularization  is  introduced  into  soft  actor  critic  (SAC)  algorithm.
The  greater  the  entropy,  the  higher  the  randomness  of  action  selec-
tion. Then, the goal of the algorithm should be
 

π∗ = argmax
π

E
τ∼π

 ∞∑
t=0

γt(R(st,at, st+1)+αH(π(·|st)))

 (6)

H(n(·|st))
n(at |st)

where  is the policy entropy representing the entropy of the
output  action  under  the  policy ,  and α  is  the  temperature
parameter.

For  the  VHM-SAC  mechanism,  the  tuple (St,  At,  Rt,  St+1)  can  be
defined as follows.

1) State space S: The goal of the agent is to control AUV cluster to
move  from  starting  point  to  end  point  along  the  underwater  oil
pipeline  without  collision  in  dynamic  complex  underwater  environ-
ment.  Therefore,  the  state  space  mainly  includes  captured  pipeline
image, ocean current velocity, position coordinates and pose angles,
where  the  raw  captured  pipeline  image  is  two  dimensional  and  the
rest raw data is one dimensional. As shown in Fig. 2, all state data is
flattened  and  then  concatenated  to  form  a  one-dimensional  vector
through  deep  neural  networks,  where  (x, y,  z )  denotes  the  position
coordinates  in  the  earth  frame,  (φ, θ,  ψ )  denotes  the  pose  angles  in
the body frame, (u, v,  w)  denotes the ocean current velocities in the
directions of the three coordinate axes. The captured image is decom-
posed  into  three  matrices  according  to  the  red-green-blue  (RGB)
components.

2)  Action  space A :  The  discrete  action  space  is  composed  of  the
movements  in  six  directions:  up,  down,  left,  right,  front  and  back.
Each  movement  represents  a  fixed  timestep  in  the  corresponding
direction, and only one action will be chosen at a certain time.

3) Reward function R: The design of the reward function is of great
significance to the convergence of the DRL method [19]. Since both
the  state  space  and  the  action  space  are  large  and  complex,  tradi-
tional sparse reward function cannot be expected to work. Therefore,
a composite reward function is designed

i) The vertical distance between the AUV and the oil pipeline, rd =
−0.1|d1 − dTH|, where d1 is the vertical distance between the AUV and
the oil  pipeline, dTH  (set  to 2 m) is  the threshold of the vertical  dis-
tance between the AUV and the oil pipeline.

ii) The distance to the target, rt = −0.01 d2, where d2 is the distance
to the target.

iii) The collision, rc = 0 (if no collision) or −1 (if collision).
Thus,  the  total  reward  for  each  step  is r  =  rd  +  rt  +  rc ,  which  is

clipped in [0,1].

The pseudo code of the SAC algorithm used is as follows:

Algorithm 1 VHM-SAC

Input: The captured image of the oil pipeline Iop, The position coordinates
of  the  AUV PA ,  The pose angles  of  the  AUV AA ,  The velocity  of  the  ocean
current Vc

π∗Output: Optimal action decision policy 
Initialize  parameters:  Target  point Pt ,  Number  of  steps N ,  Number  of

episodes M ,  Batch size K ,  Temperature parameter  α,  Learning rate λ,  Policy
parameters θp, Q-function parameters θ1, θ2, target parameters θ1’← θ1, θ2’←
θ2, Replay memory D, Vertical distance threshold dTH, Discounting factor γ

repeat
　if it is the beginning of the episode then
　　Initialize the position of the AUV PA
　end if
　Observe the state s and select an action a ~ πθp(a|s)
　Execute the action a, get the reward r, the next state s’, and the done sig-

nal d to indicate whether s’ is the terminal
　Store the transition (s, a, r, s’) in D
　Sample random minibatch K of transitions (s, a, r, s’) from D
　Compute targets for the Q functions
　Update Q-functions by one step of gradient descent
　Update policy by one step of gradient ascent
　Update the temperature parameter
　Update target networks
until convergence

Experiments: Our simulation and the experiments are carried out
on Ubuntu 20.04 system, using an Intel Core i7-12700K CPU @ 3.60
GHz,  two  NVIDIA  GeForce  RTX 3080  GPU.  The  necessary  soft-
ware  includes  Gazebo  11.4,  ROS  Noetic  Ninjemys,  Python  3.8,
Pytorch  1.10,  NetCDF  4.1,  Hdf5  1.8,  MATLAB  2016b  and  other
commonly used dependencies for data processing [20].

To evaluate  the performance of  the proposed method,  we laid the
pipeline model in ocean_wave.world of Gazebo simulation software,
and  imported  a  dynamic  complex  ocean  environment  generated  by
ROMS to simulate the actual underwater oil pipeline inspection. The
reason for using ROMS generated data is that the generated data can
be more uniform and spatiotemporally  denser  through data  process-
ing when compared with the measured data, providing more reliable
data support.  The environment is  a subarea of the South China Sea,
covering  the  spatial  extent  of  20.75°N−22.25°N,  118.5°E−120.0°E.
The average water depth is 2495.88 meters and the maximum water
depth is 3650.54 meters. Linear interpolation was adopted to fill the
data into continuous.

Three homogeneous AUVs with same attributes were used to form
a  cluster  for  multi-angle  coordinated  inspections  of  underwater  oil
pipelines. Each AUV has its corresponding agent to control itself. In
our  training progress,  learning rate  is 0.0005,  batch size  is  256,  tar-
get  entropy  is  −6,  and  temperature  parameter  is  1. Fig. 3  shows the
result of an oil pipeline inspection via multi-AUV. It can be seen that
all  three  AUVs  can  keep  a  certain  distance  and  move  along  the  oil
pipeline stably. Table 1 shows the success rate of the AUV cluster to
complete  underwater  oil  pipeline  inspection  under  the  influence  of
different  ocean  current  intensity.  Even  in  the  case  of  ocean  current
velocity  of  1  m/s,  our  method can still  maintain good control  effect
with an average success rate 86.67%.

Conclusions: This letter presents a VHM-SAC mechanism for pro-
cess  monitoring  of  underwater  oil  transportation  by  multi-AUV  in
dynamic complex underwater environment. Three agents are trained
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Fig. 1. The dynamic process of DRL-based AUV underwater oil pipeline inspection.
 

HE et al.: MULTI-AUV INSPECTION FOR PROCESS MONITORING OF UNDERWATER OIL TRANSPORTATION 829 



to  control  their  corresponding AUV based on the  local  information,
and  perform  well  even  with  severe  ocean  current,  providing  some
meaningful references for the application of AUV clusters and deep
reinforcement learning in the field of process monitoring.
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Fig. 2. The illustration of VHM-SAC mechanism.
 

 

 
Fig. 3. The result of an oil pipeline inspection via multi-AUV.
 

 

Table 1.  Comparison of Different Ocean Current Intensity

Success rate
Ocean current intensity (m/s)

0.25 0.50 0.75 1.00
AUV1 100% 97% 91% 89%
AUV2 99% 94% 88% 85%
AUV3 99% 95% 89% 86%

Average 99.33% 95.33% 89.33% 86.67%
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