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Abstract—Traditionally, offline optimization of power systems
is acceptable due to the largely predictable loads and reliable
generation. The increasing penetration of fluctuating renewable
generation and Internet-of-Things devices allowing for fine-
grained controllability of loads have led to the diminishing
applicability of offline optimization in the power systems domain,
and have redirected attention to online optimization methods.
However, online optimization is a broad topic that can be applied
in and motivated by different settings, operated on different
time scales, and built on different theoretical foundations. This
paper reviews the various types of online optimization techniques
used in the power systems domain and aims to make clear the
distinction between the most common techniques used. In par-
ticular, we introduce and compare four distinct techniques used
covering the breadth of online optimization techniques used in the
power systems domain, i.e., optimization-guided dynamic control,
feedback optimization for single-period problems, Lyapunov-
based optimization, and online convex optimization techniques
for multi-period problems. Lastly, we recommend some potential
future directions for online optimization in the power systems
domain.

Index Terms—Online optimization, optimization-guided con-
trol, feedback optimization, Lyapunov optimization, online con-
vex optimization.

NOMENCLATURE

AC Alternating current
ADMM Alternating direction method of multipliers
AGC Automatic generation control
BFM Branch flow model
BIM Bus injection model
DC Direct current
DG Distributed generator
DR Demand response
ESS Energy storage system
GNG Generalized Nash game
GNE Generalized Nash equilibrium
KKT Karush-Kuhn-Tucker
MPC Model predictive control
NE Nash equilibrium
NEGDC NE-guided dynamic control
OCO Online convex optimization
OGDC Optimization-guided dynamic control
OPF Optimal power flow
P2P Peer-to-Peer
PV Photovoltaic
RHC Receding-horizon control
RL Reinforcement learning

SG Synchronous generator
SoC State-of-charge
WTG Wind power generator

I. INTRODUCTION

Global climate change has led to new global commitments
to take active steps, i.e., COP21 Paris Agreement, on limiting
global warming by at most two degrees celsius, compared to
pre-industrial levels. As one of the primary drivers of climate
change, there is immense pressure on countries to re-design
their electric power systems to reduce their carbon footprint
due to electricity generation by undertaking an increased pene-
tration of renewable generation, e.g., wind and solar [1]. While
these renewable generation sources may be operationally free
of carbon emissions, either energy storage systems (ESSs) or
alternative generating units that are highly controllable are
needed to counteract the intrinsically volatile and uncertain
generation. Exacerbating these conditions is the fact that
these renewable generation sources are often integrated via
power electronic devices with low inertia and rapid response
speed. Recently technological advances in Internet-of-Things
(IoT) devices have also proliferated a large number of high-
power controllable loads, such as demand response and electric
vehicles. Together, the effects brought about by the increase
in renewable generation penetration and controllable loads
present an unprecedented and severe operational challenge. To
this end, many (offline) optimization methods have been pro-
posed and investigated, which are largely categorized into two
types [2]: (i) prediction-based and (ii) historic data-based. For
the first type, forecasts of the renewable generation are utilized
in the problem formulation. Unfortunately, as the prediction of
renewable generation is not accurate in practice, these types
of optimization methods may lead to a sub-optimal solution.
This can result in poor economic performance, and worst,
can also cause stability issues in some cases. For the second
type, it mainly involves two kinds of approaches distinguished
by the way uncertainty is modeled from the historical data,
namely, robust optimization and stochastic programming. In
robust optimization, uncertainty is modeled as a bounded set,
which is determined in advance from the historical data. Then,
the optimal solution which satisfies all of the possible cases
within the bounded set are selected. Consequently, the result
is conservative and the suboptimality depends on the accuracy
of the uncertainty set. In contrast, stochastic programming re-
quires the distribution of uncertain variables, which is also ob-
tained from historical data. The objective function constraints
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Fig. 1. Summary of online optimization in power systems. We find problems in the field of power systems can be grouped into three main classes of problems
and highlight some archetypes here. For example, in the sub-minute time scale, solutions need to be obtained quickly, and therefore an optimization-guided
dynamic controller is often used. On the other hand, problems that require the solving of high-dimensional, non-linear and complex power flow equations are
often solved using feedback optimization. Lastly, problems that are solved at a higher time scale can usually be afforded a longer computation time and is
suitable to be solved via Lyapunov optimization techniques or online convex optimization techniques.

including the corresponding uncertainties are enforced to be
satisfied with a certain probability. However, the realization of
uncertain variables may differentiate from the historical data,
which leads to suboptimality or even infeasibility. As such,
at times, it may be possible that the results obtained from
the offline optimization methods above may not satisfy power
flow equations or operational constraints in the actual situation.
To summarize, both prediction-based and historic data-based
methods face limitations in how they handle uncertainties,
which may lead to suboptimality, infeasibility, or instability.

Recently, online optimization methods have attracted surg-
ing attention to overcome the aforementioned challenges, as it
track changing conditions and thus are robust to uncertainties
and variations [3]. In a power system with aggravating volatil-
ity and unpredictable uncertainties due to increasing penetra-
tion of renewable generation sources, online optimization is
required in many situations. To highlight the pervasiveness of
online optimization explicitly, we distinguish related works at
three different time scale, including namely, dynamic control,
single-period problems, and multi-period problems. Beyond
the difference in time scale, these three types of problems are
applied in different areas, and therefore have different con-
straints and objectives. These problems were initially solved
using offline optimization techniques (in contrast to online
optimization techniques), but the increase in renewable pen-
etration has led to increased adoption of online optimization
techniques to solve them. The purpose of this review paper is
to (i) highlight the different motivations and applications, (ii)
bring to attention the different time scales, and (iii) present the
theoretical foundations of these works. Here, we summarize
them in Fig.I.

1) Dynamic control. Frequency and voltage are two funda-
mental indices in power systems, which are typically regulated
by a hierarchical control structure [4]–[6]. In an alternating

current (AC) power system, frequency reveals the active power
(im)balance across the overall system, which varies from the
nominal value as long as there is a power mismatch. A
power system must maintain its frequency within a small
neighborhood of the nominal value, typically 50 or 60 Hz.
Otherwise, a power outage or even cascading failures in the
power grid may happen [7]. In the following, we take dynamic
frequency control as an example. Traditionally, a hierarchical
frequency control structure is adopted, consisting of three
layers with different time scales, i.e., the primary control
on several seconds time scale to stabilize the frequency, the
secondary control on tens of seconds to a minute time scale
to bring the frequency back to its nominal values, and the
tertiary control from several minutes to tens of minutes [8] to
solve for a more economical dispatch. Primary frequency reg-
ulation is traditionally performed using a simple proportional
feedback controller, designed to limit the frequency deviation
within an acceptable range rapidly. To eliminate frequency
deviation, secondary frequency control is typically designed
via automatic generation control (AGC). The first two layers
intend to stabilize frequency and eliminate any deviation
on a fast time scale, albeit potentially in a non-economical
manner. Tertiary frequency control, often termed economic
dispatch, focuses on an optimal generation allocation that
addresses the power mismatch economically. In the past,
this hierarchical structure works well due to the significant
distinction in time scales for the different control schemes and
the traditionally low uncertainty in the power system which
meant that large frequency deviations are infrequent. On the
contrary, the increased volatility due to higher penetration of
renewable energy sources in the grid requires optimality to
be achieved at a much faster rate, thereby obfuscating the
previously distinct hierarchy and time scale, which ultimately
lead to the combination of different layers of control. For
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example, tertiary control needs to be realized on the time scale
of primary or secondary frequency control, which motivates
the combination of the three to stabilize frequency, eliminate
deviations, and realize optimal operation simultaneously [9],
[10]. A majority of the work in this area can be described as an
optimization-guided dynamic control (OGDC), also described
as “Breaking the hierarchy” [6] or “Reverse engineering” [11]
in the field of power systems.

2) Single-period optimization. The bottleneck around
many single-period problems like optimal power flow (OPF)
and voltage regulation lies in solving the power flow equation.
There are provably no analytical solutions for solving the
power flow equation, and almost all algorithms in this field are
offline and iterative in nature [12]. Under these circumstances,
it is necessary to wait for the converged result since the
intermediate values obtained in these iterative processes in
general do not satisfy the power flow equation, and thus, are
inapplicable. The increased volatility due to the increase in
renewable energy necessitates a time-efficient solution since
the optimal solution in a previous timestep in a volatile
system can be neither optimal nor feasible in a complex
system like that of the power grid. However, the power flow
equation aims to mimic a high-dimensional, non-linear, and
complex system, in which finding a solution is in general
computationally costly. A recent idea rooted in optimization
theory to overcome this dilemma is to exploit the laws of
physics to solve the power flow equation in real-time and get
the results not by optimization or solving an equation, but
by simple-to-implement measurements. This idea leads to the
concept of feedback optimization [13], where measurements
are collected, and used as part of the algorithm design. At
each iteration, the algorithm computes generation set points
and sends them to the corresponding generators. The grid then
“take these as input”, and computes the states (generation,
voltage, etc.) by the law of physics and electricity in real-
time. The new measurements obtained from the grid will be
used as the input in the next iteration. A distinction from
offline algorithms is that the intermediate iterates not only
satisfy the power flow equations but can also be obtained at a
fast time scale, which enables them to track evolving working
conditions.

3) Multi-period optimization. The intrinsic volatility and
uncertainty of the renewable sources of energy call for suf-
ficient backup resources, which lead to the proliferation of
ESSs. The ESS scheduling problem is a multi-period problem
with constraints like charging/discharging rates, the State-of-
Charge of the battery (SoC), which can be a function of
external conditions. For example, the use of district cooling
systems as an energy storage system means that the charging
and discharging rates, similar to the SoC, which is the current
temperature of the facility, can be weather-dependent. As such,
the decision variables are coupled in successive periods. Other
constraints, like ramping constraints in the multi-stage eco-
nomic dispatch, are also temporally coupled. Additionally, the
action in any time step depends on variables in the future, such
as power generation and price. To this end, many approaches
have been proposed, such as model predictive control which
requires the use of prediction, robust optimization, stochastic

programming, and online optimization [2]. As introduced in
the first paragraph of this section, results obtained from the
first three methods are not fully amenable to uncertainties,
and thus, suboptimality, infeasibility, and even instability may
result. On the other hand, online optimization allows decisions
to be made after uncertain variables are observed or even
without the information of uncertainties. In this way, the side
effect of volatility and uncertainty is eliminated. Typical online
optimization methods used to solve the multi-period opti-
mization problem include Lyapunov optimization and online
convex optimization (OCO), which will be introduced in detail
in Section V.

While online optimization is promising in the future power
system with increased renewable penetration, the implications
of its use still need to be further studied. As introduced
above, the field of online optimization is broad and may
seem inaccessible due to the different interpretations and
massive amounts of corresponding works. To the best of our
knowledge, there still lacks an explicit comparative analysis
among these methods. In this paper, as shown in Fig.I, we
introduce three main classes of problems in power systems
that are amenable to online optimization techniques, and four
different types of methods are presented comparatively in
motivations, time scales, theoretic foundations, and typical
applications. The main merits of this paper are the following:

• We provide motivations for the use of online optimization
within the power system and group online optimization
problems into three main classes of problems, largely
defined by their time scales, namely, dynamic control,
single-period optimization, and multi-period optimiza-
tion. Our hope is that it will eliminate the long-existing
confusion in this field and lower the barrier of entry
for researchers to work on online optimization in power
systems.

• We perform a comprehensive review and a comparative
analysis of four types of online optimization methods,
i.e., Optimization-guided Dynamic Control, Feedback
Optimization, Lyapunov Optimization, and Online Con-
vex Optimization, covering their motivation, time scale,
theoretical foundations, and typical applications.

• We discuss critical challenges and promising directions
for online decision-making in power systems in depth.

The rest of this paper is organized as follows. Section II
overviews background material on power systems detailing
the power flow equations and power system dynamics, which
aims to provide background and appreciation of the complexity
of power flow equations to readers unfamiliar with the area
of power systems. Section III reviews the main idea and
typical applications of OGDC. Section IV summarizes the
literature and techniques on feedback optimization for single-
period problems, while Section V introduces online optimiza-
tion methods for multi-period problems, including Lyapunov
Optimization and OCO techniques. Lastly, we discuss the
critical challenges and future directions of online optimization
for power systems in Section VI, and conclude in Section VII.
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Fig. 2. Summary of notations for a power system

II. PRELIMINARIES

In this section, we introduce some preliminaries in power
system optimization, including equations governing power
flow and power system dynamics. This section serves two
distinct purposes: (i) for completeness, we provide background
information on power systems for those unfamiliar with the
area for a richer appreciation of the complexity of power
systems, and (ii) the provision of a concise set of equations
that we will refer to in the sections to follow.

A. Notations

Consider an n-bus power system, succinctly illustrated in
Fig.2. Each bus may consist of a combination of synchronous
generators (SGs), inverter-integrated renewable generators, and
loads. Denote by N := {1, . . . , n} the set of buses. Let E ⊆
N × N be the set of lines, where line (i, j) ∈ E if buses i
and j are connected directly. Correspondingly, we use Ni to
denote the set of buses that is connected to bus i. Denote by
rij +kxij the impedance of line (i, j), where k :=

√
−1. The

network admittance matrix is denoted by Y := G+ kB. The
voltage at bus i is Vi := Vie

kθi , where Vi is the amplitude and
θi is the angle. Denote by Iij := Iije

kθij the current over line
(i, j), where Iij is the amplitude and θij := θi−θj is the angle
difference between i, j. We use Pij , Qij to denote the active
and reactive power from i to j, whereas ωi is the frequency, P gi
is the mechanical power input, Efi is the excitation voltage,
at bus i. The active and reactive power injected to bus i by
generators or inverters are denoted by Pei, Qei, respectively.
The active and reactive loads attracted from bus i are denoted
by PDi, QDi, respectively. Then, the net power injections to
the grid are Pi = Pei − PDi, Qi = Qei − QDi. Sometimes,
we further distinguish active load into two types: controllable
load and uncontrollable load, which are denoted by P li , pi with
PDi = P li + pi, respectively.

B. Power flow equations

In this subsection, we introduce the power flow equations
through both the bus injection model (BIM), branch flow
model (BFM), and their linearized forms.

1) Bus Injection Model : The power injection at the i-th
bus can be computed by

Pi =
∑
j∈Ni

ViVj (Gij cos θij +Bij sin θij) (1a)

Qi =
∑
j∈Ni

ViVj (Gij sin θij −Bij cos θij) (1b)

The corresponding active and reactive power flow Pij , Qij
from bus i to bus j are

Pij = ViVj (Gij cos θij +Bij sin θij) (2a)
Qij = ViVj (Gij sin θij −Bij cos θij) (2b)

Obviously, the power flow equations (1) and (2) are non-
linear, which increase the complexity of many operation
problems, as they introduce potential non-convexities which
complicate optimization problems. To circumvent this, many
works have contributed to linear approximations of the power
flow equations above. These are made based on the following
four key observations in high-voltage transmission networks:

• The reactive power over each line is very small compared
to the active power counterpart, and thus could be omitted
or neglected.

• The resistance is significantly less than the reactance, i.e.,
rij � xij , which leads to the approximations Gij ≈ 0,
and Bij = − 1

xij
.

• For most operating conditions, the difference in voltage
angles of two buses i, j, ∀(i, j) ∈ E is very small,
and therefore the linear function x approximates the sin
function well, i.e., sin(θi − θj) ≈ θi − θj .

• In the per-unit system, the voltage magnitude Vi is very
close to 1 per unit.

Taking the above into consideration, the active power flow
over line (i, j), i.e., Pij , can be simplified into the following
linearized form

Pij = Bijθij (3)

which is the so-called DC power flow. The DC power flow
model is widely used in the optimal operation problems of
high-voltage transmission networks.

2) Branch flow model: As an alternative to BIM, balanced
radial distribution networks can be represented using the BFM
[14]. Denote by `ij = I2

ij the squared magnitude of the current
flow from bus i to bus j. Under these scenarios, the branch
flow equations can be written as

Pij + Pj =
∑
k∈Nj

Pjk + rij`ij (4a)

Qij +Qj =
∑
k∈Nj

Qjk + xij`ij (4b)

V 2
i − V 2

j = 2(rijPij + xijQij)−
(
r2
ij + x2

ij

)
`ij (4c)

`ijV
2
i = P 2

ij +Q2
ij (4d)

The BFM is typically linearized by first dividing two sides
of (4d) by V 2

i , and substituting the resulting `ij into (4a), (4b)

and (4c) with the resulting equations, yielding rij
P 2

ij+Q2
ij

V 2
i

and

xij
P 2

ij+Q2
ij

V 2
i

as active and reactive power losses respectively.
Their values are very small compared to line power flows, and
hence are omitted hereafter. Defining a new variable vi :=

V 2
i

2 ,
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we obtain the following linearized BFM.

Pij + Pj =
∑
k∈Nj

Pjk (5a)

Qij +Qj =
∑
k∈Nj

Qjk (5b)

vi − vj = rijPij + xijQij (5c)
As reported in [14], the approximation error is usually on the
order of 1% . The linearized model (5) has been extensively
used in the optimization and control of distribution networks
due to its simplicity.

C. Power system dynamics

Power system dynamics are determined by the types of
equipment connected. With the proliferation of distributed
generators (DGs) and demand response (DR), typical dynamic
equipment include synchronous generators (SGs), inverters,
and controllable loads.

1) Synchronous generator: Here, we adopt the flux-decay
model of the generator from [15], summarized in (6).

θ̇i = ωi (6a)

Miω̇i = P gi −Diωi − PDi −
∑

j∈Ni

Pij (6b)

T ′diĖ
′
qi = Efi − (1− (Xdi −X ′di)Bii)E′qi
− (Xdi −X ′di)

∑
j∈Ni

BijE
′
qj cos θij

(6c)

T gi Ṗ
g
i = −P gi + ugi − ωi(t)/Ri (6d)

Here, Mi is the moment of inertia, Di is the damping
constant, T

′

di is the d-axis transient time constant, and (6a),
(6b) are the so-called swing equations. Equation (6d) is the
simplified model of the governor and turbine. Xdi is the d-
axis synchronous reactance, and X ′di is the d-axis transient
reactance.

2) Inverter: The dynamics of power inverters are deter-
mined by the control strategies adopted. Droop control is the
most common controller and is widely used in power inverters
[16]. Based on droop control, the dynamics at bus j is

θ̇j = ωj (7a)

τjω̇j = −kωj
ωj −

∑
k∈Nj

Pjk − PDj + uPj (7b)

τj V̇j = −kVj
Vj −

∑
k∈Nj

Qjk −QDj + uQj (7c)

where τj , kωj , kVj are positive constants, and uPj , u
Q
j are

control inputs.
Besides the traditional droop control, there are many control

strategies for inverter-based DGs, such as quadratic droop
control, reactive current control, and exponentially scaled
averaging reactive power control. As they are not commonly
adopted as droop control, we do not introduce them in detail.
An interested reader can refer to [17] for details.

3) Load bus: For a pure load bus, if the controllable load
is considered, its dynamics could be designed as needed, such
as via an inertia link as in [18].

T lj Ṗ
l
j = −P lj(t) + ulj (8)

Control input

ud

Grid 
measurement
yd

 

 

min

s.t. 0
d

du

d d

f u

g u , y 

 
 
,

,
d

d d d

y

u u y

  











 
 

,d d

d d

x g x u

y h x







Dynamic solving algorithm

Optimal operation problem

Optimization-guided dynamic controller

Power system dynamics

Closed-loop system

Fig. 3. Diagram of optimization-guided dynamic control

where P lj is the controllable load, ulj is the control input, and
T lj is the time constant of the controllable load. Uncontrollable
loads are usually simply modeled as a constant.

III. OPTIMIZATION-GUIDED DYNAMIC CONTROL

In this section, we first introduce the main idea of
Optimization-guided Dynamic Control (OGDC). Then, we
survey applications of OGDC in the power systems area.

A. Main idea

The main idea of optimization-guided dynamic control is to
design a (dynamic) feedback controller for physical systems,
which will drive the system states based on the optimal
solution of an optimization problem. The overall framework
of OGDC is illustrated in Fig.3.

In this framework, the lower layer is the fast time-scale
dynamics of a physical system. Its state variables (x), control
inputs (ud), and outputs (yd) are determined by the integrated
devices. With reference to the dynamics introduced in Section
II.C, the relevant control inputs are ugi , u

P
j , u

Q
j , u

l
j . The output

measurements yd could correspondingly include frequency,
voltage, and active and reactive power. The upper layer is the
optimal operation problem, such as tertiary frequency control.

The general form of the optimization problem is
min
ud

f (ud) (9a)

s.t. g (ud, yd) ≤ 0 (9b)
where the objective function is to minimize the control cost,
and the constraint is associated with the input and output of
the system.

Then, a dynamic feedback controller is designed:{
ξ̇ = φ(ξ, yd)
ud = ũd(ξ, yd)

(10)
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By applying the dynamic feedback controller to the physical
system, we can get the closed-loop system

ẋ = gd (x, ũd(ξ, yd)) (11a)

ξ̇ = φ(ξ, yd) (11b)
yd = hd(x) (11c)

Our goal is to steer the closed-loop system (11) to the
optimal solution of the optimization problem (9) in the steady
state. The equivalent interpretation is that (11) defines a
dynamic algorithm which solves (9) implicitly.

To the best of our knowledge, this idea dated back to [9]
in the field of power systems, which presented a methodology
to regulate the system to an optimal operation point, i.e., a
solution to a given economic dispatch problem. Then, [19]
further exploits the shadow price interpretation of Lagrange
multipliers to guarantee the economically optimal operation
of power systems. This idea has recently been widely used
in optimal frequency control. We use the optimal secondary
frequency control in [18] as an example to illustrate how to
design an optimization-guided dynamic controller.

Example 1. Increasing the penetration of volatile renewable
generations causes power imbalance to fluctuate rapidly with
a large magnitude, requiring tertiary frequency control to be
realized on a fast time scale, coinciding with that of primary
or secondary frequency regulation. To design the controller,
the DC power flow model introduced in (3) is adopted,
where voltage dynamics is not considered. Then, the frequency
dynamics with SG and controllable loads are simplified into
the following form:

θ̇j = ωj (12a)

Mjω̇j = P gj − P
l
j − pj −Djωj

+
∑
i:i→j

Bijθij −
∑
k:j→k

Bjkθjk
(12b)

T gj Ṗ
g
j = −P gj + ugj − ωj(t)/Rj (12c)

T lj Ṗ
l
j = −P lj(t) + ulj (12d)

As discussed earlier, we first define the control goal as an
optimization problem, as in (9).

min
1

2

∑
j∈N

αj
(
P gj
)2

+
1

2

∑
j∈N

βj
(
P lj
)2

+
1

2

∑
j∈N

Djω
2
j

(13a)

over θ, ω, P g, P l

s. t. P gj = P lj + pj , j ∈ N (13b)

P gj = P lj + pj +Djωj

−
∑
i:i→j

Bijθij +
∑
k:j→k

Bjkθjk, j ∈ N (13c)

P gj ≤ P gj (t) ≤ P gj , j ∈ N (13d)

P lj ≤ P lj(t) ≤ P
l

j , j ∈ N (13e)

P gj = ugj , j ∈ N (13f)

P lj = ulj , j ∈ N (13g)
where αj > 0, βj > 0 are constant weights, P gj , P̄

g
j are lower

and upper bounds of P gj , and P lj , P̄
l
j are lower and upper

bounds of P lj . The first two terms in the objective function aim

to minimize the regulation cost of generators and controllable
load, while the last term is part of the frequency controller
design. The constraint (13b) is the local power balance, and
(13c) is obtained from (12b) by setting ω̇j = 0. Here, (13d)
and (13e) are hard limits on the regulation capacities of
generation and controllable load at each node, which should
not be violated at any time even during the transient period.
To ensure that these hard constraints are not violated, any
violations will be projected onto the desired region. Lastly,
constraints (13f), (13g) reveal the relationship between control
input and states.

For each node j ∈ N , the control law is
ξ̇j = γξj

(
P gj − P

l
j − pj

)
(14a)

ugj =
[
P gj − γ

g
j

(
αjP

g
j + ωj + ξj

)]P g
j

P g
j

+
ωj
Rj

(14b)

ulj =
[
P lj − γlj

(
βjP

l
j − ωj − ξj

)]P l
j

P l
j

(14c)

where γgj , γ
l
j , γ

ξ
j are positive constants. For any xi, ai, bi ∈ R

with ai ≤ bi, we define the operator
[xi]

bi
ai := min{bi,max{ai, xi}}

If we further set the control gains as γgj = (T gj )−1, γlj =

(T lj)
−1 and apply (14) to the dynamic system (12), the closed-

loop system is (in vector form)
˙̃
θ = CTω (15a)

ω̇ = M−1
(
P g − P l − p−Dω(t)− CBθ̃

)
(15b)

Ṗ g = (T g)−1 (−P g + ûg) (15c)

Ṗ l = (T l)−1
(
−P l + ûl

)
(15d)

ξ̇ = Γξ
(
P g − P l − p

)
(15e)

where

ûg =
[
P g − (T g)−1 (AgP g + ω + ξ)

]P g

P g

ûl =
[
P l − (T l)−1

(
AlP l − ω − ξ

)]P l

P l

and M := diag(Mj , j ∈ N), T l := diag(T lj , j ∈ N), T g :=

diag(T gj , j ∈ N),Γξ := diag(γξj , j ∈ N), Ag := diag(αj , j ∈
N), Al := diag(βj , j ∈ N), and B := diag(Bij , (i, j) ∈ E).

It is shown in [18] that the closed-loop system (15) serves
as the partial primal-dual gradient dynamics which solves the
original problem (13). The asymptotic stability of (15) can also
be proved theoretically. Thus, the controller (14) can indeed
drive the physical system to an optimal operating state. This
is why such controllers are known as “optimization-guided
dynamic control”.

B. Application survey

In this subsection, we will introduce more applications of
optimization-guided control in the frequency regulation of AC
systems. We present here a survey on two recent methods used
to design OGDC in power systems: consensus methods and
primal-dual gradient methods.

1) Optimal frequency control based on consensus method:
In consensus-based control, the agents, such as generators,
loads, MGs, or other forms of local systems, estimate a global
variable using a consensus algorithm [31]. Specifically, in
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TABLE I
COMPARISON OF PROBLEM SETUPS

References

Hard input limit
Yes [10], [18], [20]–[25]
No [11], [15], [26]–[30]

Line congestion
Yes [15], [18], [20], [25]
No [10], [11], [21]–[24], [26]–[30]

Load type
Constant [10], [11], [15], [18], [20]–[26], [29], [30]

Time-varying [27], [28]

Structure model
Reduced [11], [15], [18], [22], [24], [27], [28], [30]
Preserved [10], [20], [21], [23], [25], [26], [29]

System model
Linear [10], [11], [18], [20], [22], [23], [25], [27], [29]

Nonlinear [15], [21], [24], [26], [28], [30]

power systems, if we take the marginal cost as the global
variable, all agents share the same marginal cost in the
steady state1. This implies that the generation configuration
is economically optimal.

A consensus-based controller is designed in [35], which
takes the following form.

ξ̇i = −c
[∑

j∈Ni

aij (ωi − ωj) + (ωi − ωref )
]

− k
∑

j∈Ni

aij (ηi (Pi)− ηj (Pj)) (16a)

uPi = ξi (16b)
where c and k are constant, aij is the weight between bus
i and j, ηi (Pi) is the marginal cost of agent i, and ωref
is the frequency reference. Under this setting, the system
frequency will be restored to the rated value ωref , and equal
marginal cost is obtained, which realizes both frequency
stability and economical allocation of active power among all
agents. In [36], the control input ugi is defined as the integral
of marginal cost differences and frequency deviations, i.e.,
ugi = −

∫ t
0
ωi(τ)dτ +

∫ t
0

∑
j∈Ni

(ηi(τ)− ηj(τ))dτ with ηi as
the marginal cost. With that, the nominal system frequency is
restored and the marginal cost reaches a consensus among all
of the participating generators. Similar ideas are also adopted
in [6], [37]–[39] for optimal frequency control, and further
improved in [34], [35], [40] by considering voltage control
simultaneously, and in [41]–[43] considering asynchronous
information.

The consensus-based optimal frequency control can achieve
an identical marginal cost among all agents, which, however,
also limits its applications. For example, the marginal cost will
not be identical if line power limits exist. In this situation,
the consensus-based method will not work, but it motivates
primal-dual gradient methods, which we present next.

2) Optimal frequency control based on primal-dual gradi-
ent method: The main idea is to use the primal-dual gradient
dynamics, i.e., the well-known saddle dynamics [44]–[47], to
solve the optimization problem (9). Then, one can combine
the solution dynamics with the power system dynamics, and

1Another global variable is the ratio between actual generation and the
maximal capacity, which implies that all generators supply the load fairly up
to their maximal capability. Because it is not optimization-guided, we do not
introduce it in this paper. Readers could refer to [32]–[34] for more details.

the closed-loop system converges to an equilibrium that cor-
responds to the optimal solution of the original optimization
problem [10], [11], [48]. In this way, it realizes optimization-
guided dynamic control.

As introduced in Section III-A, this idea takes root in [9],
[19], which uses the Karush-Kuhn-Tucker (KKT) condition
to regulate a nonlinear dynamical system to the optimal
solution of a given optimization problem. This idea is further
generalized by using the primal-dual gradient dynamics. A
rich literature has emerged investigating optimal frequency
control based on primal-dual gradient method, which can be
roughly divided into two categories: primary-tertiary control
[10], [20]–[22] and secondary-tertiary control [11], [15], [18],
[23]–[30]. We present a detailed classification of these works
in Table I according to indices including input limits, line
congestion, load type, structure model, and system model.

In the first category, the primary and tertiary frequency
control is combined, which intends to stabilize the system
rapidly with the best economic efficiency. In [10], an opti-
mal load-side control problem is formulated and a dynamic
controller based on the partial primal-dual gradient method is
derived, which provides a paradigm shift for such research. It
is extended in [20] to consider the line congestion, in [21] to
relax the model requirements, and in [22] to consider on-off
loads. Since the response speed is the most important task of
the primary frequency control, the primary-tertiary control is
usually decentralized without the need for communication. The
main trade-off of such an approach is that frequency deviation
persists.

In the second category, the secondary and tertiary fre-
quency control is combined, with the intention to both restore
nominal frequency as well as realize economic dispatch. In
[11], the notion of reverse engineering is proposed, which
interprets primal-dual gradient dynamics as solving economic
dispatch problems to the power system dynamics together
with AGC. Consequently, the secondary frequency control
can achieve economic dispatch simultaneously. This idea is
extended in a similar fashion to settings with various practical
considerations, such as hard operation constraints in [18],
partial control coverage in [26], [49], more general physical
dynamic models [23]. Further, the time-varying disturbances
could also be considered in this framework [27], [28]. Some
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supplementary controllers can be added to deal with the
disturbances, such as the internal model control [27], [28] and
high-gain observer [50]. Besides the economic dispatch, the
power market and secondary frequency control also can be
realized simultaneously, where the power market is solved by
a dynamic algorithm [15], [30], [51], where [30] considers
a Cournot competition market model and [51] a Bertrand
competition market model.

Primal-dual gradient dynamics are very appealing since they
can partially be interpreted as system physics. It also has wider
applicability in power systems, which is also utilized in the
DC systems, including the unified OPF control in [52] and
emergency control in hybrid AC-DC grids [53].

Remark 1. OGDC focuses on the optimality in the steady
state on the time scale of dynamic control, which is comple-
mentary to the traditional optimal control, such as the linear
quadratic regulator. The latter intends to optimize the integral
of a quadratic form, such as

min
1

2

∫ ∞
0

(
xT (t)Rxx(t) + uT (t)Ruu(t)

)
dt (17)

with positive definite Rx, Ru. The objective (17) is to mini-
mize the control cost over the whole transient process. These
two aspects are both very important when large amounts of
volatile renewable generations are integrated. However, it is
still an open question of how to achieve optimal performance
on both sides simultaneously.

IV. FEEDBACK OPTIMIZATION FOR SINGLE-PERIOD
PROBLEMS

In this section, we first introduce the main idea of feedback
optimization for single-period problems before surveying ap-
plications in OPF and voltage regulation.

A. Main idea

Feedback optimization is an alternative way to solve single-
period optimization problems in time-varying environments,
especially for problems which contain constraints of power
flow equations. This is because this algorithm is able to solve
power flow equations on a fast time scale, which is required
for the power imbalance in the system caused by volatile
loads and rapidly fluctuating renewable generation sources.
It is widely known that power flow equations are nonlinear
and high-dimensional, and therefore usually computationally
costly. In this situation, traditional offline approaches may
not be applicable. Fortunately, a physical power system by
itself turns out to be a very efficient computer capable of
calculating the exact solutions to power flow equations. Thus,
one can get the results directly by measurement, which is
more effective and accurate than computing or calculating
from the corresponding governing equations. This idea is the
core of feedback optimization. Then, the result obtained by the
feedback optimization algorithm is sent back to the physical
system to regulate its power generation. Consequently, this
process constitutes a feedback loop, leading to the concept of
feedback optimization.

Fig.4 presents the conceptual diagram of feedback optimiza-
tion. The lower level is the (quasi)steady-state system model

Grid: power flow equations
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Fig. 4. Diagram of feedback optimization

described by the power flow equations, which is introduced in
Section II-B. Here we give its simplified notation.

0 = gs (x, us)

where x is the system state, us is the controllable variable,
and ys is the system output. For example, us could be
the generation set point and ys could be the voltage and
power generation. If we consider the measurement ys as the
parameter, the single-period problem has the general form.

min
us

f (us) (18a)

s.t. g (us, ys) ≤ 0 (18b)
Power flow equations (18c)

The power flow equations serve as a set of equality constraints,
which, however, do not need to be solved mathematically. By
measuring ys from the physical power system, this constraint
is satisfied naturally, and can therefore be removed. Thereafter,
some iterative algorithm is designed to solve (18) together
based on the measurement ys. The intermediate iterates are
then sent back to the physical system to drive it to the desired
working point. The new measurement will be obtained to
continue to implement the next iteration.

Feedback optimization has two salient advantages. 1) Low
computational complexity: the measurement remarkably re-
duces the computational complexity of solving the high-
dimensional nonlinear power flow equations. 2) Fast response
speed: feedback optimization has a fast response speed and is
adaptable to the time-varying environment caused by volatile
load demand and renewable generation sources.

Here, we take the online Optimal Power Flow (OPF)
problem in [13] as a concrete example and illustrate how to
design feedback optimization algorithms.

Example 2. OPF is a fundamental problem in power system
operations, which has broad applications [54], including eco-
nomic dispatch, demand response, state estimation, stability
assessment, etc. Substantial efforts have been devoted to
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finding reliable solution methods to OPF since it was first
formulated in 1962 by Carpentier [55]. The OPF problem is
formulated as the following optimization problem:

min f(x) =

n∑
i=0

aiP
2
i + biPi (19a)

over x := (Pi, Qi, i ∈ N )

y := (P0, Q0, vi, i ∈ N ;Pij , Qij , `ij , (i, j) ∈ E)

s.t. (4) (19b)
vi ≤ vi ≤ vi, i ∈ N (19c)

P i ≤ Pi ≤ P i, i ∈ N (19d)

Q
i
≤ Qi ≤ Qi, i ∈ N (19e)

where ai > 0, bi > 0 are constants. The objective function
is to minimize the generation cost, with constraints (4) and
(19c) representing the power flow equation and voltage limits
respectively, and (19d) and (19e) representing the power
injection constraints.

Define the domain set
X :=

{
(Pi, Qi) | P i ≤ Pi ≤ P i, Qi ≤ Qi ≤ Qi, i ∈ N

}
Then, we can define a continuously differentiable function F
to rewrite the power flow equation (4) as follows.

F (x, y) = 0 (20)
In fact, F (x, y) = 0 defines implicitly a function y = y(x)
over X :
P0 := P0(x), Q0 := Q0(x)

vi := vi(x), i ∈ N
Pij := Pij(x), Qij := Qij(x), `ij = `ij(x), (i, j) ∈ E

Thus, the OPF problem (19) can be written equivalently as

min
x∈X

a0P
2
0 (x) + b0P0(x) +

n∑
i=1

(
aiP

2
i + biPi

)
(21a)

s.t. vi ≤ vi(x) ≤ v̄i, i ∈ N (21b)
The equivalence between (19) and (21) is based on the implicit
assumption that F (x, y) = 0 always holds. This is further
explained in the online algorithm that follows.

In [13], to simplify the feasible set, the constraints (21b)
is added to the objective function via a log-barrier function.
Then, the Lagrangian of (21) is

L(x, µ, µ̄) := a0P
2
0 (x) + b0P0(x) +

n∑
i=1

(
aiP

2
i + biPi

)
− λ

n∑
i=1

ln (vi(x)− vi)− λ̄
n∑
i=1

ln (v̄i − vi(x)) (22)

where λ, λ are decreasing sequences such that
lim
v→v+i

−λ ln (v − vi) =∞, i ∈ N

lim
v→v−i

−λ ln (vi − v) =∞, i ∈ N

The online OPF algorithm is proposed based on the gradient
projection method.

xt+1 = PX
[
xt − η∇xL(x, λ, λ̄)

]
(23a)

yt = y(xt) (23b)
where η > 0 is the stepsize, and PX [·] is the projection onto

Algorithm 1 Flow chart of feedback-based OPF
1: Initialization: Set t = 1, the value of x(1), parameter η,

and decreasing sequences λ, λ̄.
2: while t ≤ T do
3: Apply the current iterate xt to the physical system.
4: Measure yt directly from the network.
5: Compute xt+1 from (23a) and objective function from

(19a).
6: Update t← t+ 1.
7: end while
8: Output: xt, ft(xt), t = 1, · · · , T .

X . The gradient equals
∇xL(x, λ, λ̄) = ∂xL(x, y(x), λ, λ̄)

− ∂yL(x, y(x), λ, λ̄)[∂yF (x, y(x))]
−1
∂xF (x, y(x))

where ∂xL stands for the partial derivative of L with respect to
x. It is shown in in [13] that∇xL(x, λ, λ̄) can be approximated
by the linearized BFM (5), which reduces the computational
burden greatly.

The online implementation of (23) is introduced and repre-
sented in Algorithm 1. In step 2, the power flow equation is
solved by the physical system based on the law of physics. In
this way, we avoid solving the power flow equation (4), which
is computationally costly. The algorithm could continue with
the much simpler measurement and feedback steps.

B. Application survey

In this subsection, we will introduce more applications of
feedback optimization, starting with the online OPF problem.
Works on online OPF could be roughly divided into three types
based on the methods adopted, including gradient descent:
[13], [56]–[58], alternating direction method of multipliers
(ADMM) [59], and the Newton-Raphson method [60]–[62].

In the first type, the primal-dual gradient method is used to
solve the time-varying OPF problems [56], [57]. The gradient
approximation method could be adopted to reduce its computa-
tion burden [13]. If some buses are not measurable, sensitivity
or Kalman filter could be utilized to estimate variables in these
buses, as was done in [58], [63]. Dynamic ADMM is similarly
adopted in [59] to solve the OPF problem based on online
measurements. To accelerate the convergence speed, Newton-
Raphson methods are designed [60]–[62], which utilizes the
second-order information. The second-order information helps
to better handle the non-linearity of the OPF problem, so these
methods usually have improved tracking performance.

Another important application is online voltage control.
Generally speaking, optimal voltage regulation can be viewed
as a type of OPF problem, which covers different kinds of
objectives, such as minimizing power losses and voltage differ-
ence from nominal value [64]–[66]. Due to the multi-objective
feature, typically weighted sums of these cost functions are
considered. The branch model for the distribution system,
i.e., the Linearized DistFlow in (5), is widely utilized in the
problem formulation. Recent works can be roughly cate-
gorized into two types: decentralized control and distributed
control. For the decentralized voltage control, locally available
information such as bus voltage magnitude is utilized to design
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the controller [67]. The control objective associated with the
voltage error has to be defined in the weighted form, i.e., the
admittance matrix-induced norm [64], [65]. In this way, its
gradient equals the nodal power flow equation, which spawns
the online measurement and local implementation. The specific
form of the objective function also restricts the extensibility
of the local control. The distributed voltage control can avoid
the disadvantage to some extent, while the communication is
needed for the tradeoff [68], such as communication with
immediate neighbors [69]–[74] or two-hop neighbors [75],
[76]. Then, the objective could be more general, such as the
voltage error in the Euclidean norm and the total power losses.

Remark 2 (Comparison between OGDC and feedback op-
timization). Both OGDC and feedback optimization are de-
signed for the power system operation in the time-varying
environment. The major similarity between OGDC and feed-
back optimization is that they both adopt the idea of feedback
control. However, they also have the following differences in
the following two aspects.

• Feedback optimization focuses on optimization at a
slower time scale with the consideration of (quasi)steady
states, while the OGDC considers the dynamics of phys-
ical systems on a faster time scale.

• Feedback optimization is more concerned with operation
optimality, where tracking errors compared with offline
results are taken as the performance index. OGDC pays
more attention to the system stability, where optimality
of the control scheme refers to the result in the steady
state.

Nevertheless, in practical operation, one sometimes needs to
combine two methods to achieve satisfactory performance on
different time scales.

V. ONLINE OPTIMIZATION FOR MULTI-PERIOD PROBLEMS

In this section, we introduce two commonly-used online
optimization methods for multi-period problems, including
Lyapunov optimization and OCO. We will present their main
ideas and typical applications. Here, we emphasize a pure
online decision-making process without referring to historical
data or prediction.

A. Lyapunov Optimization

In this subsection, we first introduce the main idea of
Lyapunov optimization for multi-period problems. Then, we
survey its applications in power systems.

1) Main idea: In a multi-period optimization problem with
T periods, there exists a queue defined as

Qt+1 = Qt + xt, t ∈ {0, . . . , T − 1} (24)
where Qt is the state variable. xt = Y1(wt, ut) is assumed
to be bounded, where wt is a stochastic variable, ut is the
decision variable, Y1(·) is a mapping from input to state
determined by the system property. In power systems, Qt is
usually the SoC of an ESS, and then xt is the charging or
discharging rate of the ESS.

Suppose the initial value Q(0) is a constant. Summing up
both sides of (24) over t = 0, · · · , T−1 and taking expectation
give rise to

E [QT ]−Q(0) =
∑T−1

t=0
E [xt] (25)

Assuming QT is bounded, the left-hand side of (25) is also
bounded. Then, dividing both sides of (25) by T and taking
limits as T →∞ yields

lim
T→∞

1

T

T−1∑
t=0

E [xt] = 0 (26)

In (26), it shows that net storage in Q is zero over a long-term
horizon, which is the so-called mean-rate stability.

We focus on the following multi-period problem

min
ut,∀t

lim
T→∞

1

T

T−1∑
t=0

E[f(yt)] (27a)

s.t. g(yt) ≤ 0 (27b)
h(yt) = 0 (27c)
the queue definition (24)
the mean rate stability (26)

where yt = Y2(wt, ut) with a mapping Y2(·), which is
not necessarily equal to xt. Problem (27) is to minimize
the long-term time-average cost with equality and inequality
constraints. Since there exists future variables xt+1, xt+2, · · ·
at any time slot t, (27) is difficult to be solved online.
The philosophy of Lyapunov optimization requires making
an online decision only based on xt and wt observed in the
current stage, as well as the current queue Qt. Thus, the key is
to eliminate dependency on the future variables in the problem
formulation.

We first define a quadratic Lyapunov function

Lt =
1

2
Q2
t (28)

The Lyapunov drift between two adjacent time slots is

∆t = Lt+1 − Lt =
Q2
t+1 −Q2

t

2
(29)

It is verified in [77] that minimizing the Lyapunov drift
ensures the stability of Qt. If we further consider minimizing
the cost together, the objective function could be drift-plus-
cost, i.e., ∆t + ρf(xt), where ρ is a constant adjusting the
weight between drift and cost. Because Qt+1 in ∆t is not
known in the time slot t, the drift-plus-cost function cannot
be minimized directly. Recalling the definition in (24), we have
Q2
t+1 = (Qt + xt)

2. Then, we get the upper bound of ∆t.

∆t =
x2
t

2
+Qtxt ≤ B +Qtxt (30)

where B = x2

2 is a constant with x as the upper bound of
xt,∀t. The upper bound is only determined by the information
of the current stage. Taking Qt ·xt +ρ · f(yt) as the objective
function and removing the mean rate stability constraint, the
original problem (27) is relaxed to

min
ut,∀t

Qt · xt + ρ · f(yt) (31a)

s.t. g(yt) ≤ 0 (31b)
h(yt) = 0 (31c)

Since B is a constant, removing it in (31a) does not change
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Algorithm 2 Online Algorithm based on Lyapunov Optimzi-
ation

1: Initiation: Set t = 1, the value of Q1 and parameter ρ.
2: Transform (27) to the online counterpart (31).
3: while t ≤ T do
4: S1: Observe the stochastic variable wt.
5: S2: Solve problem (31) to get ut and objective func-

tion.
6: S3: Get xt and yt from the mapping Y1(·), Y2(·),

respectively.
7: S4: Update the queue Qt+1 according to (24).
8: S5: Update t← t+ 1.
9: end while

10: Output: xt, yt, ft(yt), Qt, t = 1, · · · , T .

the solution of the problem. Equation (24) is satisfied by the
physical law, and thus is also not included explicitly. Clearly,
all the parameters in problem (31) can be obtained at time slot
t, which can now be solved directly.

The main steps of the Lyapunov optimization to solve (27)
up till now is summarized in Algorithm 2.

One can show that Algorithm 2 solves the relaxed problem
without the constraint of mean-rate stability. Further, it is
proved in [77, Chapter 4.1] that the queue obtained from
Algorithm 2 is mean-rate stable. Moreover, the error between
the result obtained by Algorithm 2 and the optimal solution
of (27) is bounded, which is determined by the parameter ρ.
Generally, a larger ρ leads to a smaller error [77, Chapter 4.1].

The Lyapunov optimization also can be interpreted as the
stochastic dual gradient method [78], where the queue in
(24) is the iteration of the Lagrange multiplier. From this
perspective, some approaches could be adopted to improve
the performance of the solution obtained by Lyapunov opti-
mization. For example, an extra gradient evaluation is added in
[79], which learns from the historical data and then adapts to
the upcoming strategies. Because the procedure of Algorithm
2 is easy to follow, we do not introduce a specific example
here.

2) Application survey: The operation of an ESS naturally
fits the queue given in (24), where Qt is the SoC, and xt
is the sum of charging and discharging power. Thus, the
online algorithm based on the Lyapunov optimization has been
mainly reported in storage-related scenarios [80]. A typical
application is the online economic dispatch, including energy
management in smart grid with distributed energy resources
[81], [82], in [83]–[88] for microgrids. Moreover, it can also
be utilized in integrated energy systems [89]–[93], where
the queue could be the SoC of heat storage or the room
temperature. A similar method is also applied in [94], [95]
for the charging of electric vehicles, where the SoC of the
EV battery is treated as the queue. Besides, another important
application lies in power markets, such as the energy sharing
with storage systems [96]–[98], where each participant has its
own ESS.

The aforementioned works focus on the centralized Lya-
punov optimization, which, however, also can be implemented
in the distributed manner [99]–[103]. In [99], the heating
ventilation, and air-conditioning system are considered in
DR, where the controlled room temperature is modeled as

a queue similar to the SoC of a battery. The algorithm is
implemented in a partially distributed way with a control
center broadcasting the summary of power consumption. In
[100], [101], the alternating direction method of multipliers
(ADMM) is adopted in the distributed implementation, which
is also a partially distributed way with an aggregator updating
dual variables. In [102], the dual ascent algorithm is designed
to coordinate networked DERs as a virtual power plant in
a distributed manner, which is also partially distributed. In
these works, a central coordinator is needed to broadcast
control parameters or queue states [103], and a fully distributed
manner still needs to be developed.

In most works, the time horizon T is assumed to be infinite,
which can simplify the proof of the algorithm performance
mathematically. Nonetheless, we only focus on the energy
management during a given period in many cases, which
requires the finite-time horizon Lyapunov optimization [104]–
[106]. In [104], a real-time is designed for the management
of batteries within a finite period. A similar method is also
utilized in [105], [106], considering joint energy storage man-
agement and load scheduling. The procedure of finite-time
Lyapunov optimization is similar to the infinite counterpart,
which makes the performance proof more difficult.

Lyapunov optimization is an effective tool for multi-
period decision-making problems in power systems with time-
coupled states, such as the SoC of the energy storage systems,
or the room temperature of HVAC or district cooling systems.
Because it performs an “1-lookahead” mechanism, only a
single-period deterministic problem needs to be solved at
each period. As such, an analytical solution to the Lyapunov-
drift problem (31) becomes possible. For example, in [2],
a multiparametric programming method is used to get the
analytical real-time dispatch policy.

B. Online Convex Optimization

From Section V-A and Algorithm 2, the stochastic variable
wt needs to be observed first before solving (31). This is the
so-called “1-lookahead” pattern, which covers some problems
in power systems. For example, the electricity price is sent to
the wind-storage integrated power plant, after which the self-
dispatch action is taken [2]. However, this is not always the
case. In some cases, the uncertainties are unknown before the
decision-making and will be revealed later, which leads to the
“0-lookahead” pattern. For example, a market participant, such
as the ESS owner, bids on a capacity without the knowledge of
the electricity price. The price could be obtained only after the
market is cleared. In this circumstance, Lyapunov optimization
is inapplicable, and instead, OCO is typically used. In this
section, we will introduce its main idea and applications in
power systems.

1) Main idea: OCO focuses on the following problem.
min
xt

ft (xt) (32a)

s.t. gt (xt) ≤ 0, t = 1, . . . , T (32b)
where the convex objective function ft(·) and the convex
constraint gt(·) are unknown before xt is determined by OCO
algorithm, i.e., uncertainties not observed in prior. It is usually
viewed as a repeated game between a learner and nature across
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Algorithm 3 Online Algorithm based on Lyapunov Optimzi-
ation

1: Initiation: Set t = 1, the value of x0, λ0 and parameter η.
(31).

2: while t ≤ T do
3: S1: Update the primal variable xt by (33a).
4: S2: Update the dual variable λt by (33b).
5: S3: Determine the corresponding objective function
ft(xt) and constraint gt(xt).

6: S4: Compute the performance index, Reg, Vio, CR.
7: S5: Update t← t+ 1.
8: end while
9: Output: xt, ft(xt), t = 1, · · · , T , Reg(T ), Vio(T ).

a finite time horizon t = 1, . . . , T , which may be adversarial
[107]. At the beginning of each time slot t, the learner
determines a decision variable xt ∈ X by a pre-designed
online algorithm. Then, nature selects the value of uncertainty,
and thus determines ft(·) and gt(·). Consequently, the learner
gets the objective ft (xt) and the constraint gt (xt) ≤ 0.

Most of the pre-designed algorithms are online variants of
the discrete form of primal-dual gradient method.
xt = PX

[
xt−1 − η

(
∇xft−1 (xt−1) + λTt−1∇xgt−1 (xt−1)

)]
(33a)

λt = PR+ [λt−1 + ηgt−1 (xt−1)] (33b)
where λt is the Lagrangian multiplier with respect to the
constraint gt (xt) ≤ 0, η is a constant stepsize, and R+ is
the nonnegative Euclidean space with proper dimension. The
OCO algorithm based on (33) is given in Algorithm 3, which
clearly shows the “1-lookahead” pattern.

In (33), because xt is obtained with the information of
ft−1(·), gt−1(·) instead of ft(·), gt(·), it is almost impossible
to obtain the optimal solution to (32). A natural question
is how to assess the performance of the pre-designed algo-
rithm, i.e., the suboptimality of xt. Here, we introduce three
commonly used measures: Regret, Violation, and Competitive
Ratio.

The first measure regret is defined as

Regd(T ) :=

T∑
t=1

[ft (xt)− ft (x∗t )]

where x∗t is the optimal solution to the problem (34). Re-
gret quantifies the suboptimality caused by the pre-designed
algorithm. Since x∗t is the optimum at time slot t, Regd(T )
is sometimes called dynamic regret. In contrast, we can also
define the static regret.

Regs(T ) :=

T∑
t=1

[ft (xt)− ft (x∗s)]

where x∗s is the optimal solution to (34).

min
x

T∑
t=1

ft (xt) (34a)

s.t. gt (xt) ≤ 0, t = 1, 2, · · · , T (34b)
The baseline strategy x∗s in the static regret remains identical
throughout the horizon, which may cause large deviations
between xt and x∗s with the increase of t in the time-
varying environment. In contrast, the baseline strategy x∗t in

the dynamic regret varies with the time slot t, which seems to
be more suitable for performance guarantee in power systems
with strong volatility.

The second measure violation is defined as

Vio(T ) :=

T∑
t=1

∥∥[gt (xt)]+
∥∥ (35)

where the operator [a]+ := max(a, 0). Solutions that are
feasible to the set of constraints do not contribute to Vio.

Finally, the last measure is the Competitive Ratio CR, which
is the rate between objective functions obtained by the online
algorithm and optimal value [108], [109].

CR = max
∀t

ft (xt)

ft (x∗t )
(36)

Clearly we have CR ≥ 1. This index is to drive the cost of
the online algorithm close to the offline optimum.

In existing works, many extensions and variants of the
OCO algorithm are investigated, which includes updating the
primal and dual variables in a Gauss-Seidel manner [110],
adding a regularization term to get the strong concavity of
the dual variable [111], distributed implementation of the
algorithm [112]–[114], etc. In addition to the iteration type,
another important variant of the OCO algorithm is based
on the information obtained by the learner. If the analytical
expressions of ft(·) and gt(·) or their gradients are available,
this is called full feedback. Otherwise, it is known as the
bandit feedback case, i.e., the values of ft(·) and gt(·) obtained
only at the sampling instance [111], [115], [116]. In the case
of bandit feedback, the key is to estimate the gradient of
ft(xt), gt(xt) using limited information. It must be pointed out
that the OCO algorithm is strongly problem-dependent, and
has no unified mathematic paradigm. Comparisons between
the different OCO algorithms can be found in [117]. Since
the procedure of Algorithm 3 is easy to follow, we do not
introduce a specific example here.

2) Application survey: The framework of OCO is first
defined in the machine learning literature [117], [118], which
has recently gained attention in power systems, particularly
in the applications of demand-side management [113], [119]–
[125]. In [119], an online algorithm is studied to address
optimization problems with ramp constraints, which presents
asymptotically tight bounds on the competitive difference.
In [121], the varying price elasticity of consumers in the
DR is considered by the online algorithms, where both full
and bandit feedback structures are included. In [122], the
long-term load scheduling problem is investigated, which is
modeled as a partially observable stochastic game due to
the uncertainties of price and load demand. To solve the
problem and get the Markov perfect equilibrium, an online
load scheduling learning algorithm is proposed based on the
actor-critic method. Similar methods are extended in [123]
to deploy the DR programs for data centers. In [125], the
residential DR is formulated as a contextual multi-armed
bandit problem, which is solved by an online learning and
selection algorithm based on the Thompson sampling method.

The OCO algorithm also can be implemented in a dis-
tributed manner. In [120], distributed online learning algorithm
is proposed for the charging control of electric vehicles, which
requires only one-way communication, i.e., the distribution
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Fig. 5. Decision-making process of Lyapunov optimization and online convex
optimization

company publishes the prices. This structure fits in with
the current communication infrastructure in reality. In [113],
the DR considering heating, ventilation, and air-conditioning
systems of commercial buildings is investigated, where the
dynamic regret is used to evaluate the performance of the on-
line distributed weighted dual averaging algorithm. Frequency
regulation using ESS based on the OCO is studied in [126],
which also can be realized in a distributed manner with the
capability of plug-and-play.

In an OCO framework, the objective functions and con-
straints are revealed after the decisions are made, which con-
tradicts most cases in traditional power systems. Consequently,
the application of OCO in power systems is still limited
currently. Nonetheless, with the high penetration of volatile
renewable generations, the OCO method shows great potential
in the future due to its features, such as its fast response speed
and its independence from the need for predictions.

Remark 3 (Comparison between Lyapunov optimization and
OCO). Lyapunov optimization and OCO are both widely used
in multi-period problems. Their differences are twofold.

• The major difference is the decision-making process. Lya-
punov optimization is the “1-lookahead” pattern, where
the uncertainty wt is observed first, and then the Lya-
punov drift problem (31) will be solved. In contrast, OCO
is usually a “0-lookahead” pattern, where the decision
is made before the observation of the uncertainty. This
difference is illustrated in Fig.5.

• Lyapunov optimization usually follows a standardized
paradigm in the algorithm design, with attention paid
to the problem formulation. On the contrary, OCO algo-
rithms are strongly problem-dependent without a unified
mathematical paradigm, which, however, all focus on the

performance estimation with metrics like Reg, Vio, and
CR.

In practice, the two methods are both very useful, but they
have individual application scenarios.

Remark 4. Lyapunov optimization and OCO have two things
in common in that they both do not require historical data
and prediction. Other online optimization methods for multi-
period problems either need historic data or prediction, such
as reinforcement learning (RL) and receding-horizon control
(RHC). In RL, a large amount of data is needed to train the
controller offline before it can be used online at a reasonable
performance in the time-varying environment. In RHC, also
known as model predictive control (MPC), predictions on the
near future data are required. It is important to note that RHC
proceeds in a rolling-horizon manner. As such, both of them
are computationally more expensive compared with Lyapunov
optimization and OCO, especially for large-scale problems
with long time horizons. Although they both have fruitful
research achievements, we do not include them in this review
due to data and prediction limitations.

VI. CHALLENGES AND PROSPECTS

This section presents the critical challenges and several
future directions of online optimization in power systems,
i.e., the capability of plug-and-play, transient performance
enhancement, and online pursuit of Nash equilibrium (NE).

A. Capability of plug-and-play

With the proliferation of DGs, the power systems will
no longer be dominated by a few large SGs, but by a
massive amount of small devices with various dynamical
characteristics. Because they belong to individuals instead of
the utility company, some DGs may switch off or switch
on unexpectedly. This requires the controller to have the
capability of what we term plug-and-play, which includes two
stages: 1) stability guarantees after plugging in; 2) achieving
optimality in playing. Both of these should be realized in an
online fashion.

1) Online stability guarantee: Stability is the primary
concern of power systems, which is usually analyzed by
offline methods, such as time-domain simulation, eigenvalue
analysis, and direct methods based on the energy function.
The first and third approaches require a detailed system
model. The second one is applicable to a linear system model
with small disturbances. To summarize, all of the existing
methods require the complete model of the system, which
is available in the traditional power system consisting of
several large SGs. However, it is difficult to realize due to the
unexpected (dis)connection of DGs under the new situation.
In addition, these methods rely on a known equilibrium
point, which are also less applicable due to the uncertainty
and volatility of renewable generation sources. Thus, it is
necessary to develop an online stability analysis which is
adaptable to the volatile environment. Recently, incremental
passivity theory has attracted much attention, as it eliminates
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the influence of equilibrium fluctuation. Some works derive
local stability criteria, which provide verifiable conditions for
DGs to connect [127]. If DGs satisfy this condition, they can
be integrated. Otherwise, it will be not allowed to connect.
Because the condition can be checked by local variables, it
is easy to use and suitable for online applications. Although
it is inspiring, much work still needs to be done to form a
complete theoretical framework. First, the current condition
is conservative, and often the stability criterion has to be
made mild as it is preferred to enlarge the stability region.
Second, because it is impractical to change the controllers of
many already installed DGs, designing supplementary control
strategies is very important to drive DGs towards satisfying
these conditions. In addition, stability theory addressing vary-
ing dimensions should be developed.

2) Online optimality guarantee: When a DG is switched
on or switched off, the optimization problem should be
changed accordingly. The traditional centralized decision-
making paradigm is subject to performance limitations in the
situation of unexpected (dis)connection of massive DGs, such
as a single point of failure, limited flexibility, and scalability,
which is inapplicable for online implementation. Recently, the
prevalence of distributed optimization alleviates this problem,
which naturally renewed interest in this area [128]. Many
distributed algorithms are developed, such as consensus-based
methods [31], dual decomposition [129], ADMM [130], etc.
For these distributed algorithms, a basic assumption should
hold, i.e., each agent is equipped with an ideal solver or iter-
ative formula. Moreover, such solvers or formulae are usually
identical and highly problem-oriented. Although such settings
eliminate some drawbacks of the centralized paradigm, they
still need to be improved in terms of adaptability. For in-
stance, some agents may be reluctant to share their sensitive
information with other agents or even a third party. Then,
some works develop distributed algorithms with arbitrary local
solvers [131], [132], which allow each agent to perform its
computation locally through individual solvers, the so-called
arbitrary solver. These solvers are self-customized, which
increases the capability of plug-and-play. However, much work
remains to be needed in this area. For example, asynchrony
should be considered between arbitrary solvers to enable
agents to operate at different paces. Moreover, an highly
efficient communication topology should be designed for the
online optimality pursuit.

B. Online transient performance enhancement

OGDC is designed to achieve optimality in the steady
state. The transient performance determines how to reach
the optimal steady state, which is also very important in
dynamic control. However, most of the existing works pay
less attention to the transient process. For example, in the
optimal frequency control, the frequency nadir/overshoot and
recovery time are critical for the system stability, which also
need to be optimized besides the steady state. To enhance the
transient performance, model-based and model-free methods
are both investigated. In the first category, some inspiring
works study the influencing factors of the transient index by
spectral approach [133], which are derived only with linear

models. MPC is also used in the frequency control problem
with time-coupled state variables and constraints [134], which
is capable to compute optimal control commands based on
predictions of future states and disturbances. Due to the
strong uncertainties, accurate predictions or forecasts are often
not possible. Moreover, the system is too complex to get
an analytical model with the high penetration of renewable
generations. These restrictions limit the wide application of
model-based approaches. For the model-free methods, RL has
attracted surging attention [135], [136], which makes decisions
based on the data instead of explicit models. The data-driven
nature allows it to adapt to uncertain dynamical environments
by incremental learning [137]. Thus, RL has the potential of
outperforming model-based methods in transient performance
enhancement if the detailed model cannot be obtained.

Recently, an interesting research topic on integrating model-
based and model-free methods has emerged. Its motivations
are twofold: 1) although the power system model is not
accurate, the model-based methods still have acceptable per-
formance in the application; 2) purely model-free approaches
suffer from inherent limitations, such as scalability, sample
complexity, and the heavy computation burden. Combining
model-based and model-free methods together may achieve
the benefits of both [138]. For instance, in OGDC, the current
model-based controllers are designed for optimal operation
in the steady state, while a model-free supplementary model
could be added to enhance the transient performance. The
model-based approach can provide a warm start for the model-
free controllers. Despite limited works on this subject so
far, combining model-free with model-based methods is envi-
sioned to be a promising direction. Again, much work is left to
be done in the future. First, the integration structure of model-
free and model-based controllers should be well designed.
Potential ways include implementing two controllers in serial,
in parallel, or embedding one as an inner module in the other
[139]. Generally speaking, parallel integration does not break
the original control structure and seems to be the easiest
way in practice. In addition, the interpretability should be
strengthened. Understanding the mechanism of many model-
free controllers based on neural networks or machine learning
remains an open question. With the help of the model-based
method, its interpretability is improved tremendously. Then,
the transient performance could be guaranteed theoretically.

C. Online optimization with predictions

In the OCO, no future information is needed. With the ad-
vancement of techniques, short-term predictions of renewable
generations and loads may be made available. The algorithm
performance will be greatly improved if future information is
properly utilized. In this situation, at each stage t, an agent
could observe uncertainties for the next W stages, and then
makes a decision xt. Generally, MPC naturally fits such prob-
lems, which require solving W -stage optimization problems at
each stage. The OCO with predictions avoids time-consuming
computation, which is much faster. This variant has attracted
a lot of attention in recent years. Some algorithms have been
proposed and their optimality guarantees have been analyzed,
which shows that the performance is improved greatly, e.g.,
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the regret lower bound decays exponentially with W [140].
One potential direction is to consider the influence of the
inaccuracy of predictions. If the prediction noises are modeled
as uncertainty sets, the robustness of the algorithm should
be analyzed. Similarly, if we know their distributions, the
confidence interval of the regret can be given. Moreover,
temporal-coupled constraints widely exist in power systems,
such as the SoC update of the energy storage system and
ramping limits, which are seldom considered in the OCO
framework. To solve such problems, the key difficulty is
to find temporal decomposition methods, such as dynamic
programming. This also motivates another research direction,
i.e., integrating reinforcement learning with OCO. With future
predictions, the learning efficiency may be improved greatly
by rolling out.

D. Online pursuit of generalized Nash equilibrium

With the large penetration of DGs and ESSs, the distri-
bution network has been witnessing the emergence of mas-
sive “prosumers”, i.e., proactive consumers, which can both
produce and consume electric power [141]. In addition, the
advancement of communication and control technologies at the
consumer level enables them to communicate with each other.
These changes encourage energy trading among prosumers,
which forms local “Peer-to-Peer” (P2P) power markets [142].
In this market, each prosumer attempts to maximize his profit
while satisfying physical laws. The market will be cleared until
NE is reached, from which no player can unilaterally deviate
for a higher profit [143]. Considering the global constraints,
the power markets in distribution networks are formulated by
a generalized Nash game (GNG), while the corresponding NE
is also called generalized Nash equilibrium (GNE). Due to
the strong volatility and fast fluctuation, the GNE of these
markets also needs to be pursued online. Similar to online
optimization, the potential topics of the online game also
include three aspects: NE-guided dynamic control (NEGDC),
feedback GNE seeking, and online multi-stage GNE seeking.

1) NE-guided dynamic control: The uncertainty and volatil-
ity of renewable energies and loads make the system state
change rapidly. As such, it is difficult for the market to
respond to the fast change of power imbalance in real-
time, which seriously affects the stability and optimality of
the system. Thus, the market dynamics should be combined
with the inverter control of the prosumer, which leads to
the NEGDC. Different from the OGDC, the NEGDC is to
design a (dynamic) feedback controller for each agent, which
steers the system states to the GNE of the market game.
Reference [30] designs controllers for generators to maximize
their profit by regulating the power output according to the
Cournot competition. Other related works focus on the GNE-
seeking dynamics, i.e., solving the game by continuous-time
algorithms [144]–[146]. Although the above works do not
consider complicated constraints in power systems, they are
still inspiring for NEGDC in controller design and stability
analysis. Despite limited works on this subject so far, design-
ing dynamic controllers to steer the system to the GNE of the
P2P market is envisioned to be a promising direction in the
power system with massive prosumers.

2) NE-seeking Feedback: The NE-seeking feedback is an
extension of feedback optimization methods to a game-
theoretic setting. Different from recent advances in the of-
fline GNE seeking algorithms [147], the online measurement
feedback from the physical system will be incorporated [148].
Current works mainly focus on affine constraints, which still
need to be further improved in many aspects to satisfy the
complicated nonlinear constraints in power systems like power
flow equations. By the measurement feedback, the numerical
computation of these complex constraints can be replaced
by physical laws. This not only reduces the computation
burden but also avoids private information exchange to a
certain extent. Key challenges include controller design,
existence and uniqueness analysis of the NE, as well as the
convergence/stability guarantees.

3) Online multi-stage NE seeking: Currently, the for-
mulation of online multi-stage NE seeking is similar to
that of OCO. Each player aims to minimize its own
cost function subject to some global constraints, i.e.
min
xi,t∈Ωi

Ji,t (xi,t, x−i,t) , s.t. gt (xt) ≤ 0, where both the

objectives and constraints could be time-varying [149], [150].
Similar to the OCO, regret can also be used to evaluate the
performance of the algorithm. Current problem formulation
does not consider the coupling of adjacent time-steps, which,
however, widely exists in power systems, such as the operation
of ESSs. If we consider that, the problem adopts the following

form min
xi,t∈Ωi

T∑
t=1

Ji,t (xi,t, x−i,t) , s.t. gt (xt, xt+1) ≤ 0.

The temporal-coupled constraint is not a trivial extension,
which will bring more challenges to the analysis framework,
including the NE existence and algorithm design. Lyapunov
optimization approach could be used to decouple the time
coupling, but this needs further investigation on whether it
can help solve a GNG. Another extension then would be how
to modify it to multi-player setting and how to evaluate the
deviation of the result from the GNE.

To summarize, the online pursuit of GNE is more challeng-
ing compared with online optimization. First, the existence
and uniqueness of GNE are difficult to justify. The variational
inequality approach is utilized to find a GNE, which can
guarantee the existence of GNE with assumptions on the
monotonicity of the pseudo-gradient. However, this still cannot
guarantee the uniqueness [147]. Second, information sharing
is constrained. Because each prosumer is an independent
stakeholder to maximize their own profit in a competitive
market, they may be reluctant to share private information.
Thus, the privacy preservation mechanism should be well
designed. Third, the performance analysis is more challenging,
since they include multiple metrics such as stability and
regret. The pseudo-gradient is widely adopted in the algorithm
design, which, however, has no symmetry compared with the
gradient in online optimization. This implies that the pseudo-
Hessian matrix is not symmetric. Consequently, many second-
order properties do not exist, and cannot be applied in the
performance analysis.
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VII. CONCLUSION

Although some works have been devoted to the online opti-
mization of power systems with high penetration of renewable
generations, they have different interpretations based on their
corresponding time scales, which leads to much confusion. In
this paper, we provide a comprehensive review and compar-
ative analysis of three different online optimization notions
in power systems, including motivations, time scales, popular
algorithms, theoretic foundations, and typical applications.
Moreover, we also present the critical challenges and several
future directions, such as the capability of plug-and-play,
transient performance enhancement, online optimization with
predictions, and online pursuit of NE. It must be emphasized
that online optimization is strongly problem-dependent, and
has no unified mathematic paradigm. Our hope is that this
paper helps the readers to figure out where and when to use
what types of online optimization algorithms.
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